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Introduction to Fourier Series: Foundations and Applications
Representing functions as sums of simpler functions is extremely useful for both

reducing complexity and providing accurate methods for approximation. Linear fac-
tors/power series are understandably an attractive choice for this given their simplicity.
However, typically with the case of Taylor/Mclaurin series, each individual coefficient
an does not tell us much about the whole function other than maybe some info about
it’s magnitude (if n is small). However, if we represent a function as a series of factors
with different periods, each coefficient will tell us how much each period is expressed,
informing us of a property that will exist across the whole function.

Thus, there ought to be a more efficient way to represent functions that possess some
aspect of periodicity.

Preliminaries: Arriving at a Fourier series
Given two functions f, g we can define them as orthogonal if they satisfy∫ π

−π
f(x)g(x)dx = 0

Sine and cos are great candidates for this, so consider sin(nx), cos(mx) with n,m ∈ Z+

and pair them 3 possible different ways:

1. ∫ π

−π
sin(nx) cos(mx)dx = 0

Since integrand is odd

2. ∫ π

−π
cos(nx) cos(mx)dx =

1

2

∫ π

−π
cos(x(n−m)) + cos(x(n+m))dx

=
1

2

[sin(x(n−m))

n−m
+

sin(x(n+m))

n+m

]π
−π

The denominators introduce mildly interesting cases to consider. If no problems
arise sin(πk) = 0, k ∈ Z and the whole thing is 0. If both m,n = 0 using
limx→0 sin(x) = x we get

=
1

2

[sin(x(0))
0

+
sin(x(0))

0

]π
−π

=
1

2
[2x]π−π = 2π

1
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If non-zero and m−n = 0 (m+n ̸= 0 since m,n ≥ 0), the fraction unaffected will
be zero and with the other we similarly get

=
1

2

[sin(x(0))
(0)

− 0
]π
−π

=
1

2
[x]π−π = π

Thus

∫ π

−π
cos(nx) cos(mx)dx =


2π m = n = 0

π m = n ̸= 0

0 m ̸= n

3. ∫ π

−π
sin(nx) sin(mx)dx =

1

2

∫ π

−π
cos(x(n−m))− cos(x(n+m))dx

=
1

2

[sin(x(n−m))

n−m
− sin(x(n+m))

n+m

]π
−π

Again we got cases. If no problems then = 0 again. If n = m = 0 this time we
have

=
1

2

[sin(x(0))
0

− sin(x(0))

0

]π
−π

= 0

If m = n ̸= 0, similar to above one fraction is zero and the other simplifies

=
1

2

[sin(x(0))
0

− 0
]π
−π

= π

Thus

∫ π

−π
sin(nx) sin(mx)dx =

{
π m = n ̸= 0

0 else

We can now use these to find the Fourier coefficients to a 2π periodic function that
can be represented by a sum of sines and cosines. Note the n = 0 case has cos(0) = 1
and sin(0) = 0 hence the a0 term out front

f(x) =
a0
2

+

∞∑
n=1

an cos(nx) + bn sin(nx)

If we want bk, times both sides by sin(kx) and integrate across a period [−π, π].

∫ π

−π
f(x) sin(kx)dx =

∫ π

−π

a0
2

sin(kx) +

∞∑
n=1

an cos(nx) sin(kx) + bn sin(nx) sin(kx) dx
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From above, every integral on the right goes to zero except the n = k term

= · · ·+ 0 + bk

∫ π

−π
sin(kx) sin(kx)dx+ 0 + . . .

= bkπ

bk =
1

π

∫ π

−π
f(x) sin(kx)dx

With the same working, for ak times both sides by cos(kx) and integrate, using
orthogonality again to yield

ak =
1

π

∫ π

−π
f(x) cos(kx)dx

Except the case where k = 0 where we ought to divide by 2π not π, which is why
the original formula has the term a0

2 instead of a0 to accommodate this.
There is also a complex version of the Fourier series consisting of a sum of eixn

terms. We could certainly derive this from what we already have by expanding with
sin(z) = eiz−e−iz

2i and cos(z) = eiz+e−iz

2 , but I’ll show a more direct approach instead.
We have

f(z) =
∞∑

n=−∞
cne

inx

Consider the integral of einx across one period 2π. First if n = 0∫ 2π

0
einzdz =

∫ 2π

0
1dx = 2π

Otherwise ∫ 2π

0
einzdz =

[einz
in

]2π
0

=
e0 − e2πin

in
=

1− 1

in
= 0

So to find a ck in our complex Fourier series, times both sides by e−ikx then integrate
across one period 2π ∫ 2π

0
f(x)e−ikxdx =

∫ 2π

0

∞∑
n=−∞

cne
ix(n−k)dx

Split the integral and take the constants out

=

∞∑
n=−∞

cn

∫ 2π

0
eix(n−k)dx

From above, the integrals on the right where n − k ̸= 0 become zero, leaving only
the n = k term
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= ck

∫ 2π

0
ek−kdx

= 2πck

ck =
1

2π

∫ 2π

0
f(x)e−inxdx

Convergence of Fourier Series
There are several conditions necessary for a Fourier series to exist which, for the most
part, are intuitively reasonable things to ask for from a function.

If a function satisfies the Dirichlet conditions then it’s Fourier series converges. These
conditions are that the function must have:

1. A finite number of maxima/minima in a single period

2. A finite number of points of discontinuity in a single period

3. It must be absolutely integrable across one period, i.e∫
P
|f(x)|dx < ∞

Conveniently, since we are describing periodic functions, we need only be sure any
conditions hold across the span of one period. Further, this lends another advantage
over power series as convergence need only be assessed for a period to inform us of the
whole function, as opposed to a radius (Taylor series) or annulus (Mclaurin series) of
convergence.

The other obvious benefit is the ability to represent discontinuous functions since
we only need continuity on each piece as opposed to the whole function (though there
still must be a finite number of pieces per period). The Fourier series of a function f
converges at a point a to

limx→a− f(x) + limx→a+ f(x)

2

Evidently if a is not a point of discontinuity limx→a− f(x) = limx→a+ f(x) and it is
simply f(a). Otherwise, at points of discontinuity, it converges to the average of f at
either end of the discontinuity.

If we want to strengthen our conclusion from convergence to absolute convergence,
we additionally need to satisfy

∞∑
n=1

|an cos(nx) + bn sin(nx)| < ∞
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By triangle inequality on the left we see

≤
∞∑
n=1

|an cos(nx)|+ |bn sin(nx)| ≤
∞∑
n=1

|an|+ |bn|

So it is sufficient to show that

∞∑
n=1

|an|+ |bn| < ∞

for absolute convergence.
This also satisfies the Weierstrass M-test, which states that if a sequence of functions
gn(x) are all each bounded by some value Mn ≥ |gn(x)| and that the sum of these
bounds converges

∑∞
n=1Mn < ∞, then the sum of the sequence

∑∞
n=1 fn(z) converges

uniformly.

Proof. Here let gn(x) = an cos(nx)+ bn sin(nx), from triangle inequality above these are
each bounded by Mn = |an|+ |bn|, and we also know

∞∑
n=1

Mn =

∞∑
n=1

|an|+ |bn| < ∞

So it satisfies both conditions of the M-test, f(x) =
∑∞

n=1 gn(x) converges uniformly.
Thus, absolute convergence of a Fourier series implies it is uniformly convergent (the

converse is not necessarily true though).

Fourier transform and inverse
Until now we have defined the series for 2π periodic functions, though for this following
explanation it’s beneficial to clarify that these are functions whose smallest (fundamen-
tal) period is at most 2π (e.g. 4π, 6π, . . . are also periods). The understandable follow
up is then to generalise to other fundamental periods.

This can be achieved simply by subbing x = πx
L scaling x by L/π, shifting the interval

[−π, π] to [−L,L],

f(x) =
∞∑

n=−∞
cne

inπx
L =

a0
2

+
∞∑
n=1

an cos(
nπx

L
) + bn sin(

nπx

L
)

And the coefficients via a sub x → xπ
L become

cn =
1

2L

∫ L

−L
f(x)e

−inπx
L dx

an =
1

L

∫ L

−L
f(x) cos(

nπx

L
)dx, bn =

1

L

∫ L

−L
f(x) sin(

nπx

L
)dx

Where f(x) is now a function with a base period of 2L. All previous theorems still
hold with these new expressions.
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But what if periodic functions aren’t good enough, then you can just consider an
aperiodic function as one whose fundamental period is infinity, i.e. it never repeats.
Thus, taking limit as L → ∞ generalises to non-periodic functions.

In its current form we are ill-prepared to deal with L → ∞. So consider re-writing it
with respect to Kn = nπ

L , which produces values at regular intervals call them ∆K = π
L

f(x) =

∞∑
n=−∞

1

2L

∫ L

−L
f(x)e−ixKdx eixK

Since ∆K/π = 1/L

=

∞∑
n=−∞

1

2π

∫ L

−L
f(x)e−ixKdx eiKx∆K

Now interpret what is actually being done with respect to K here. You have some
∆K interval multiplied with some function at inputs K spaced at regular intervals of
∆K, summed from negative infinity to positive infinity. This is equivalent to taking
a grainy approximation of the functions integral across −∞ → ∞. It is practically a
Riemann sum, we simply need to take L → ∞ to make ∆K → 0 and our approximation
is perfected. Use ξ for the integral.

=

∫ ∞

−∞

1

2π
lim
L→∞

(

∫ L

−L
f(x)e−ixξdx) eiξxdξ

f(x) =
1

2π

∫ ∞

−∞

∫ ∞

−∞
f(x)e−ixξdx eiξxdξ

=
1

2π

∫ ∞

−∞
F (ξ)eiξxdξ

Where F (ξ) =
∫∞
−∞ f(x)e−ixξdx is the Fourier transform. Since it is derived from the

periodic term einx coefficients, which previously lent insight for periodic functions, it can
be thought of as their continuation to a continuous spectrum of periods. In other words,
it is a function which reports the amplitude (aka expression) from a continuous spectrum
of period/frequencies that make up the original function. Hence it is considered to shift
functions from their normal ‘space domain’ into a ‘frequency domain’ where it is easily
identifiable the periods/frequencies that make up a certain function as well as how much
each frequency contributes to the whole.

What we’ve also shown here is that if we compose a function’s Fourier transform with
a second transform we return to f(x). This outer transform F−1(ξ) = 1

2π

∫∞
−∞ f(x)e−ξxdx

is called the Inverse Fourier transform (for obvious reason) and can be used to retrieve
the original function or to compile an array of frequencies into their resulting function.
F (z) and F−1(z) have several similar-looking representations depending on the use case.
An interesting family of functions with respect to Fourier transforms are the Gaussian
functions g(x) = e−ax2−bx−c, a > 0 as F (g(x)) always returns another Gaussian function.
In the special case of e−πz2 , it is its own Fourier transform.
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Poisson summation formula
Poisson’s Summation formula states that the sum of a function at regular intervals is
equal to the sum of its Fourier transform across the same intervals.

∞∑
n=−∞

f(n) =
∞∑

n=−∞
F (n)

Proof. To prove this take the convention where F (ξ) =
∫∞
−∞ f(x)e−2πixξdx and consider

the RHS,

RHS =

∞∑
n=−∞

∫ ∞

−∞
f(x)e−2πixndx

The sum is with respect to n only, so bring it inside

=

∫ ∞

−∞
f(x)

∞∑
n=−∞

e−2πixndx

Here we can make use of a convenient result from the Dirac Delta function, that

∞∑
n=∞

einx = 2π
∞∑

k=−∞
δ(x− 2πk)

with it we have

RHS =

∫ ∞

−∞
f(x)2π

∞∑
n=−∞

δ(−2πx− 2πk)dx

But first a detour, what is the Delta function? Let’s first define its precursor, δϵ for
ϵ > 0

δϵ(x) =


0, x > ϵ/2
1
ϵ , −ϵ/2 ≤ x ≤ ϵ/2

0, x < −ϵ/2

Evidently this is just a flat line segment of height 1/ϵ and width ϵ centred at the
origin, so its area is ϵ/ϵ = 1. As we take ϵ → ∞ we arrive at our proper δ function,
defined by

δ(x) =

{
+∞, x = 0

0, x ̸= 0

with ∫ ∞

−∞
δ(x)dx = 1

This seemingly plain function holds some useful properties, the first of which being
that if we have a function f , we know
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∫ ∞

−∞
f(x)δ(x− a)dx = f(a)

Proof. For this consider its precursor δϵ, since we know what inputs yield zero we can
narrow our integral significantly∫ ∞

−∞
f(x)δϵ(x− a)dx =

∫ a+ϵ/2

a−ϵ/2
f(x)δϵ(x− a)dx

We also know what value it takes on here

=
1

ϵ

∫ a+ϵ/2

a−ϵ/2
f(x)dx

By the mean value theorem for integrals, we know that for any
∫ b
a g(x)dx we can find

a g(c), where a ≤ c ≤ b, such that the rectangle g(c)(b− a) is equal to the integral.
Using this we have for some a− ϵ/2 ≤ c ≤ a+ ϵ/2 that

(a+ ϵ/2− (a− ϵ/2))f(c) =

∫ a+ϵ/2

a−ϵ/2
f(x)dx

f(c) =
1

ϵ

∫ a+ϵ/2

a−ϵ/2
f(x)dx

f(c) =

∫ ∞

−∞
f(x)δϵ(x− a)dx

As we take ϵ → ∞ though, by squeeze theorem a − ϵ/2 ≤ c ≤ a + ϵ/2 resolves to
c = a,

f(a) =

∫ ∞

−∞
f(x)δ(x− a)dx

Another useful result of the δ function is that

Proof.
|k|δ(kx) = δ(x)

For this recall our two requirements to define δ, the first is satisfied easily:

δ(x) =

{
+∞, x = 0

0, x ̸= 0

Since dilating horizontally and vertically change nothing in this respect, we simply get

|k|δ(kx) =

{
+∞, x = 0

0, x ̸= 0
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and for the second requirement that
∫∞
−∞ δ(x)dx = 1, we have∫ ∞

−∞
|k|δ(kx)dx

Sub kx = u

=
|k|
k

∫ ∞×k

−∞×k
δ(u)du

If k > 0,

=
k

k

∫ ∞

−∞
δ(x)dx = 1

and if k < 0

=
−k

k

∫ −∞

∞
δ(x)dx =

k

k

∫ ∞

−∞
δ(x)dx = 1

As required, both conditions are satisfied.

Ok, now back to what we were doing, we have

RHS =
∞∑

k=−∞

∫ ∞

−∞
f(x)2π δ(−2πx− 2πk)dx

since we now know |k|δ(kx) = δ(x), with k = −2π

=
∞∑

k=−∞

∫ ∞

−∞
f(x)δ(x+ k)dx

and since we also know
∫∞
−∞ f(x)δ(x− ξ)dx = f(ξ), we get

=

∞∑
k=−∞

f(−k)

Flip k → −k

∞∑
k=−∞

f(k) = LHS

As required.

This can lead to several other interesting proofs beyond the scope of this paper, such
as the Nyquist-Shannon sampling theorem which states that a band-limited signal (one
whose Fourier transform is zero beyond a certain frequency) can be perfectly recon-
structed from its discrete samples if the sampling rate is sufficiently high (greater than
twice the highest frequency component of the function).
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Applications of Fourier Theory: Assessing Resolution
How do we assess the resolution of an imaging system, i.e. how ’clearly’ it can capture
small features of the real world? While this may seem like a mildly interesting endeavor
reserved for cinephiles, in higher-stakes scenarios where precision is key, such as medical
x-ray imaging or military drone systems, the rest of us are also quickly motivated to find
a precise solution.

A reasonably intuitive approach to measure resolution would be to quantify the
degree of blur that occurs between nearby objects, as well as how close we can bring
two objects before their edges are indistinguishable. A test for this is below, where line
pairs (LP) are placed with higher spatial frequency towards the right.

The qualitative method here is simple enough, ask people what the greatest spatial
frequency is where they can still distinguish adjacent lines. This is obviously subjective,
so instead we could set absolute white to 0, absolute black to 1, and plot the intensity
of white as we move across. Performing this with the perfect signal as well as our image
let’s us compare the blur imposed by the system.

Here each peak captures a ‘signal’ and each quarter-period between a peak and a
trough captures an ‘edge response’. The amplitude of the curve across spatial frequencies
captures this intuition of quantifying blur as signals get closer together, progressing
towards indistinguishable grey with high frequency.
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Let’s formalise for continuity so as not to rely on sampling discrete spatial frequencies.
Take a theoretically perfect signal that exists only at a point and run it through the
imaging system in question, this will result in some degree of blur around the ‘true’
signal in the resulting image. Plot the observed intensity at each point in space:

This is the Point Spread Function (PSF), which describes the system’s ability to
capture a point source. From here, take a vertical slice that runs through the center,
and plot the intensity as you move across the slice. Now take the radial average for all
such possible slices, or in other words, for each radius from the center take an average
of the intensity values as you rotate about the center. The resulting graph is the Line
Spread Function (LSF)

Taking the Fourier Transform of this converts from the space domain, with distance
against intensity, to the frequency domain, with signals per distance as the input. This
is our Modulation Transfer Function (MTF), which describes how clearly each spatial
frequency is captured by the imaging system and the decrease in clarity as image com-
plexity increases.
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The cutoff frequency for the imaging system is the frequency beyond which signals are
no longer captured, though for human eyes we can’t distinguish much past about 4-5%.
In practical application, the only real difference in method to obtain the MTF is just to
use a thin enough wire to approximate a point signal.
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