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Abstract

This paper explores the geometry of extremal length, a conformally invariant quan-
tity that is used to measure the ”thickness” or complexity of curve families on Riemann
surfaces. The paper covers essential theorems and definitions that are necessary to un-
derstanding extremality and uses classic examples like the rectangular domain and the
annulus to show how extremal length can be a useful tool in many types of problems.
The paper also includes analytic, topological, and variational techniques that show how
extremal length can be used for problems across quasiconformal analysis.

1 Riemann Surfaces

[3] In order to understand extremal length, we first have to define Riemann surfaces.

Definition 1.1. A Riemann surface R is a two-dimensional manifold with oriented conformal
structure. R is a connected Hausdorff topological space and there is a covering of R by open
sets Uα and there are homeomorphisms zα from Uα into C such that the transition maps
fβα = zα ◦ z−1

β from zβ(Uα ∩ Uβ) to zα(Uα ∩ Uβ) are conformal.

The definition above can also be written either to say that a Riemann surface is a one-
dimensional, holomorphic manifold or to say a Riemann surface is a one-dimensional, com-
plex analytic manifold.

The pairs (Uα, zα) are called charts. Two systems of charts (Uα, zα) and (Vβ, ωβ) are
compatible if transition maps fβα = ωβ ◦ z−1

α from zα(Uα∩Vβ) to ωβ(Uα∩Bβ) are conformal.
The equivalence relation between systems of charts is compatibility because the composition
of conformal maps is conformal.

The equivalence class of compatible systems of charts on R is the conformal structure of
R. Any system of analytic charts for R can decide an orientation, and the map zα : Uα → C
puts orientation on Uα by taking the preimage of the usual orientation for C. On Uα∩Uβ the
orientation is consistently determined because the Jacobian of fβα is equal to |f ′

βα|2 which is
positive.

Definition 1.2. A continuous map f from a Riemann surface R to a Riemann surface R1

is conformal if, given any chart zα on R and any chart ωβ on R1, the map wβ ◦ f ◦ z−1
α is

conformal on the set where the composition is defined. f : R → R1 is K-quasiconformal if
Kz(w)(wβ ◦ f ◦ z−1

α ) ≤ K at any point z where the composition is defined.
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We should notice that if we choose a different zα1 and ωβ1 defined the domains that
overall the domains of zα and ωβ, respectively, then we can say that:

wβ ◦ f ◦ z−1
α = gββ1 ◦ ωβ1 ◦ f ◦ z−1

α1
◦ ˆf−1

αα1

The precomposition or postcomposition by conformal transition maps ˆf−1
αα1

and gββ1 does
not alter dilatation. Because of this, the K-quasiconformal map between Riemann surfaces
is well-defined.

Definition 1.3. R and R1 are conformally equivalent if there is a conformal homomorphism
from R to R1

Definition 1.4. Say that R is a Riemann surface. The quasiconformal moduli space M(R)
is the set of conformal equivalence classes of Riemann surfaces quasiconformally equivalent
to R.

2 Defining Extremal Length

2.1 Introduction

[1] Say that F is a family of curves on a Riemann surface. Let us assume that every γ
in F is a countable union of open arcs or closed curves. We define the extremal length of F
(which we will sometimes write as Λ(F )) as something akin to the average minimum length
of curves in F . We do this because extremal length is a measure of how ”thick” a curve
family is. Extremal length encodes a conformally invariant way to evaluate the geometry
of F , which is especially useful on Riemann surfaces. Let us give a set of metrics for this
definition; a metric ρ(z)|dz| is acceptable if:

1) it is invariantly defined for different local parameters z, that is:ρ2(z2)|dz2| where ρ1, ρ2
are the representatives of ρ in terms of the parameters z1, z2.

2) ρ is locally L2 and greater than 0 everywhere.
3) A(ρ) =

∫ ∫
ρ2dxdy ̸= 0 or ∞ the integral is taken over the whole Riemann surface.

We should note that A(ρ) is well defined because of the first condition above on ρ; this is
because conformal invariance of the metric guarantees that integrating ρ2 over coordinate
patches gives consistent results that are not dependent on local parametrization.

For an allowable ρ like that, we define

Lγ(ρ) =

∫
γ

ρ|dz|

given that ρ is measurable along γ, otherwise we define Lγ(ρ) = +∞. Say that L(ρ) =
L(ρ, F ) = inf Lγ where the infimum is over all curves γ in F . This equation takes the least
length over the whole family under a fixed metric ρ. We want to know how short any curve
in the family can get, given ρ. This sets up the numerator for a Rayleigh quotient, where
the ratio rewards metrics that make the curves long while the area is still small.

The extremal length of the curve family F is

Λ(F ) = supρ

L(ρ)2

A(ρ)
.
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The extremal length maximizes how efficiently a conformal metric can ”stretch” the family
F because we are trying to make all curves long while maximizing the area. The above
definition perfectly summarizes this.

This identity holds when the supremum is taken over all acceptable metrics. The ratio
in this supremum is invariant if ρ is multiplied by a positive scalar, so by trying to evaluate
Λ(F ), we have the option to scale ρ however we want. This allows us to fix one quantity, like
length or area, when calculating the supremum. For example, we can scale to make L(ρ) = 1
and make A(ρ) as small as possible, or we could scale to make L(ρ) = A(ρ) to make L(ρ) as
large as possible.

Now, let us look at a couple examples from Frederick P. Gardiner’s and Nikola Lakic’s
book Quasiconformal Teichmüller Theory. [3]

2.2 Examples

Example 1: Say that R is the interior of a rectangle {z : 0 ≤ x ≤ a, 0 ≤ y ≤ b} and F
is the family of arcs in R that join the right vertical side of R to the left vertical side. Given
this, we know that Λ(F ) = a/b, so Λ(F ) is the modulus m(R) of the rectangle R. Here, the
modulus a/b refers to the conformal modulus of the rectangle which can measure the aspect
ratio in an invariant way under conformal mappings. We are doing this to prove this value
as both a lower and upper bound.

For us to see this, let us say that p ≡ 1 in R. Given this, L(ρ) = a and A(ρ) = ab and
from this we can say that Λ(F ) ≥ a/b. We are constructing a test metric ρ = 1 because it
satisfies the admissibility condition (positive, measurable, finite area). This gives a concrete
lower bound on Λ(F ) since extremal length is the supremum over all metrics.

However, if ρ is any allowable metric on R, then by multiplying ρ by a scalar we can
make L(ρ) = a. We do this because extremal length is invariant under scaling of the metric,
so by normalizing the shortest curve in F to have a unit length a, we can find a lower bound
on the area which will give an upper bound on the quotient L2/A.

Therefore

a ≤
∫ a

0

ρ(x+ iy)dx

for every y such that 0 ≤ y ≤ b. This is because any horizontal line segment from left to right
is in the family F so the integral along the curve must be at least a. We use the uniformity
of the rectangle and horizontal slices to get an integral conditions hat applies all over y.

Then, by integrating over y and applying Schwarz’s inequality, we get

ab ≤
∫ ∫

R

ρ dxdy, (ab)2 ≤ ab

∫ ∫
R

ρ2 dxdy

L(ρ)2

A(ρ)
≤ a2

ab
=

a

b

Λ(F ) ≤ a

b

This proves that the upper bound on Λ(F ) by connecting the square of the average of ρ to
its L2-norm.
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Note that if F ⋆ is the family of arcs in R that can join the top of rectangle R to the top,
then Λ(F ⋆) = b/a and Λ(F ⋆)Λ(F ) = 1. This relationship is a general identity that says that
if F and F ⋆ are dual families, then their extremal lengths multiply to 1. This shows the
duality of vertical and horizontal moduli in conformal rectangles.

Example 2: Say that R = z : r1 < |z| < r2 and say that F be the family of closed curves

in R that are homotopic to the curve γ1 where γ1(θ) = eiθ(r1+r2)
2

where 0 ≤ θ < 2π. Let
us have ρ0(z) = (2π|z|)−1. We choose this ρ0 because its analytical structure is known and
produces a constant unit length for each circular path |z| = r. This makes sense for the
extremal metric because it distributed the metric equally along angular curves and it turns
out to be optimal.

We can say that, for any curve γ homotopic to γ1:

(2πi)−1

∫
γ

dz

z
.

This integral is the winding number of γ around 0. Since all γ ∈ F are homotopic to γ1,
they enclose the origin once and the integral gives a topological invariant. It gives a lower
bound on the weighted length under ρ0.

Therefore: ∫
γ

ρ0(z)|dz| ≥ 1 and L(ρ0) ≥ 1,

So now we have a lower bound on length under this specific metric. This shows that ρ0 is
admissible for F . Now we can compute the area:

A(ρ0) =

∫ ∫
R

rdrdθ

(2π)2r2
=

1

2π
log(

r2
r1
).

This means that:
Λ(F ) ≥ 2π(log(

r2
r1
))−1

We have constructed a specific admissible metric that gives thee above equation as the lower
bound. So now we pivot to proving that it is the maximum by bounding from above.

However, for any allowable metric ρ|dz|:

L(ρ) ≤
∫ 2π

0

ρ(reiθ)rdθ,

L(ρ)

r
≤

∫ 2π

0

ρ(reiθ)dθ,

We use the above inequality to control L(ρ) by an average value of ρ on each circle. This
makes the problem one-dimensional integrals over θ which we can then integrate in r.

L(ρ) log(
r2
r1
) ≤

∫ ∫
R

ρdrdθ,

Apply Cauchy-Schwarz:

(L(ρ))2(log(
r2
r1
))2 ≤

∫ ∫
1

r
drdθ

∫ ∫
ρ2rdrdθ,
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So:
L(ρ)2

A(ρ)
≤ 2π(log(

r2
r1
))−1.

The above calculations prove the upper bound using a general metric ρ. These steps are
similar to those in the rectangle case: normalize or control L(ρ) and bound A(ρ) from below.
The rotational symmetry of the annulus makes this argument manageable.

The same kind of argument above shows that if F ⋆ is the family of curves joining the two
horizontal sides of R, then Λ(F ⋆) = (2π)−1 log( r2

r1
). Again, we see duality because circular

and radial families are orthogonal and mutually constraining. This duality holds across all
annuli and shows that extremal length has the geometry of the annulus in both directions.

2.3 Theorems and Lemmas

[1] The definitions mentioned above give us many useful and foundational properties.

Lemma 2.1. Conformal Invariance: If Γ is a family of curves with the domain Ω and f
is an injective holomorphic mapping from Ω to Ω′ then we can say that M(Γ) = M(f(Γ)).
In other words, the modulus is invariant under conformal maps, or more generally, it is
invariant under injective holomorphic graphs.

We can prove this by using the change of variables formulas:∫
γ

p ◦ f |f ′| · ds =
∫
f(γ)

p · ds

∫
Ω

(p ◦ f)2|f ′|2 · dxdy =

∫
f(Ω)

p · dxdy

The above two equations represent the arc length and the area change of variable formulas
respectively. This step is important because it tells us how to take integrals from the image
domain back to the preimage under a conformal map. The first integral comes from the fact
that for a conformal map f , the differential of the arc length is written as dsf(γ) = |f ′(z)|dsγ.
The second integral comes from the multidimensional change of variables theorem where the
Jacobian determinant of a holomorphic function f : Ω → Ω′ is |f ′|2.

The integrals above lead to: p ∈ A (f(Γ)) then |f ′| · p ◦ f ∈ A (f(Γ)). By taking the
infimum over these metrics we get M(f(Γ)) ≤ M(Γ). □

Lemma 2.2. Monotonicity: If Γ0 and Γ1 are path families with every γ ∈ Γ0 containing a
curve in Γ1, then M(Γ0) ≤ M(Γ1) and λ(Γ0) ≥ λ(Γ1)

The proof is apparent because A (Γ0) ⊃ A (Γ1). Since the modulus is an infimum over
A (Γ), making the admissible set larger can only decrease the infimum. This same reasoning
inverts the inequality for λ = 1

M
. □

Lemma 2.3. Grötsch Principle: If Γ0 and Γ1 are curve families in disjoint domains then
M(Γ0 ∪ Γ1) = M(Γ0) +M(Γ1)
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Say that ρ0 and ρ1 are admissible for Γ0 and Γ1. Take ρ = ρ0 and ρ = ρ1 in their respective
domains. This step helps construct a global admissible function by stitching together two
local ones by using the fact that the domains are disjoint, so that the pieces don’t interfere.

From here, it is simple to see that ρ is admissible for Γ0 ∪ Γ1 and since the domains are
disjoint then we can say: ∫

ρ2 =

∫
ρ21 +

∫
ρ22

Since the supports are disjoint, the area functional A(ρ) separates as a sum of integrals over
each domain. This proves that the combined metric has a total energy equal to the sum of
the individual energies.

Therefore, M(Γ ∪ Γ1) ≤ M(Γ0) + M(Γ1), and by restricting an admissible metric ρ to
each domain, a similar argument proves the opposite direction. This completes our argument
by symmetry because any admissible metric for the union can be restricted back to each
subdomain.

By combining monotonicity and the Grötsch principle, we get:

Lemma 2.4. Parallel Rule: Say that Γ0 and Γ1 are path families in disjoint domains
Ω0,Ω1 ⊂ Ω that connect the disjoint sets E,F in ∂Ω. If Γ is the path family that con-
nects E and F in Ω then:

M(Γ) ≥ M(Γ0) +M(Γ1).

Lemma 2.5. Series Rule: Say that Γ0 and Γ1 are curve families in disjoint domains and
every curve of F contains a curve from both Γ0 and Γ1. Therefore

λ(Γ) ≥ λ(Γ0) + λ(Γ1).

We can prove this because if ρj ∈ A (Γj) for j = 0, 1, then

ρt = ρ0(1− t) + tρ1

is admissible for Γ. This convex combination interpolates between the two admissible metrics.
The goal here is to construct a single metric that is valid for all of Γ by blending those
valid for each of the subfamilies. This is valid because admissibility preserved under convex
combinations when the domains are disjoint.

The domains are disjoint, so we can assume that ρ0ρ1 = 0. This allows us to simplify ρ2t
into ρ20(1− t)2 + t2ρ21 without cross terms. By integrating ρ2, we see that:

M(Γ) ≤ M(Γ0)(1− t)2 + t2M(Γ1),

for each t. This computes the area functional of the metric. Since it is admissible for Γ, this
expression provides an upper bound on M(Γ).. Our goal now is minimizing the right-hand
side with respect to t to find the tightest bound.

We differentiate the right hand side above and set it equal to 0 so that we can find the
optimal t set a = M(Γ1), b = M(Γ0). This is an optimization step because we find the
value of t that minimizes the area for our admissible family, which will give the best upper
boundon M(Γ).
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Figure 1. Three symmetric cases to find the maximum of M(G)

When we do that, we get:
2at− 2b(1− t) = 0

Solving for t, we get t = b
a+b

.By plugging this t into the inequality above, we get:

M(F ) ≤ at2 + b(1− t2) =
b2aa2b

(a+ b)2
=

ab(a+ b)

(a+ b)2
=

ab

a+ b
=

1
1
a
+ 1

b

This simplifies the upper bound to the harmonic mean of a and b, which is the exact formula
for combining resistances in series, which shows that extremal length behaves analogously.

Which we can rewrite as
λ(Λ) ≥ λ(Γ0) + λ(Γ1)

Taking the recipricol completes the proof and switches from modulus to extremal length.
This confirms that the total ”resistance” of the path family Γ is at least the sum of its
component ”resistances”. □

3 Geometric Extremal Problems

[2] Say that we have G, a doubly connected region in the finite plane, and let C1 be
the bounded and C2 be the unbounded component of its complement. Our goal is to find
the largest value of the module M(G) given one of the following conditions. The goal is to
maximize the modulus, which geometrically corresponds to making the domain as ”thin” as
possible conformally:

1. C1 is the unit disk, meaning that |z| ≤ 1 and C2 contains the point R > 1.

2. C1 contains 0 and -1 and C2 contains a point that is the distance P from the origin.

3. If diam(C1 ∩ {|z| ≤ 1}) ≥ λ, then C2 contains the origin.

We can say that the maximum of M(G) can be found in the three symmetric cases seen
in Figure 1. Let us consider each of the three cases separately.

Case 1: Say that Γ is the family of closed curves that separates C1 and C2 and we
know that λ(Γ) = M(G)−1). We can say this because in double connected regions, Γ is
usually regarded as the family of closed curves that circle the inner boundary. The recipricol
relationship above comes from the definition of extrmal length in an annular context.
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When we compare Γ with the family Γ̃ of closed curves that lie in the complement of
C1 ∪{R}, we can see that we have 0 winding number about R and nonzero winding number
about the origin. We do this to distinguish the curves since Γ must enclose the origin but Γ̃
does not enclose R. This way, we can embed Γ into a larger, more symmetric family Γ̃ and
compare their extremal lengths.

We know that Γ ⊂ Γ̃, meaning that λ(Γ) ≥ λ(Γ̃). We know this because of the mono-
tonicity lemma, since Γ ⊂ Γ̃ the extremal length of Γ must be greater than or equal to the
extremal length of Γ̃. This gives a lower bound on λ(Γ) and therefore an upper bound on
M(G).

However, since Γ̃ is a symmetric family we know that λ(Γ̃) = 1
2
λ(Γ̃+). This comes from

the symmetry principle, which states that if the family Γ̃ is symmetric under reflection, the
each curve can be split into two mirror halves. The extremal length of the family would then
be half the extremal length of the ”positive half” Γ̃+. Likewise, if Γ0 is the family Γ in the
extremal case, then we can say that λ(Γ0) =

1
2
λ(Γ+

0 ).

We can see that Γ̃+ = Γ+
0 . We know that every curve γ̃ in Γ̃ has points P1 and P2

on (−∞,−1) and (1, R) respectively. If we divide γ̃ into arcs labeled γ̃1 and γ̃2 such that
γ̃ = γ̃1 + γ̃2, then we can say that γ̃+ = γ̃+

1 + γ̃+
2 = (γ̃1 + γ̃+−

2 )+.
In the above equations, γ̃+

1 + γ̃+−
2 belong to Γ0 so we can say that γ̃+ ∈ Γ+

0 , and therefore
Γ̃+ ⊂ Γ̃+

0 . This containment allows us to apply the monotonicity of extremal length again
to the ”positive halves” of the families. So, we have shown that λ(Γ) ≥ λ(Γ̃) = λ(Γ0) so
M(G) ≤ M(G0). □

Case 2: Say that z = f(ζ) maps |ζ| < 1 conformally onto C1 ∪ G where f(0) = 0.
According to Koebe’s one-quarter theorem |f ′(0)| ≤ 4P where G = G1. If f(a) = −1, the
distortion theorem shows that:

1 = |f(a)| ≤ |a||f ′(0)|
(1− |a|)2

≤ 4P |a|
(1− |a|)2

with equality at G = G1

The module M(G) is the same as the module between the unit circle and the image of C1.
Then, using inversion and applying Case 1, if |a| is given, then the module is largest for a
line segment and increases when |a| increases.

Case 3: Let us open up the plane by ζ =
√
z. The result is a figure that is symmetric

with respect to the origin with two component images of C1 and two component images
of C2. We do this because, by construction, the preimage of a doubly connected region
under ζ =

√
z becomes a symmetric region with double boundary components. This process

allowed the geometry to be ”doubled” and create a split between the upper and lower halves.
The laws of composition show that M(G) ≤ 1

2
M(Ĝ) where Ĝ is the region in between C+

1

and C−
1 . We can see that equality holds in the symmetric situation (refer to Figure 2).

Let’s assume that C1 contains the points z1 and x2 with |z1| ≤ 1, |z2| ≤ 1, |z1 − z2| ≥ λ.
This constraint makes sure that there is minimal separation in the unit disk, which prevents
degeneration. This is important because the lower bound on this diameter will grow with
this transformation. Say that ζ1, ζ2 ∈ C+

1 and −ζ1,−ζ2 ∈ C−
1 are the corresponding points

in the ζ-plane. Here, we are lifting the original points under ζ =
√
z, mapping them to

symmetric points in the ζ-plane. We use the linear transformation:

ω =
ζ + ζ1
ζ − ζ1

· ζ1 + ζ2
ζ1 − ζ2
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Figure 2. Symmetric Situations

which carries (−ζ1,−ζ2) into (0, 1) and ζ → ∞, ζ2 → ω0. The purpose of this transforma-
tion is to normalize the domain into a more standard configuration where a triple set of
points (∞, ζ2,−ζ1) is sent to (ω0, 1, 0). This change of variables makes the extremely length
calculation easier since the modulus of an annulus can now be written as cross ratios.

These conditions apply where:

ω0 = −(
ζ2 + ζ1
ζ2 − ζ1

)2.

Let us set:

u =
ζ2 + ζ1
ζ2 − ζ1

We do this because writing ω0 = −u2 allows to to write the modulus in terms of u which
will then be bounded using the constraints on z1 and z2. This step turns the modulus into
an explicit inequality. When we do this, we have:

u+
1

u
=

2(ζ22 + ζ21 )

ζ22 − ζ21
=

2(z1 + z2)

z2 − z1

We can do this because ζ2 = z which means that we can write everything in terms of our
original coordinates. This is vital because the constraints we placed on the geometry we
applied on z1, z2 and now we can pull that structure through the transformation. Since we
know that

|z2 + z1|2 = 2(|z1|2 + |z2|2)− |z2 − z1|2 ≤ 4− λ2

This inequality tells us how ”close” the midpoint of z1 and z2 is to the origin. This allows
us to control |u| which also bounds the modulus through |ω0| = |u|2. Therefore, we can say
that

|u| − 1

|u|
≤ 2

λ

√
4− λ2

|u| ≤ 2 +
√
4− λ2

λ

|ω0| ≤ (
2 +

√
4− λ2

λ
)2
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This gives us an upper bound on the cross ratio defining the modulus. Since the modulus
of the domain is a monotonic function of this cross ratio, bounding |ω0| above gives us an
explicit upper bound on M(G). We can confirm that this equality holds for the symmetric
case, and by using Case 2 we can see that M(G) is a maximum in the case of Figure 1.

Using these three cases, we can explore the implications. We will use the notation from
Hans P. Künzi’s book Quasikonforme Abbildungen to write the extremal modules:

I)
1

2π
log Φ(R)

II)
1

2π
log Ψ(P )

III)
1

2π
logX(λ)

Relationships: There are many relationships between these functions. For example,
since the reflection of G0 gives a ring that is twice as wide as a ring of the type G1, we can
say that

Φ(R)2 = Ψ(R2 − 1).

We can find another relationship by mapping the outside of the unit circle on the outside of
the segment (−1, 0):

Φ(R) = Ψ(
1

4
(
√
R− 1√

R
)2).

This equation comes from the Schwarz-Christoffel-type maps from circular domains to slit
domains. The square root transformation maps the annulus into a slit plane, as seen by the
identity above. By using this latest relationship in tandem with the first relationship we
found, we can say that

Φ(R) = Φ[
1

2
(
√
R +

1√
R
)]2

. Using the calculations in Case 3, we can state

X(λ) = Φ(

√
4 + 2λ+

√
4− 2λ

λ
).
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