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1. Introduction

The study of modular curves lies at the intersection of complex analysis, algebraic ge-
ometry, and number theory. These mathematical objects arise naturally when investigating
the relationship between lattices and elliptic functions, as in Chapter 13 of the textbook [2].
This paper aims to explain the basics of modular curves and their interpretation as moduli
spaces, spaces where each point represents a class of mathematical objects.

2. Preliminaries

2.1. Riemann spaces. Recall that a Riemann surface is a one-dimensional complex mani-
fold: a surface that locally resembles the complex plane and where transition maps between
local coordinates are holomorphic. Prototypical examples include the complex plane C, the
upper half-plane H, and the Riemann sphere Ĉ = C ∪ {∞}.

2.2. Elliptic curves. You may recall an aside from Chapter 13 of the textbook [2] that
mentioned complex tori as being elliptic curves. We will explore that aside in more depth
later, but first it stands to define what an elliptic curve even is. We restrict our definition
to C for simplicity, which fortunately also works over R for purposes of visualization.

Definition 1. An elliptic curve is a smooth curve defined by the zero set of the equation

(1) y2 = x3 + bx+ c

equipped with a distinguished ”point at infinity” O and a group structure.

This is a very informal definition of an elliptic curve; see [3] for the formal version, as the
algebraic geometry perspective on elliptic curves is also rather fascinating. Unfortunately
we do not have the space here to do it justice.

It is easy to visualize an elliptic curve over R: simply plug it into your preferred graphing
software. It is not very different over C. The group structure and ”point at infinity” are
harder to comprehend, but they are as follows:

Construction. The point at infinity O is such that any two parallel lines intersect at it, so
that in particular any two lines in the plane intersect at exactly one point.

Let ⊕ denote the group operation, with O the identity element. To add points p, q on an
elliptic curve E over C, find the line running through p and q if p ̸= q or the tangent line
to E at p if p = q. It can be shown that this line intersects E at exactly one other point
(possibly O). The negation of this third intersection point is then p⊕ q, where (x,−y) is the
negation of (x, y), since the curve is symmetric about the x-axis (note that this definition of
negation is consistent with the identity p− p = p+ (−p) = O). See Figure 1.
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Figure 1. The group operation on an elliptic curve over R.

Exercise 1. Verify that the above construction defines a group. You may take the fact that
a line intersects E at exactly three points to be given; it is a corollary of Bézout’s theorem
and requires the full projective-geometry definition of an elliptic curve to be applied.

We finally care about ways to classify elliptic curves up to their structure, though in a
weaker way than strict isomorphisms. Elliptic curves admit a notion called an isogeny for
this:

Definition 2. Let E1, E2 be elliptic curves over C. A nonconstant rational group homomor-
phism ϕ : E1 → E2 is called an isogeny, and E1 and E2 are isogenous.

Crucially, isogenies can have nontrivial kernels, so that they need not be injective. Despite
this, isogeny defines an equivalence relation on the class of elliptic curves:

Proposition 3. If there exists an isogeny ϕ : E1 → E2, then there exists an isogeny ϕ̂ :
E2 → E1 called the dual isogeny.

Proof. See [3]. ■

Corollary 4. Isogeny defines an equivalence relation on elliptic curves.

Elliptic curves can in fact be defined over any field, including finite fields Fq and the
rationals Q. Their existence combines algebraic geometry, number theory, and complex
analysis in surprising ways—you may vaguely know them as complex tori, or being related
somehow to Wiles’s proof of Fermat’s Last Theorem, or from the elliptic-curve cryptographic
protocols that protect apps like WhatsApp Messenger. Elliptic curves are a fascinating topic
of study in their own right, but the point of this discussion is merely to motivate what elliptic
curves are and why we will care about them shortly.

3. Lattices

To motivate our discussion, recall complex lattices:

Definition 5. A lattice Λ in C is a discrete subgroup of the form Λ = Zω1 +Zω2, where ω1

and ω2 are R-linearly independent complex numbers.
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Definition 6. We say that lattices Λ and Λ′ are homothetic if there exists a complex number
m such that Λ = mΛ′, i.e. they are equivalent up to scaling and rotation.

Clearly the above defines an equivalence relation on lattices. Up to homothety, we can
thus rotate and scale any lattice to the normalized form Λτ = {m + nτ : m,n ∈ Z}, where
τ ∈ H, by setting τ = ω2/ω1. Hence we can associate lattices with points τ ∈ H. However,
this association is not unique: different values of τ can generate homothetic lattices. In
particular, the lattices Λτ , Λτ+1, and Λ−1/τ are homothetic. Indeed:

• Λτ+1 = {m+ n(τ + 1) : m,n ∈ Z} = {(m+ n) + nτ : m,n ∈ Z} = Λτ .
• Λ−1/τ = {m + n(−1/τ) : m,n ∈ Z}. Setting m′ = −n and n′ = m, we get Λ−1/τ =
{−n′ +m′(−1/τ) : m′, n′ ∈ Z} = {−n′ −m′/τ : m′, n′ ∈ Z} = − 1

τ
{n′τ +m′ : m′, n′ ∈

Z} = − 1
τ
Λτ . Thus, Λ−1/τ is a scalar multiple of Λτ .

Consider then the transformations τ 7→ τ + 1 and τ 7→ −1/τ . We can associate transfor-

mations on the complex plane with 2× 2 matrices, such that γ =

(
a b
c d

)
acts on τ by the

Möbius transformation:

(2) τ ′ = γ · τ =
aτ + b

cτ + d
.

We can then characterize the matrices that correspond to certain transformations on lattices.

Definition 7. The modular group consists of all 2 × 2 matrices with integer entries and
determinant 1:

SL2(Z) =
{(

a b
c d

)
: a, b, c, d ∈ Z, ab− cd = 1

}
By the notation of Equation 2, τ 7→ τ + 1 and τ 7→ −1/τ are respectively

(
1 1
0 1

)
and(

0 −1
1 0

)
. In fact, they generate SL2(Z), which was the point of the motivation.

Exercise 2. Show that T =

(
1 1
0 1

)
and S =

(
0 −1
1 0

)
generate SL2(Z).

Exercise 3. Show that two lattices Λτ and Λτ ′ are homothetic if and only if τ ′ = γ · τ for
some γ ∈ SL2(Z). (This is basically Problem 8, Chapter 13 of [2].)

Recall the earlier discussion of associating lattices to points τ ∈ H; now we can identify
those τ with points τ ′ satisfying Equation 2 to form a space that can be thought of as clas-
sifying lattices up to homothety. By Exercise 3, this is in fact the quotient group H/SL2(Z).
Keep this in mind; we will return to this structure shortly.

3.1. Complex tori. Before we go any deeper, we ought to take a brief detour to discuss
how else lattices are topical. Naturally, the quotient C/Λ is a torus, formed by gluing
together opposite edges of the fundamental parallelogram. However, every torus formed by
a quotient of C by some lattice is isomorphic; the group structure does not in fact depend
on the underlying lattice.

Exercise 4. Prove that C/Λ ∼= C/Λ′ with the obvious group operations for lattices Λ,Λ′.
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Since the groups on any two complex tori (which we can now identify with lattices) are
isomorphic, the classification of lattices we were doing in the previous section was certainly
not up to group isomorphism of the corresponding tori. So what was it? It turns out that
homothety of lattices is an equivalent condition to holomorphic group isomorphism, i.e. the
group isomorphism between the tori is holomorphic:

Theorem 8. Let Λ,Λ′ be lattices. There exists a holomorphic group homomorphism between
the complex tori C/Λ and C/Λ′ if and only if Λ and Λ′ are homothetic.

Proof.
=⇒ : Suppose f : C/Λ → C/Λ′ is a holomorphic group homomorphism. By the lifting

property of covering maps, there exists a holomorphic map F : C → C such that F (0) = 0
and f(z+Λ) = F (z) +Λ′ for all z ∈ C. Since f is a group homomorphism, F (z+w) +Λ′ =
F (z) + F (w) + Λ′. This implies F (z + w) − F (z) − F (w) ∈ Λ′ for all z, w ∈ C. Since F is
continuous and Λ′ is discrete, we must have F (z +w) = F (z) +F (w) for all z, w ∈ C. Thus
since F : C → C is holomorphic, additive, and F (0) = 0, it is linear: F (z) = αz for some
α ∈ C.

For f to be well-defined, we need F (ω) ∈ Λ′ for all ω ∈ Λ. This gives us αω ∈ Λ′ for all
ω ∈ Λ, so αΛ ⊆ Λ′. Since f is a homomorphism between tori of the same dimension and
is holomorphic (hence continuous), and both quotient spaces are compact, f is surjective.
This means F (C) + Λ′ = C+ Λ′ = C/Λ′, which implies that αΛ + Λ′ = Λ′. Combined with
αΛ ⊆ Λ′, we get αΛ = Λ′ (since both are lattices of the same rank). Therefore Λ′ and Λ are
homothetic.

⇐= : Suppose Λ′ = αΛ for some α ∈ C \ {0}. Define f : C/Λ → C/Λ′ by f(z + Λ) =
αz+Λ′. Since this is induced by multiplication, it is holomorphic, and it is easily checked that
it is a homomorphism and well-defined. The inverse is given by multiplication by α−1. ■

You may also remember that lattices correspond to a particular elliptic function, the
Weierstraß ℘-function:

Definition 9. Given a lattice Λ, the Weierstraß ℘-function is defined as

(3) ℘(z) =
1

z2
+

∑
ω∈Λ\{0}

(
1

(z + ω)2
− 1

ω2

)
.

As it’s elliptic, it’s doubly periodic:

Theorem 10 (Theorem 3.3, Chapter 13, [2]). The ℘ function and its derivative are doubly
periodic with periods ω1, ω2 of the lattice.

Hence we may define a map φ : z 7→ (℘(z), ℘′(z)) from the torus C/Λ to C2. This map
turns out to be a bijection that maps the torus to an elliptic curve over C, thanks to the
differential equation satisfied by the ℘ function:

Theorem 11 (Theorem 3.5, Chapter 13, [2]). There exist b, c ∈ C such that

(4) ℘′(z)2 = 4℘(z)3 + b℘(z) + c

for any z ∈ C/Λ.

Hence every complex torus corresponds to an elliptic curve. Furthermore, it can be shown
that the converse holds, i.e. every elliptic curve corresponds to a complex torus that gives
the curve as its image [1]. Thus the map φ is a bijection between the class of complex tori
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and the class of complex elliptic curves. Wouldn’t it be nice if, in the spirit of Theorem 8,
this preserved holomorphic group homomorphism on those complex tori? Indeed it does:

Theorem 12. Let EΛ, EΛ′ be elliptic curves corresponding to the tori C/Λ,C/Λ′. EΛ and
EΛ′ are isogenous if and only if there exists a holomorphic group homomorphism from C/Λ
to C/Λ′, or equivalently, Λ and Λ′ are homothetic.

Proof.
⇐= : Suppose there exists a holomorphic group homomorphism ϕ : C/Λ → C/Λ′. By

Theorem 8, this occurs if and only if Λ and Λ′ are homothetic. The holomorphic group
homomorphism ϕ induces a rational map between the elliptic curves that preserves the
group structure. Specifically, if ϕ lifts to the map F (z) = αz on C, then the induced map on
elliptic curves is given by (x, y) 7→ (α−4x, α−6y) using the transformation properties of the
Weierstrass function under scaling [2]. This gives an isogeny between EΛ and EΛ′ .

=⇒ : Suppose EΛ and EΛ′ are isogenous via an isogeny ψ : EΛ → EΛ′ . Since isogeny is an
equivalence relation, there exists a dual isogeny ψ̂ : EΛ′ → EΛ. The isogeny ψ corresponds to
a holomorphic map between the Riemann surfaces, and since both curves are parametrized by
their respective tori via the Weierstrass function, this induces a holomorphic map ψ̃ : C/Λ →
C/Λ′. To see that ψ̃ is a group homomorphism, note that the group law on the elliptic curve
corresponds exactly to the addition law on the torus C/Λ, and isogenies preserve the group

structure by definition. Therefore ψ̃ is a holomorphic group homomorphism between tori. ■

4. Congruence subgroups

In the last section, we came up with a way of classifying lattices up to homothety via points
in H/SL2(Z). However, homothety is a pretty blunt tool, so it is of greater interest to classify
lattices up to more nuanced relations. Fortunately, we can apply most of the same logic by
taking the quotient of H by subgroups of SL2(Z), where the choice of subgroup determines
the structure of the quotient group. Naturally, some quotients are more interesting than
others, and some simpler than others. We will examine some of the more interesting but
also more elementary quotients, so we must first define the subgroups of interest:

Definition 13. For an integer N ≥ 1, the principal congruence subgroup of level N is defined
as

(5) Γ(N) =

{(
a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
=

(
1 0
0 1

)
(mod N)

}
where congruence is performed entry-wise.

Definition 14. For an integer N ≥ 1, a congruence subgroup of level N is a subgroup
Γ ⊂ SL2(Z) that contain the principal congruence subgroup of level N , i.e. Γ(N) ⊂ Γ.
Important examples include:

Γ0(N) =

{(
a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
=

(
∗ ∗
0 ∗

)
(mod N)

}
(6)

Γ1(N) =

{(
a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
=

(
1 ∗
0 1

)
(mod N)

}
(7)

where the asterisk indicates no restriction.
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Figure 2. A fundamental domain for H/Γ0(11) and the quotient space as a
flattened torus. T, U, V correspond to the actions of the generators of Γ0(11).

The quotient H/Γ(N) is defined in the same way as H/SL2(Z); the reader should verify
that pretty much everything works the same as modulo SL2(Z).
Example. This example is adapted from [4]. Γ0(11) is generated by the set of matrices

T =

(
1 1
0 1

)
U =

(
7 −2
11 −3

)
V =

(
8 −3
11 −4

)
.

Figure 2 shows a fundamental domain for H/Γ0(11) in blue, and we see that (after identifying
edges) it forms a torus with two punctured holes. If we added those holes, we would get a
compact Riemann surface. We don’t have the machinery to do so here, but the reader may
see [1] or [4].

Definition 15. Let Γ be a congruence subgroup of SL2(Z). The group H/Γ is a modular
curve.

We established previously that lattices are complex tori are elliptic curves. What classes
of elliptic curves do Γ0(N) and Γ1(N) parametrize? The following is adapted from [1] due
to the unwieldy lengths of the proofs, and proofs can be found therein.

Definition 16. An enhanced curve for Γ0(N) is a pair (E,C) where E is a complex elliptic
curve and C is a cyclic subgroup of E (recall the group structure on E) of order N . Two such
pairs (E,C) and (E ′, C ′) are said to be isomorphic if there exists an isomorphism ϕ : E → E ′

such that ϕ(C) = C ′. This defines an equivalence relation on enhanced elliptic curves for
Γ0(N). Let S0(N) denote the quotient set of enhanced elliptic curves for Γ0(N) under this
relation.

Proposition 17. Every point in H/Γ0(N) represents a unique element of S0(N).

So the modular curve that arises from Γ0(N) parametrizes pairs (E,C) of elliptic curves
and order-N cyclic subgroups. What about Γ1(N)? It turns out it’s the same, but order-N
points instead of cyclic subgroups:

Definition 18. An enhanced curve for Γ1(N) is a pair (E, p) where E is a complex elliptic
curve and p ∈ E is a point of order N . Two such pairs (E, p) and (E ′, p′) are said to be
isomorphic if there exists an isomorphism ϕ : E → E ′ such that ϕ(p) = p′. This defines an
equivalence relation on enhanced elliptic curves for Γ1(N). Let S1(N) denote the quotient
set of enhanced elliptic curves for Γ1(N) under this relation.

Proposition 19. Every point in H/Γ1(N) represents a unique element of S1(N).
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