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Abstract. In this paper we explore the power of complex analysis in analyzing the as-
ymptotic behavior of combinatorial sequences through their generating functions. Studying
various combinatorial classes such as surjections, unary-binary trees, and Catalan num-
bers, we will illustrate how we can exploit complex analysis to understand the asymptotic
behaviors of these combinatorial structures.

1. Introduction

Asymptotic analysis, at heart, is studying the limiting behavior of functions as their
arguments grow large. In combinatorics, we are often interested in determining the growth
of coefficients of generating functions. In this paper we refer to ordinary generating functions
as OGFs and exponential generating functions as EGFs. Throughout this paper, we will be
using the following notation to refer to coefficients: let f(x) be a generating function in x,
then [xn]f(x) denotes the coefficient of xn in f. For example,

[xn]ex =
1

n!
and [xn]

1

1− x
= 1.

Where the former is due to the Taylor expansion of ex =
∑∞

n=0 x
n/n! and the latter is due to

the geometric series expansion of 1
1−x

=
∑∞

n=0 x
n. Before we go any further into the paper,

we need to introduce a notation:

Definition 1.1. Denote an = [xn]f(x). Then, we say that an ∼ g(n) as n → ∞ if and only
if

lim
n→∞

an
g(n)

= 1.

Traditionally, recurrence relations can sometimes help us to find the asymptotic behavior
of sequences in which we can work with. For example, recurrence relations can be used to
find the asymptotics of the Fibonacci Numbers:

Definition 1.2 (Fibonacci Numbers). The Fibonacci numbers Fn, for n ≥ 0, are defined
recursively by: F0 = 0, F1 = 1, and for all n ≥ 1,

Fn+1 = Fn + Fn−1.

We will not provide a full justification of the asymptotic relation as it is a diversion to our
primary discussion; however, the interested reader can read the explanation in Section 1.3
of [Wil05] and observe that generating functions offer a powerful way to study sequences.
The well known OGF for Fn is

F (x) =
x

1− x− x2
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from which we can derive that Fn ∼ φn
√
5
, where φ is the golden ratio 1+

√
5

2
.

In the case of the Fibonacci numbers, we benefited from a simple recurrence relation, and
hence we were able to find the asymptotic for Fn with ease. However, the Catalan Numbers
are more complex to analyze asymptotically:

Definition 1.3 (Catalan Numbers). The Catalan numbers Cn, where n ≥ 0, are defined
recursively by: C0 = 1 and for n ≥ 1

Cn =
n−1∑
k=0

CkCn−1−k.

For example, C0 = 1, C1 = 1, C2 = 2, C3 = 5, C4 = 14, C5 = 42. Beautifully, the Catalan
numbers often appear throughout different places in combinatorics such as valid parentheses
expressions, binary trees, and triangulations of convex polygons. The well known generating
function of the Catalan numbers is

C(z) =
1−

√
1− 4z

2z
.

In general, partial fraction decomposition and recursion relations do not work well for Catalan
numbers to find the asymptotics. It is at these times that complex methods for studying
asymptotics saves the day. In Section 4 we will provide the asymptotic form of Cn = [zn]C(z).
In this paper, we wish to discuss a starting motivation to understand the beauty of using

complex analytic methods to study combinatorial structures and their behaviors. In Section
2 we will discuss some complex analysis terminology and tools as well as prove a fundamental
theorem in complex asymptotics. In Section 3 we will dive into analyzing asymptotics via
singularities and analyze two combinatorial problems: surjections and unary-binary trees.
Finally, in section 4 we will provide the necessary tools to find the asymptotics for the
Catalan numbers. The results mentioned are due to [FS09].

2. Complex Analysis Tools

We will start off by defining the necessary complex analytic terminology that is necessary
to understand when the asymptotic theorems are useful:

Definition 2.1 (Analytic Functions). A function f(z) defined over a region Ω is analytic at
a point z0 ∈ Ω if, for some open disc centered at z0 and contained in Ω, it can be represented
by a convergent power series expansion

f(z) =
∑
n≥0

cn(z − z0)
n.

Definition 2.2 (Singularities). Given a function f defined over the region interior to Γ. A
singularity of f is a point z0 such that f is analytic on a punctured neighborhood around z0
but not at z0.

Now that we have stated the main definitions, we can discuss a fundamental theorem that
kickstarts using complex asymptotic methods:

Theorem 2.3. (Cauchy Coefficient Formula) Let f(z) be analytic in a region containing the
origin, and let Γ be a positively oriented simple closed contour enclosing the origin. Then
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the coefficient of zn in the power series expansion of f(z) is given by:

[zn]f(z) =
1

2πi

∫
Γ

f(z)

zn+1
dz.

Proof. We will use the Cauchy Residue Theorem. Hence, we have that

1

2πi

∫
Γ

f(z)

zn+1
dz = Res

(
f(z)

zn+1
; 0

)
.

Since f(z) can be expressed as
∑∞

k=0 akz
k, we have that the Laurent expansion of f(z)/zn+1

is
f(z)

zn+1
=

∞∑
k=0

ak · zk−n−1.

We have the coefficient of z−1 is when k = n, hence we have that

Res

(
f(z)

zn+1
; 0

)
= an = [zn]f(z).

Bringing both parts together, we have that

1

2πi

∫
Γ

f(z)

zn+1
dz = Res

(
f(z)

zn+1
; 0

)
= [zn]f(z),

as needed. ■

As a simple example, we can use Theorem 2.3 for the function f(z) = 1
1−z

. We already
know that f represents a geometric series. In particular, from Section 1 we already saw that
[zn]f(z) = 1. Nonetheless, let us verify this with the Cauchy Coefficient Formula: as f is
analytic only for |z| < 1, denote Γ to be positively oriented circle around the origin, |z| = r
for some 0 < r < 1. Then, we have that

[zn]f(z) =
1

2πi

∫
Γ

f(z)

zn+1
dz =

1

2πi

∫
Γ

1

(1− z)zn+1
dz = 1.

Both methods result in the same answer, validating our result. While the function we used
was a simple example, Theorem 2.3 is limited to nice generating functions. However, at
times generating functions have nontrivial singularities. Hence, we must talk about how to
handle these singularities.

3. Singularity Analysis

In this section, we will introduce a general theorem that allows us to find the asymptotic
behavior of coefficients from only the dominant singularity of a generating function.

Theorem 3.1. Let f(z) be an analytic function at the origin and denote R := Rsing(f ; 0) as
the distance from the origin of the singularity of f(z) that is closest to the origin (dominant
singularity). Then the coefficients fn = [zn]f(z) satisfy that

fn =

(
1

R

)n

· θ(n),

where lim supn→∞ |θ(n)|1/n = 1.
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The proof of this theorem is a result of the Boundary Singularity Theorem and Pring-
sheim’s theorem, which we will not discuss here.

To illustrate Theorem 3.1 we will consider two examples: surjections and unary-binary
trees. We will start with applying the above result for surjections:

Definition 3.2 (Surjection). A surjection from a finite set A to a set B is a function
f : A → B such that for every y ∈ B, there exists at least one x ∈ A, such that f(x) = y.

A well-known EGF counting the number of surjections from |A| = n to |B| = 2 is given
by

R(z) =
1

2− ez
.

Note that the denominator of R is an entire function and hence its singularities only come
from its zeros at χk = log 2 + 2ikπ, with k ∈ Z. We have that the singularity closest to the
origin is hence log 2. Hence, from Theorem 3.1, we have that if rn = [zn]R(z), then

rn ∼
(

1

log 2

)n

θ(n),

where lim supn→∞ |θ(n)|1/n = 1. Hence, we have the coefficients of the EGF for these types
of surjections grow approximately like 1.4427n.
This application illustrates how the location of a single singularity in the complex plane

can directly determine the exponential behavior of a generating function’s coefficients.
Our next application are unary-binary trees. The definition is motivated by [Sed22]:

Definition 3.3. A unary-binary tree is an unlabeled and unordered rooted tree in which
every internal node has either one child (unary) or two children (binary).

DenoteMn to denote the number of unique unary-binary trees with n nodes. In particular,
Mn = [zn]M(z), where M(z) is the OGF for unary-binary trees. Before we go on to find the
asymptotic for Mn, let us first do an initial experimentation for finding the first few values
of Mn :

We have that M1 = 1 :

We have that M2 = 1 :

We have that M3 = 2 :

We have that M4 = 4 :
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Finally, we have that M5 = 9 :

Now that we are clearer with what unary-binary trees are, we can find the generating func-
tion. By definition, the generating function equation for unary-binary trees is M(z) =
z + zM(z) + zM(z)2, with the explicit form as an OGF in the form

M(z) =
1− z −

√
(1− 3z)(1 + z)

2z
.

Notice that M(z) is analytic in the complex plane in a disk around the origin of radius 1
3

with singularities at z = −1 and z = 1
3
. Hence, from Theorem 3.1, we have that

Mn ∼ 3n.

We can actually find a stronger result expressing the coefficients of M(z) more exactly as

Mn =
1√

4πn3/3
3n,

but the reason for the multiplication of 1/
√

4πn3/3 is out of the scope of this paper and
requires stronger results. For completion, we have that Mn are referred to as the Motzkin
Numbers.

4. The Standard Transfer Theorem and Catalan Numbers

For our final theorem, we will discuss a powerful result known as the Standard Transfer
Theorem which enables us to find the asymptotic behavior of Cn as promised in Section 1.

Theorem 4.1. Let f(z) = (1− z)−α with α ̸∈ {0,−1,−2, · · · , }. Then the coefficient of zn

satisfies:

[zn]f(z) ∼ nα−1

Γ(α)

(
1 +

e1(α)

n
+

e2(α)

n2
+ · · ·

)
where each ek(α) is a polynomial of degree 2k in α.

Now, we can find the asymptotics for C(z). It is well known that

C(z) =
1−

√
1− 4z

2z
.

We have a singularity at z = 1/4 hence we have that C(z) ∼ (1−4z)1/2. Therefore, we apply
the above Theorem 4.1 to (1− 4z)−1/2. Let u = 4z. Then,

(1− 4z)−1/2 = (1− u)−1/2.
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Since this is in the form we need, we have that

[zn](1− 4z)−1/2 = 4n[un](1− u)−1/2 =
4nn−3/2

√
π

.

Hence,

Cn ∼ 4nn−3/2

√
π

.

Hence, we are able to find the asymptotic behavior of the Catalan numbers instead of using
more complicated results such as Stirling’s Approximation.

5. Conclusion

The usage of complex analysis to understand the behavior of combinatorial structures
is a powerful tool as we have seen throughout this paper. However, there are many more
advanced theorems that give us more accurate approximations for a wider range of generating
functions, such as Darboux’s method and other Transfer Theorems apart from Theorem 4.1.
Finally, such approximations and the understanding of asymptotic behavior is beneficial in
fields such as statistical physics.
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