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A fascinating problem that arises from the the structure of certain types of functions
is the problem of interpolation: given a data points {(x1, y1), (x2, y2), . . . , (xn, yn)}, how
can we construct a function satisfying certain conditions that passes through all of these
points? One famous example of this type of construction is Lagrange polynomial inter-
pretation, which finds the unique polynomial of degree less than n that passes through
all n points. The Nevanlinna–Pick Problem explores interpolation on the unit disk over
holomorphic functions.

Problem 0.1 (Nevanlinna–Pick Interpolation Problem). Given n distinct input points
z1, z2, . . . , zn in the unit disk D and n output points w1, . . . , wn in D, does there exist a
holomorphic function f : D → D such that f(zk) = wk for all k with 1 ≤ k ≤ n?

1 Pick’s Approach

Pick’s approach [1] inductively characterizes sets of points that could be interpolated.
We begin by defining a few preliminary concepts. We first introduce the definition of
positive semi-definiteness of a matrix with entries in C, as this concept shows up in the
statement of Pick’s Interpolation Theorem.

Definition 1.1. A Hermitian matrix is a square matrix A satisfying A T = A. A n× n
Hermitian matrix B is called positive semi-definite if and only if for all t ∈ Cn, we have
t∗Bt ≥ 0.

The Maximum Modulus Principle is a helpful tool for understanding the extrema of
such functions, and we will use it in the proof.

Theorem 1.2 (Maximum Modulus Principle). Let D be a connected open subset of
C, and let f : D → C be a holomorphic function. If |f(z0)| ≥ |f(z)| for all z in a
neighborhood of z0, then f must be constant. Similarly, a holomorphic function g : D → C
attains a maximum for |g(z)| at some point z ∈ ∂D, the boundary of D.

These preliminary concepts allow present an overview of Pick’s inductive approach to
Problem 0.1.

Theorem 1.3 (Pick, 1916). Problem 0.1 has a solution if and only if

Xn =


1−w1w1

1−z1z1

1−w1w2

1−z1z2
· · · 1−w1wn

1−z1zn
1−w2w1

1−z2z1

1−w2w2

1−z2z2
· · · 1−w2wn

1−z2zn
...

...
. . .

...
1−wnw1

1−znz1

1−wnw2

1−znz2
· · · 1−wnwn

1−znzn


is positive semi-definite.

Proof. Proceed by induction on n. When n = 1 (we wish to find f : z1 7→ w1), consider
the following two Blaschke factors:

B1(z) =
z − z1
1− z1z

and B2(z) =
z − w1

1− w1z
.
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Since B1 : z1 7→ 0 and B−1
2 : 0 7→ w1, f = B1 ◦ B−1

2 takes z1 7→ w1 is a holomorphic
function on D → D regardless of choice of w1 and z1. On the other hand,

X1 =
[
1−w1w1

1−z1z1

]
=
[
1−|w1|2
1−|z1|2

]
.

Since |w1| ≤ 1, the only entry is a real number greater than or equal to 0. Hence, for any
t ∈ Cn, we indeed have t∗X1t ≥ 0, so X1 is always positive semi-definite as desired.

Now, suppose that the Nevanlinna–Pick Interpolation Problem is true if we replace n
with n−1. That is, there exists a holomomorphic function fn−1 : D → D that interpolates
any n− 1 distinct input points to any n− 1 output points if and only if Kn−1 is positive
semi-definite. We consider two separate cases:

Case 1. Let |wn| < 1. Define the two Blaschke factors

B1(z) =
z − zn
1− znz

and B2(z) =
z − wn

1− wnz

taking B1 : zn 7→ 0 and B2 : wn 7→ 0. Moreover, let

z′i = B1(zi) =
zi − zn
1− znzi

and w′
i = B2(wi) =

wi − wn

1− wnwi

for all i = 1, 2, . . . , n. Notice that {(z1, w1), (z2, w2), . . . , (zn, wn)} has an suitable interpo-
lation f if and only if {(z′1, w′

1), (z
′
2, w

′
2), . . . , (z

′
n, w

′
n) = (0, 0)} also has an suitable inter-

polation g, where f and g are related by f = B−1
2 ◦g◦B1 or equivalently g = B2◦f ◦B−1

1 .
We claim that Xn is positive semi-definite if and only if

X ′
n =



1−w′
1w

′
1

1−z′1z
′
1

1−w′
1w

′
2

1−z′1z
′
2

· · · 1−w′
1w

′
n

1−z′1z
′
n

1−w′
2w

′
1

1−z′2z
′
1

1−w′
2w

′
2

1−z′2z
′
2

· · · 1−w′
2w

′
n

1−z′2z
′
n

...
...

. . .
...

1−w′
nw

′
1

1−z′nz
′
1

1−w′
nw

′
2

1−z′nz
′
2

· · · 1−w′
nw

′
n

1−z′nz
′
n


is positive semi-definite. Consider the expression

t∗X ′
nt =

[
t1 t2 · · · tn

]

x′
11 x′

12 · · · x′
1n

x′
21 x′

22 · · · x′
2n

...
...

. . .
...

x′
n1 x′

n2 · · · x′
nn



t1
t2
...
tn


=

n∑
i=1

n∑
j=1

titjx
′
ij =

n∑
i=1

n∑
j=1

titj

(
1− w′

iw
′
j

1− z′iz
′
j

)

=
n∑

i=1

n∑
j=1

titj

1−
(

wi−wn

1−wnwi

)(
wj−wn

1−wnwj

)
1−

(
zi−zn
1−znzi

)(
zj−zn
1−znzj

)
 .

The numerator expression can be evaluated as

1−
(

wiwj − wnwj − wiwn + |wn|2

1− wnw1 − wnwj + |wn|2wiwj

)
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=
1− wiwj − |wn|2 + |wn|2wiwj

1− wnw1 − wnwj + |wn|2wiwj

=
(1− wiwj)(1− |wn|2)
(1− wnwi)(1− wnwj)

,

and we can thus write

t∗X ′
nt =

n∑
i=1

n∑
j=1

titj

1−
(

wi−wn

1−wnwi

)(
wj−wn

1−wnwj

)
1−

(
zi−zn
1−znzi

)(
zj−zn
1−znzj

)


=
n∑

i=1

n∑
j=1

ti

(
1− znzi
1− wnwi

)
tj

(
1− znzj
1− wnwj

)(
1− wiwj

1− zizj

)(
1− |wn|2

1− |zn|2

)

=
n∑

i=1

n∑
j=1

(√
1− |wn|2
1− |zn|2

(
1− znzi
1− wnwi

)
ti

)(√
1− |wn|2
1− |zn|2

(
1− znzj
1− wnwj

)
tj

)
xij.

Define t′ ∈ Cn such that for all i = 1, 2, . . . , n,

t′i =

√
1− |wn|2
1− |zn|2

(
1− znzi
1− wnwi

)
ti.

Then, we can write

t∗X ′
nt =

n∑
i=1

n∑
j=1

(√
1− |wn|2
1− |zn|2

(
1− znzi
1− wnwi

)
ti

)(√
1− |wn|2
1− |zn|2

(
1− znzj
1− wnwj

)
tj

)
xij

=
n∑

i=1

n∑
j=1

t′it
′
jxij = t′

∗
Xnt

′.

It follows easily that Xn is positive semi-definite if and only if X ′
n is positive semi-definite.

Therefore, it suffices to consider the corresponding problem in g, where g(0) = 0. Notice
that since g(0) = 0, we can define the function h(z) = g(z)/z, which is also holomorphic
and since z itself is a Blaschke factor, h is well-defined on D → D. Moreover, h interpolates
the set of n− 1 points

{(z′1, w′
1/z

′
1), (z

′
2, w

′
2/z

′
2), . . . , (z

′
n, w

′
n/z

′
n)}

By the inductive hypothesis, such an h exists if and only if the matrix

Yn−1 =



1−(w′
1/z

′
1)(w′

1/z
′
1)

1−z′1z
′
1

1−(w′
1/z

′
1)(w′

2/z
′
2)

1−z′1z
′
2

· · · 1−(w′
1/z

′
1)(w′

n−1/z
′
n−1)

1−z′1z
′
n−1

1−(w′
2/z

′
2)(w′

1/z
′
1)

1−z′2z
′
1

1−(w′
2/z

′
2)(w′

2/z
′
2)

1−z′2z
′
2

· · · 1−(w′
2/z

′
2)(w′

n−1/z
′
n−1)

1−z′2z
′
n−1

...
...

. . .
...

1−(w′
n−1/z

′
n−1)(w′

1/z
′
1)

1−z′n−1z
′
1

1−(w′
n−1/z

′
n−1)(w′

2/z
′
2)

1−z′n−1z
′
2

· · · 1−(w′
n−1/z

′
n−1)(w′

n−1/z
′
n−1)

1−z′n−1z
′
n−1


is positive semi-definite. Thus, g exists if and only if Yn−1 is positive semi-definite. We
are interested in finding a relationship between Yn−1 and X ′

n. Notice now that since
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w′
n = z′n = 0, we have

x′
in =

1− w′
iw

′
n

1− z′iz
′
n

= 1 and x′
ni =

1− w′
nwi

1− z′nzi
= 1.

Again, we consider the following expression:

t∗X ′
nt =

[
t1 t2 · · · tn

]


x′
11 x′

12 · · · x′
1(n−1) 1

x′
21 x′

22 · · · x′
2(n−1) 1

...
...

. . .
...

...
x′
(n−1)1 x′

(n−1)2 · · · x′
(n−1)(n−1) 1

1 1 · · · 1 1



t1
t2
...
tn


=

(
n−1∑
i=1

n−1∑
j=1

titjx
′
ij

)
+

(
n−1∑
i=1

tnti

)
+

(
n−1∑
i=1

titn

)
+ tntn

=

(
n−1∑
i=1

n−1∑
j=1

titj(x
′
ij − 1)

)
+

(
n∑

i=1

n∑
j=1

titj

)
.

Consider the expression within the first summation for 1 ≤ i, j ≤ n− 1:

x′
ij − 1 =

1− w′
iw

′
j

1− z′iz
′
j

− 1 =
z′iz

′
j − w′

iw
′
j

1− z′iz
′
j

= z′iz
′
j

(
1− (w′

i/z
′
i)
(
w′

j/z
′
j

)
1− z′iz

′
j

)
= z′iz

′
jyij.

This is where Yn−1 starts to show up in the expression. We can rewrite the second
summation as

n∑
i=1

n∑
j=1

titj =

(
n∑

i=1

ti

)(
n∑

i=1

ti

)
=

(
n∑

i=1

ti

)(
n∑

i=1

ti

)
=

∣∣∣∣∣
n∑

i=1

ti

∣∣∣∣∣
2

.

Using these simplifications, we can write

t∗X ′
nt =

(
n−1∑
i=1

n−1∑
j=1

titj(x
′
ij − 1)

)
+

(
n∑

i=1

n∑
j=1

titj

)

=

(
n−1∑
i=1

n−1∑
j=1

tiz′itjz
′
jyij

)
+

∣∣∣∣∣
n∑

i=1

ti

∣∣∣∣∣
2

.

Define t′′ ∈ Cn such that t′′i = tiz
′
i for all i = 1, 2, . . . , n. We can write

t∗X ′
nt = t′′∗Yn−1t

′′ +

∣∣∣∣∣
n∑

i=1

ti

∣∣∣∣∣
2

.

Now we claim that Yn−1 is positive semi-definite if and only if Xn is positive semi-definite.
If Yn−1 is positive semi-definite, then for all t ∈ C, we have

t∗X ′
nt = t′′∗Yn−1t

′′ +

∣∣∣∣∣
n∑

i=1

ti

∣∣∣∣∣
2

≥

∣∣∣∣∣
n∑

i=1

ti

∣∣∣∣∣
2

≥ 0.

On the other hand, if Xn is positive semi-definite, then for all t′′ ∈ C, there exists t ∈ C
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so that t∗X ′
nt ≥ 0. Hence, Yn−1 is positive semi-definite if and only if Xn is positive

semi-definite, and we are done.
Case 2. If |wn| = 1, then |f(zn)| = 1 ≥ |f(z)| for all z ∈ D, so by the Maximum

Modulus Principle, f(z) = f(zn) for all z ∈ D, meaning all of the wi’s are equal to wn.
Thus f exists if and only if w1 = w2 = · · · = wn. If w1 = w2 = · · · = wn, then every
numerator in Xn evaluates to 1−wnwn = 0, making Xn the zero matrix, which is positive
semi-definite. On the other hand, suppose Xn is positive semi-definite. Define a map
⟨·, ·⟩ : Rn × Rn → R as follows:

⟨a, b⟩ = a∗Xnb.

This map is a positive semi-definite Hermitian form, as it satisfies

• Conjugate symmetry:

⟨b, a⟩ = b∗Xna

=

[b1 b2 · · · bn
]

x11 x12 · · · x1n

x21 x22 · · · x2n
...

...
. . .

...
xn1 xn2 · · · xnn



a1
a2
...
an




=

[∑n
i=1 b1xi1

∑n
i=1 b2xi2 · · ·

∑n
i=1 bnxin

]

a1
a2
...
an




=
n∑

i=1

ai

n∑
j=1

bjxij =
n∑

i=1

n∑
j=1

aibjxij.

Since Xn is Hermitian, xij = xji and thus
n∑

i=1

n∑
j=1

aibjxij =
n∑

i=1

n∑
j=1

aibjxji = a∗Xnb = ⟨a, b⟩.

• Linearity in the first argument:

⟨c1x+ c2y, z⟩ = (c1x+ c2y)
∗Xnz = c1(x

∗Xnz) + c2(y
∗Xnz) = c1⟨x, z⟩+ c2⟨y, z⟩.

• Positive semi-definiteness:
⟨a, a⟩ = a∗Xna ≥ 0,

due to the positive semi-definiteness of Xn.

Hence, we can use the Cauchy-Schwarz Inequality to obtain

⟨en, en⟩⟨ei, ei⟩ ≥ ⟨ei, en⟩2,
where ei denotes the elementary basis vector with 1 in the ith position and 0 elsewhere.

Note that e∗nXnen = (Xn)nn = 1−|wn|2
1−|zn|2 = 0, so ⟨ei, en⟩2 ≤ 0, so ⟨ei, en⟩ = 0. Thus,

1− wiwn

1− zizn
= (Xn)in = e∗iXnen = 0,
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from which we obtain wi = (wn)
−1 = wn for each i = 1, 2, . . . , n− 1. Hence, w1 = w2 =

· · · = wn, as desired.

2 Nevanlinna’s Approach

Nevanlinna [2] took a separate approach in his 1919 paper motivated by Schur’s al-
gorithm, used to solve similar problems such as Carathéodory’s Interpolation Problem,
which identifies conditions in which a polynomial can be interpolated by a holomorphic
function f bounded on D. But Nevanlinna was not just interested in determining when
a set of poitns can be interpolated. In addition to giving a recursive condition to char-
acterize what sets of n points can be interpolated by a holomorphic function f : D → D,
Nevanlinna produced a representation of all functions that interpolated such sets of n
points. We start by exploring the very basic n = 1 base case of Problem 0.1 as illustrated
in [3].

Problem 2.1. Let z1 ∈ D and w1 ∈ D. Characterize all holomorphic functions f : D → D
such that f(z1) = w1.

To answer this question, we consider two separate cases. If |w1| = 1, then by the
Maximum Modulus Principle, f must be constant and therefore f ≡ w1 is the only
function that satisfies the condition. For the |w1| < 1 case, notice that the function

B1(f(z)) =
f(z)− w1

1− w1f(z)

defined using the Blaschke factor taking w1 7→ 0 is a holomorphic function on D → D and
thus can be written as B2(z)g(z) for some holomorphic function g on D → D, where the
Blaschke factor B2 maps z1 7→ 0. This idea is similar to the one present in the inductive
step of Pick’s approach, but now we are able to specifically find all solutions rather than
just whether a solution exists. Thus, all solutions can be written as

f(z) = B−1
1 (B2(z)g(z)) =

B2(z)g(z) + w1

1 + w1B2(z)g(z)
.

It is helpful to introduce a commonly used matrix representation of such transformations,
which we define below.

Definition 2.2 (Möbius transformations). Let a, b, c, d ∈ C such that ad− bc ̸= 0. The
function

f(z) =
az + b

cz + d
is called a Möbius transformation, and can be represented by its matrix form(

a b
c d

)
.

When Möbius transformations are composed, it is easy to show that the matrix forms
multiply.
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Moreover, we would like the matrix representation to have a determinant equal to
B2(z), so we write

f(z) =
1√

1− |w1|2

(
B2(z) w1

w1B2(z) 1

)
g(z).

Return to Problem 0.1. This process could be repeated to find the family of all possible
interpolations of a set of n points once we can already characterize the family of all
possible interpolations of a subset of n− 1 points, though we will use the shifted w

(n−1)
n

to account for the updated output value at zn on the nth step. Continuing this process
gives us a general solution of

f(z) =

(
1√

1− |w1|2

(
B(z1, a) w1

w1B(z1, a) 1

)) 1√
1−

∣∣∣w(1)
2

∣∣∣2
(

B(z2, a) w
(1)
2

w
(1)
2 B(z2, a) 1

)

· · ·

 1√
1−

∣∣∣w(n−1)
n

∣∣∣2
(

B(zn, a) w
(n−1)
n

w
(n−1)
n B(zn, a) 1

) g(z).

Denote Mi to be the ith matrix in the expression above. We can thus write

f =

(
An Bn

Cn Dn

)
g,

where the entries An, Bn, Cn, Dn of the matrix are rational functions known as Nevanlinna
coefficients. Moreover, we have (

An Bn

Cn Dn

)
=

n∏
i=1

Mi,

which leads to several interesting properties of Nevanlinna coefficients. For example,
notice that all poles of the Nevanlinna coefficients must be reciprocals of the conjugates
of the input data. The ideas used in the Nevanlinna approach can also be used to tackle
the Carathéodory Problem, providing a construction for a sequence of finite Blaschke
products converging pointwise to any holomorphic function f : D → D.
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