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Abstract. The central goal of this paper is to prove the Riemann-Roch Theorem, which
relates the genus of a compact Riemann surface to divisors of such a surface. To do this, we
will of course need to introduce these notions, particularly the formal definitions of Riemann
surfaces, sheaves and their cohomology.

1. Riemann Surfaces

The function f(z) =
√
z is not a well-defined function on the complex plane; at least, if

we want to make it holomorphic, or even continuous, we have to make some sacrifices. Every
complex number has two square roots (i.e. 22 = (−2)2 = 4), and we have to pick one. One
standard way to choose which of the two roots to be

√
z is to always choose the root with

positive real part. Namely,

z = reiθ, r > 0, θ ∈ (−π, π) =⇒
√
z =

√
reiθ/2.

We run into a problem with the negative reals. What is
√
−1? Is it i, or −i? Both have

zero real part, and both would be on the boundary of the θ interval, as eiπ/2 and ei(−π)/2. If
we consider −1± iε, we have

√
−1 + iε =

√
−1 +

√
1 + ε2

2
+ i

√
1 +

√
1 + ε2

2
,

√
−1− iε =

√
−1 +

√
1 + ε2

2
− i

√
1 +

√
1 + ε2

2
.

Of course, as ε → 0, both real parts approach 0, but the top imaginary part approaches 1,
while the bottom one approaches −1. Thus,

√
z is not continuous on the negative real line.

This problem gives rise to the Riemann surface, which is a type of surface meant to encode
such multi-valued functions.

Definition 1.1 (Complex Chart). Let X be a surface, i.e. a 2-manifold. A complex chart
ϕ : U ⊂ X → V ⊂ C is a homeomorphism from an open set U ⊂ X to an open set V ⊂ C.

Definition 1.2 (Holomorphically Compatible). Let X be a surface and ϕ1 : U1 → V1, ϕ2 :
U2 → V2 be complex charts. We say that ϕ1, ϕ2 are holomorphically compatible if

ϕ2 ◦ ϕ−1
1 : ϕ1(U1 ∩ U2) → ϕ2(U1 ∩ U2)

is biholomorphic; namely, both ϕ2 ◦ ϕ−1
1 and its inverse, ϕ1 ◦ ϕ−1

2 are holomorphic.

This definition is commutative: ϕ1, ϕ2 being holomorphically compatible is equivalent to
ϕ2, ϕ1 being holomorphically compatible. This notion of holomorphic compatibility gives us
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an idea of “gluing” two subsets together, and the above condition makes sure the gluing
works nicely.

Definition 1.3 (Complex Atlas). Let X be a surface and {Uα}α∈A be an open cover of X.
Then U = {ϕα : Uα → Vα ∈ C}α∈A is a complex atlas on X if every pair of charts ϕα, ϕβ is
holomorphically compatible, when α, β ∈ A.

Definition 1.4 (Analytically Equivalent). Let U,V be complex atlases on a surface X. U
and V are analytically equivalent if for any ϕ ∈ U, ψ ∈ V, ϕ and ψ are holomorphically
compatible.

Analytic equivalence is an equivalence relation. We only need to check transitivity; the
other two follow from the definition.

Proposition 1.5. Let U,V,W be complex atlases on a surface X. Suppose U,V are ana-
lytically equivalent and V,W are as well. Then, U and W are analytically equivalent.

Remark 1.6. It may be useful to consider sub-atlases and unions of atlases, defined in the
natural way. The sub-atlas relation forms a partial order, and thus by an argument using
Zorn‘s lemma, we can say that two atlases are analytically equivalent if and only if they are
subsets of the same “maximal atlas.”

Proof. Let ϕ ∈ U, ψ ∈ V, ξ ∈ W. Then, ϕ ◦ ψ−1 and ψ ◦ ξ−1 are holomorphic. Thus,
(ϕ ◦ ψ−1) ◦ (ψ ◦ ξ−1) = ϕ ◦ ξ−1 is holomorphic. Similar holds for the inverse, ξ ◦ ϕ−1. Thus,
∀ϕ ∈ U, ψ ∈ W, ϕ ◦ ξ−1 is biholomorphic. ■

Thus, under analytic equivalence, complex atlases on a surface X form equivalence classes.

Definition 1.7 (Riemann surface). A Riemann surface is defined as a connected surface X
combined with a complex structure, or an equivalence class of complex atlases on X.

Example (The complex plane is a Riemann surface). Let X = C, U = {ϕ}, with ϕ : X =
C → C satisfying ϕ(z) = z.

Example (The Riemann sphere). Let X = C ∪ {∞}, with the topology of a 2-sphere. If
U ⊂ C is open in C, then U is open in X, and if K is compact in C, then C−K ∪ {∞} is
open in X. We give X a complex structure with the following atlas.

ϕ1 : U1 = C ∈ X → C ∀z ∈ C, ϕ1(z) = z

ϕ2 : U2 = X − {0} → C ∀z ̸= 0, ϕ2(z) = 1/z

where 1/∞ = 0.

Many of our notions from analysis on the complex plane extend to analysis on Riemann
surfaces. One such example is holomorphicity.

Definition 1.8 (Holomorphic). Let Y be an open subset of a Riemann surface X. Let
f : Y → C. We define f to be holomorphic, if, for any chart ϕ : U → V on X,

f ◦ ϕ−1 : ϕ(U ∩ Y ) → C
is holomorphic as a complex function.

Example (1/z on the Riemann sphere). Let X be the Riemann sphere as defined previously.
Let f : Y = X −{0} → C be defined by f(z) = 1/z, with 1/∞ = 0. We will verify that f is
holomorphic on Y . Consider ϕ1. We have that Y ∩U1 = C−{0}, and 1/z is holomorphic on
C−{0}. Similarly, with ϕ2, ϕ

−1 is just 1/z, so f ◦ ϕ−1 is the identity, which is holomorphic.
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2. Sheaves

The concept of a sheaf is quite an abstract one. The general motivation behind the
definition is to take a topological space, and encode some sort of information about each
open set. We will begin with some definitions.

Definition 2.1 (Presheaf). Let X be a topological space, O be the collection of open sets
in X. A presheaf F of abelian groups (note: we can define a sheaf of any category) is
a collection of abelian groups {F(U) : U ∈ O}. For every U ⊃ V, U, V ∈ O, we have a
restriction homomorphism ρUV : F(U) → F(V ) with the following two properties:

(1) ρUU = IdF(U)

(2) If W ⊂ V ⊂ U are open sets, then ρUW = ρVW ◦ ρUV .
We often use the notation s|V = ρUV (s), where s ∈ F(U).

A presheaf is generally not specific enough for our needs: instead, we like to consider the
gluing of open sets, in order to make sure that our information is compatible (i.e. glues
uniquely) when taking unions.

Definition 2.2 (Sheaf). A presheaf F on a topological space X is called a sheaf if for every
open set U ∈ O, open cover {Uα}α∈A of U , the following axioms (the “sheaf axioms”) are
satisfied:

(1) If s, t ∈ F(U) with s|Uα = t|Uα for any α ∈ A, then s = t.
(2) If sα ∈ F(Uα), α ∈ A satisfy

sα|(Uα ∩ Uβ) = sβ|(Uα ∩ Uβ)

for any α, β ∈ A, then there exists s ∈ F(U) with s|Uα = sα for all α ∈ A.

Example (Constant Sheaf). We can see that if we have a topological space X and an abelian
group A, we can simply define a sheaf F on X as F(X) = A, where each restriction homo-
morphism is the identity.

Example (Sheaf of Holomorphic Functions). An example of a sheaf of abelian groups (and
in fact a sheaf of rings) is defined for any Riemann surface X. Let O(U) be the ring of
holomorphic functions defined on U ⊂ X. We define ρUV as the map that restricts each
function f ∈ O(U) to V . The sheaf axioms are satisfied: (1) if two holomorphic functions
agree on an open cover of a set, they agree at every point, and are thus identical. The proof
of (2) is left as an exercise.

Example (A Presheaf that is not a Sheaf). Let X be a topological space and S be a set.
Consider the sheaf of sets F on X such that F(U) = S for any U ∈ O, and let ρUV be the
identity. We can see that F is a presheaf. However, if we let U = ∅ and consider the empty
covering, then s|Uα = t|Uα for any α in our cover, vacuously, where s, t ∈ A. Thus, s = t.
But we can just set s ̸= t, so F is not a sheaf.

We will provide one more definition, which is useful both because the style of its definition
is iterated later on, and because the concept is used in the proof of the Riemann-Roch
theorem.

Definition 2.3 (Stalk of a Presheaf). Let ⊔ denote the disjoint union. Let F be a presheaf
on a topological space X with a chosen point a. We define an equivalence relation ∼a on
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the disjoint union ⊔
U∋a

F(U)

where if f ∈ F(U) and g ∈ F(V ), then if a ∈ W ⊂ U ∩ V and f |W = g|W , then f ∼a g.
We define the stalk of F at a as

Fa =

(⊔
U∋a

F(U)

)/
∼a .

Namely, the stalk of F at a is the set of equivalence classes of functions such that they are
identical “around” a.

3. Sheaf Cohomology

We now proceed with some highly technical definitions meant to introduce the method of
sheaf cohomology.

Definition 3.1 (Cochain Group). Let q be a nonnegative integer, and F be a sheaf of
abelian groups on a topological space X. Moreover, let U = {Uα}α∈A be an open cover of
X. Then we define the qth cochain group Cq(U ,F) as the direct product∏

(α0,...,αq)∈Aq+1

F

(
q⋂

i=0

Uαi

)
.

Each element of such a group is called a q-cochain.

Definition 3.2 (Coboundary Operator). We will define the coboundary operator

δ : C0(U ,F) → C1(U ,F)

which we sometimes denote as

C0(U ,F)
δ→ C1(U ,F),

as, for (fα)α∈A,
δ((fα)α∈A) = ((fβ − fα)|(Uα ∩ Uβ))α,β∈A.

Similarly, we define the coboundary operator δ : C1(U ,F) → C2(U ,F) by mapping a 1-
cochain (fαβ) to a 2-cochain ((fβγ − fαγ + fαβ)|(Uα ∩ Uβ ∩ Uγ)).

Each of these coboundary operators is a group homomorphism.

Definition 3.3 (Coboundary Group). We let the 1-coboundary group B1(U ,F) be defined
as

Im(C0(U ,F)
δ→ C1(U ,F)).

Definition 3.4 (Cocycle Group). We let the 1-cocyle group Z1(U ,F) be defined as

ker(C1(U ,F)
δ→ C2(U ,F)).

We can see that a 1-cochain is a cocycle if for all α, β, γ ∈ A, fαγ = fαβ+fβγ when restricted
to Uα ∩ Uβ ∩ Uγ. We also get fαα = 0 and fαβ = −fβα. Finally, every coboundary is a
cocycle. Namely, B1(U ,F) ⊂ Z1(U ,F).

This will allow us to define the 1st cohomology group.
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Definition 3.5 (Cohomology Group). We define the 1st cohomology group as

H1(U ,F) = Z1(U ,F)/B1(U ,F).

All of these definitions seem rather abstract. However, the general idea is that we are
looking for a way to measure how well our sheaf axioms are working - specifically those
regarding the gluing of sets in an open cover. That said, we currently only have a definition
of a cohomology group for a specific open cover. We would like to generalize this notion
to cohomology groups of a sheaf over a topological space, without regard to a specific open
cover.
We define a cover to be finer than another cover if every covering set of the first cover is
entirely contained within a covering set of the second cover. This definition gives us a natural
mapping for two such covers. Suppose V = (Vβ)β∈B is finer than U = (Uα)α∈A. We define
τ : B → A as

Vβ = Uτ(β)∀β ∈ B.

Here is where our sheaf structure becomes valuable. We define

t : Z1(U ,F) → Z1(V ,F)

such that for any f = (fαβ) ∈ Z1(U ,F),

gαβ = fτ(α)τ(β)|Vα ∩ Vβ
when α, β ∈ A. We can see that t induces a homomorphism of the cohomology groups
H1(U ,F) → H1(V ,F). For ease, we call this t as well.

Lemma 3.6. We will now show that t is well-defined (i.e. independent of τ) and one-to-one.

Proof. Let τ and σ be two such mappings as previously defined. Observe that for any β,
Vβ ∈ Uτ(β), Uσ(β), Uτ(β) ∩ Uσ(β). Now suppose we define t(f) = g and t′(f) = g′ under τ and
σ respectively. Then, we have

gαβ − g′αβ = fτ(α)τ(β) − fσ(α)σ(β)

= fτ(α)τ(β) + fτ(β)σ(α) − fτ(β)σ(α) − fσ(α)(σ(β)

= fτ(α)σ(α) − fτ(β)σ(β),

which when restricted to Vα ∩ Vβ gives that gαβ − g′αβ is a coboundary by definition. Thus
gαβ and g′αβ are in the same equivalence class, or what we call cohomologous.

To show t is one-to-one, we need to show that if t((fαβ)) is a cocycle whose image is a
coboundary, then (fαβ) is itself a coboundary by linearity (t is a homomorphism). We write

fτ(α)τ(β) = gα − gβ|Vα ∩ Vβ, gα ∈ F(Vα).

We do a similar manipulation as above to get that

gα − gβ = fγτ(α) − fγτ(β),

or fγτ(α) + gα is fixed no matter the choice of α. Thus by gluing we have some

hγ = fγτ(α) + gα|Uγ ∩ Vα
where hγ ∈ F(Uγ). Applying this, we get for any γ and restricted to Uα ∩ Uβ ∩ Vγ

fαβ = fατ(γ) + fτ(γ)β = fατ(γ) + gγ − fβτ(γ) − gγ = hα − hβ,

and once again we glue over Uα ∩ Uβ, giving us our desired result. ■
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We are now able to proceed to working with cohomology groups over a sheaf. We will say
V < U if V is finer than U . We define an equivalence relation on⊔

⋃
U⊃X

H1(U ,F)

where if ζ ∈ H1(U2,F), η ∈ H1(U2,F), and there exists V < U1,U2 such that t1(ζ) = t2(η)
(where t1 and t2 are the above-defined maps for U1 and U2 respectively), then ζ ∼ η.

Definition 3.7 (1st Cohomology Group of X). We can now define the more general coho-
mology group of a topological space as

H1(X,F) =

(⊔
U

H1(U ,F)

)/
∼ .

The group operation is naturally defined via taking two elements of H1(X,F) and sending
their representatives to a common refined group, and then reverting back to the original
cover. As previously, this is independent of the choice of cover and the choice of map (τ).
Moreover, this group is abelian as the original cohomology groups are abelian.

4. Exact Sequences

We begin this section by defining a sheaf homomorphism in the natural way:

Definition 4.1 (Homomorphism of Sheaves). Let X be a topological space and F ,G be
sheaves over X. A sheaf homomorphism α : F → G is a family of group homomorphisms,
such that for each open set U ⊂ X there exists αU ∈ α with

αU : F(U) → G(U)
and if V ⊂ U ⊂ X, αU(f)|V = αV (f |V ) for any f ∈ F(U). Namely, the group homomor-
phisms are compatible with the restrictions. We can define an isomorphism of sheaves as a
homomorphism of sheaves where each group homomorphism is itself an isomorphism.

Example (Inclusions). Let P be the sheaf of functions on a topological space X, and O be
the sheaf of holomorphic functions. Then, the inclusion P ↪−→ O is a sheaf homomorphism.

We can also naturally define the kernel of a sheaf homomorphism.

Definition 4.2 (Kernel of a Sheaf Homomorphism). Let X be a topological space, F ,G
sheaves, and α : F → G a homomorphism. The kernel H of α is defined with

H(U) = ker
(
F(U)

αU−→ G(U)
)
,

which can be verified to be a sheaf.

Example (Holomorphic Functions). Once again, let O be the sheaf of holomorphic functions
on C and let O∗ be the sheaf of holomorphic functions with the operation of multiplication
such that the holomorphic functions are nonzero everywhere. Let α be the homomorphism
having α(f) = exp(2πif) for any f ∈ U ⊂ X. Then,

ker
(
O α−→ O∗

)
= Z.

We now proceed to define an exact sequence of sheaf homomorphisms.
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Definition 4.3 (Exact Sequence). Let α : F → G be a sheaf homomorphism over X. Let
x ∈ X. Then α induces a homomorphism αx : Fx → Gx on the stalks of the sheaves. For
sheaves F ,G,H, and homomorphisms α, β, the sequence

F −→ G −→ H
is exact if the following sequence satisfies ker βx = imαx for any x ∈ X:

Fx
αx−→ Gx

βx−→ Hx.

More generally, if
F1 −→ F2 −→ · · · −→ Fn

has
Fk −→ Fk+1 −→ Fk+2

exact for all k between 1 and n− 2, then we call this whole sequence exact.

Definition 4.4 (Mono- and Epimorphisms). The following two definitions are analogs of one-
to-one functions and onto functions. A sheaf homomorphism α : F → G is a monomorphism
if 0 → F → G is exact, and an epimorphism if F → G → 0 is exact.

We can see from the sheaf axioms that the group homomorphisms induced by a sheaf
monomorphism are injective, but this is not necessarily true for epimorphisms and being
surjective (although they are analogous concepts).

Definition 4.5 (Short Exact Sequences). If the sequence

0 −→ F −→ G −→ H −→ 0

is exact, then the sequence is called a short exact sequence.

Lemma 4.6. If 0 → F → G → H is an exact sequence of sheaves on X, then for any open
U ⊂ X, the sequence of groups 0 → F(U) → G(U) → H(U) is exact.

Proof. We can see the first three terms form an exact sequence, so we need only show
F(U) → G(U) → H(U) is exact. Let α be the homomorphism from F → G and β be from
G → H. Let g ∈ α(f), f ∈ F(U). By exactness of stalks, for any x ∈ U there is Vx open in
U with β(g)|Vx = 0, so by gluing we get that β(g) = 0, or g ∈ ker β, so imα ∈ ker β.

Now suppose β(g) = 0 for g ∈ G(U). We know for any x ∈ U , ker βx = imαx, so if we let
(Vi)i∈I be an open cover of U , we have fi ∈ F(Vi) with α(fi) = g|Vi. We can intersect and
glue once again to get an f ∈ F(U) with f |Vi = fi. Since α is a homomorphism, we have
α(f)|Vi = α(f |Vi) = g|Vi, so by gluing yet again, α(f) = g. ■

5. The Riemann-Roch Theorem

We need to define a divisor as a method of keeping track of zeros on a Riemann surface.
Namely, we have:

Definition 5.1 (Divisor). A divisor on a Riemann surface X is a function

D : X → Z
such that if K is compact in X then D(x) = 0 for all but finitely many points. The divisors
form an abelian group Div(X).

We also define divisors for meromorphic functions on X. The divisor of a meromorphic
function is simply its order at a point x, and we let this be denoted as (f) for a function f .
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We say two divisors D and D′ are equivalent if there exists a meromorphic f with (f) =
D −D′.

Definition 5.2 (Degree of a Divisor). Suppose X is a compact Riemann surface, so that if
D is a divisor of X, then there are only finitely many x ∈ X with D(x) nonzero, so we can
call

degD =
∑
x∈X

D(x),

which is a homomorphism from Div(x) to Z. Note that for meromorphic f , deg(f) = 0, as
a meromorphic function has equally many zeroes and poles.

Let D be a divisor on X, U open in X. We define a sheaf OD(U) as the set of meromorphic
functions on U whose orders at any x ∈ U are at least −D(x).

Lemma 5.3. Let D be a divisor on X with degD < 0. Then H0(X,OD) = 0.

Proof. Suppose we have 0 ̸= f ∈ H0(X,OD). Then deg(f) ≥ − degD > 0, which is a
contradiction. ■

Definition 5.4 (Skyscraper Sheaf). Let P ∈ X where X is a Riemann Surface. Define the
skyscraper sheaf CP as

CP (U) =

{
C P ∈ U

0 P ̸∈ U.

We can see that H0(X,CP ) ∼= C and H1(X,CP ) = 0.

Let D be a divisor on X and let P ∈ X with P also a divisor that is the indicator, such
that P (P ) = 1, and P evaluated elsewhere is zero, so that we have an inclusion OD → OD+P .
Now let V be an open set about P and ψ be a chart with ψ(P ) = 0. We define a sheaf
homomorphism β : OD+P → CP with βU ≡ 0 when P ̸∈ U and if P ∈ U, f ∈ OD+P (U), then
f is meromorphic and thus has a Laurent series expansion, and we let βU(f) be the term
with the least (i.e. most negative) power, which is a complex number and thus an element
of CP (U). We can then see that sequence

0 −→ OD −→ OD+P
β−→ CP −→ 0

is short exact. Then, in a result following from the work in the previous section (proof
omitted, see Forster 15.12), we get that

0 → H0(X,OD) → H0(X,OD+P ) → C → H1(X,OD → H1(X,OD+P ) → 0

is exact.

Lemma 5.5. Let X be a compact Riemann surface, and D ≤ D′ be divisors. Then we have
an epimorphism

H1(X,OD) ↪−→ H1(X,OD′ → 0.

Proof. Since X is compact, we can write D′ = D+P1+ · · ·+Pk where the Pi’s are indicator
functions as defined above. Inductively, we are done by the previous proof. ■

We state without proof that H1(X,O) is a finite-dimensional vector space, and we call
this dimension g, for genus. However, we are now finally ready to prove Riemann-Roch!
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Theorem 5.6 (Riemann-Roch). Let X be a compact Riemann surface of genus g, and let
D be a divisor. Then H0(X,OD), H

1(X,OD) are finite-dimensional vector spaces satisfying

dimH0(X,OD)− dimH1(X,OD) = 1− g + degD.

Proof. Suppose D ≡ 0. Then, H0(X,OD) = O(X) which has dimension 1 by compactness
and dimH1 = g by definition.

Now suppose D is a divisor and D′ = D+P . From here, we write V = im(H0(X,OD′) →
C), and W = C/V , so that dimV + dimW = degD′ − degD = 1 and we have the short
exact sequences (by the above)

0 → H0(X,OD) → H0(X,OD′) → V → 0, 0 → W → H1(X,OD) → H1(X,OD′ → 0.

Thus dimH0(X,OD′) = dimH0(X,OD) + dimV , dimH1(X,OD′) = dimH1(X,OD) +
dimW . This gives us

dimH0(X,OD′)− dimH1(X,OD′)− degD′ = dimH0(X,OD)− dimH1(X,OD)− degD,

which means that if Riemann-Roch holds for D, it holds for D’. But since every divisor on a
compact Riemann surface has finite degree, we can simply induct from the zero divisor, and
we are done! ■
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