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Abstract. In this paper, we review the many intriguing properties of modular forms,
functions that have transformation conditions and are holomorphic on the upper half plane
and at ∞. We study its application to the Kac-Wakimoto Conjecture on the number of
representations of any positive integer as a sum of triangular numbers.

1. Introduction

Modular forms are fascinating functions that have specific transformation properties,
which we shall see shortly, and are holomorphic on the upper half plane (consisting of all
points with imaginary part greater than 0) and at ∞. They are very important tools with
applications in many fields including number theory and topology, and they are utilized for
problems like sphere packing and finding the number of representations of a number as a
sum of squares. Here, after examining the fundamental properties of modular forms, we
cover a different intriguing application of modular forms to the Kac-Wakimoto Conjecture.
A very interesting result, it provides a formula for the number of ways of writing any positive
integer n as the sum of m triangular numbers - those of the form a(a− 1)/2 for any positive
integer a - given a specific condition on m, where m is a positive integer. This was proved
by Zagier in 2000 (see [1]). The proof of this conjecture relies heavily on modular forms, and
we will review it in this paper.

Theorem 1.1 (Kac-Wakimoto Conjecture). Let ∆m(n) be the number of ways to write a
positive integer n as the sum of m triangular numbers, for some positive integer m. Then

∆4s2(n) =
∑

r1,a1,...,rs,as∈Nodd

r1a1+···+rsas=2n+s2

Ps(a1, . . . , as),

where s is a positive integer, Nodd is the set of positive odd integers, and Ps is a polynomial
given by

Ps(a1, . . . as) =

∏
i ai ·

∏
i<j(a

2
i − a2j)

2

4s(s−1)s!
∏2s−1

j=1 j!
.

We begin with some definitions relating to modular forms, and we follow [2] and [3].

2. Definitions

Definition 2.1. The modular group is the group of all 2 x 2 matrices with integer entries
and determinant 1, and defined as

SL2(Z) :=

{(
a b
c d

)
: a, b, c, d ∈ Z, ad− bc = 1

}
.
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The upper half plane H is the set of all complex numbers that have imaginary part greater
than 0.

Definition 2.2. A möbius transformation γ of SL2(Z) on the upper half plane H is

γ(z) =

(
a b
c d

)
(z) =

az + b

cz + d
.

For example, if γ =

(
4 3
5 4

)
, then γ(3) = 4·3+3

5·3+4
= 15

19
. It follows that the imaginary part of

γ(z) satisfies the relation

ℑ(γ(z)) = ℑ(z)
|cz + d|2

.

We can check that this holds by letting z = r + si and γ =

(
a b
c d

)
to obtain

γ(z) =
az + b

cz + d

=
a(r + si) + b

c(r + si) + d

=
(ar + b) + asi

(cr + d) + csi

=
((ar + b) + asi)((cr + d)− csi)

|cz + d|2

=
(ar + b)(cr + d) + acs2 + (ad− bc)si

|cz + d|2
.

This implies that

ℑ(γ(z)) = ℑ
(
(ar + b)(cr + d) + acs2 + (ad− bc)si

|cz + d|2

)
=

ℑ(z)
|cz + d|2

,

since ad−bc = 1. We also define the following transformation property, one of the conditions
for a function to be a modular form.

Definition 2.3. Let f : H → C be a meromorphic function and k be an integer. If f(γ(z)) =
(cz + d)kf(z), for any matrix γ in the modular group SL2(Z) and point z in the upper half
plane H, then f is considered weakly modular of weight k.

Definition 2.4. A modular form is a meromorphic function f : H → C that is weakly
modular and holomorphic on the upper half plane H and at ∞.

If the modular form is weakly modular of weight k, then it is called a modular form of
weight k, and the set of all such modular forms is defined to be Mk(SL2(Z)).

3. Properties of Modular Forms

With these definitions, we can now look at some properties of modular forms. Note that
any open subset F of the upper half plane is a fundamental domain of some group Γ if it
satisfies the following: any two points that are distinct are not equivalent under Γ, and for
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any point in F , there is a point in F , the closure of F , that is equivalent to it under Γ. We
can now find this for the modular group.

Proposition 3.1. The fundamental domain of the modular group SL2(Z) is

F = {z ∈ H : |z| > 1, |ℜ(z)| < 1/2}.

To prove this proposition, we first need to show that every point in the upper half plane
can be mapped by some möbius transformation γ in SL2(Z) to a point in F . Secondly, we
need to show that for any two distinct points, they are not equivalent under SL2(Z).

Proof. Let z be a point in the upper half plane. Consider the lattice L = {mz+n : m,n ∈ Z}.
Call the point of minimal modulus on L (different from the origin) as cz + d, where c and d
are relatively prime. Then there exists some a and b such that ad − bc = 1, which implies
we can define

γ1 =

(
a b
c d

)
as an element of SL2(Z). As we described in the previous section,

ℑ(γ(z)) = ℑ(z)
|cz + d|2

,

for any γ in SL2(Z). Since cz + d is a point of minimal modulus, ℑ(γ(z)) is maximal when
γ = γ1. Define

z′ =

(
1 1
0 1

)n

(γ1(z)) = γ1(z) + n,

where |ℜ(z′)| ≤ 1
2
. Then if |z′| < 1, this implies that ℑ

(−1
z′

)
= ℑ(z′)

|z′|2 > ℑ(z), which contra-

dicts our earlier statement that ℑ(γ1(z)) is a maximal which implies that ℑ(z) is maximal.
Therefore |z′| ≥ 1, so z′ ∈ F and z is equivalent to z′ under SL2(Z). Next, assume for
the sake of contradiction, that there are two distinct points w and w′ = γ1(w) in mathcalF
where γ1 ̸= ±1. Then setting

γ1 =

(
1 1
0 1

)n

implies that w′ = γ1(w) = w+n. This is a contradiction since we stated that |ℜ(z1)|, |ℜ(z2)| <
1
2
. Therefore, c ̸= 0 for γ =

(
1 1
0 1

)
. Notice that the smallest value for ℑ(z) for all z ∈ F is

√
3/2, when ℜ(z) = 1\2. Thus we can write

√
3

2
≤ ℑ(z2) =

ℑ(z1)
|cz + d|2

≤ ℑ(z1)
c2ℑ(z1)2

<
2

c2
√
3
.

This holds when c = ±1. If ℑ(z1) ≤ ℑ(z2), and | ± z1 + d| ≥ |z1| > 1, which contradicts the
following property: ℑ(γ(z)) = ℑ(z)\(|cz + d|2). Hence, F is a fundamental domain. □

The fundamental domain of SL2(Z) is the gray region in Figure 1, which shows the tiling
of fundamental domains of this modular group on the upper half plane.
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Figure 1. Fundamental domain tiling of the upper half plane. (Credit: A.
Hulpke, Wikipedia; see [4].)

For any function f , the order of vanishing of f at any point z in SL2(Z), given by ordz(f),
is the order of the poles of f at z. On the other hand, the order of vanishing of f at ∞,
given by ord∞(f), is defined in terms of the Fourier expansion

f(z) =
∞∑
n=0

anq
n,

for some coefficients ai and where q = e2πiz for any z in the upper half plane. Specifically,
ord∞(f) is the smallest integer n such that the Fourier coefficients are non-zero. 5 Modular
forms are categorized into two types: Eisenstein series and cusp forms. Eisenstein series
with weight greater than 2 are holomorphic and are given by

Gk(z) =
1

2

∑
m,n∈Z

(m,n)̸=(0,0)

1

(mz + n)k
,

for any z in the upper half plane. Cusp forms are modular forms that vanish at the point
∞ and have a non-zero leading coefficient in their Fourier expansion. They do, however,
converge to a non-zero holomorphic function in H. An interesting example of a cusp form is
the discriminant function ∆(z), given by

∆(z) = e2πiz
∞∏
n=1

(1− e2πinz)24,

which has weight 12 on SL2(Z).

Proposition 3.2. If f is a non-zero modular form of weight k on SL2(Z) for some integer
k, then ∑

P∈SL2(Z)\H

1

nP

ordP (f) + ord∞(f) =
k

12
.

Corollary 3.3. If either k < 0 or k is odd, then the dimension of Mk(SL2(Z)) is 0, and if
k ≥ 0 and k is even, the dimension of Mk(SL2(Z)) is bounded above by (k/12)+1 for k ̸≡ 2
(mod 12), and bounded above by (k/12) for k ≡ 2 (mod 12).
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Define SL2(R) be the group of 2x2 matrices with real entries and determinant 1. We now
state a very important result that describes the relation between modular forms in SL2(R).

Proposition 3.4. For any discrete subgroup Γ of SL2(R) such that Γ\H have finite volume
V , the dimension of Mk(Γ) is bounded above by (kV/4π) + 1 for all k ∈ Z.

4. Kac-Wakimoto Conjecture

We can now use the properties of modular forms and the Fourier expansion for the proof
of the Kac-Wakimoto Conjecture, which we stated in Theorem 1.1. The idea of the proof
is as follows. Let F (z) be defined as a linear combination of gh1(z) · · · ghs(z) for each choice
of h1, . . . , hs ≥ 1 such that h1 + · · ·+ hs = s2, where ghi

(z) is a modular form of weight 2hi

under Γ0(4) (the group of matrices γ where 4|c) given by ghi
(z) =

∑
r,a∈Nodd

a2hi−1qra. Then
it turns out that ∑

r1,a1,...,rs,as∈Nodd

r1a1+···+rsas=2n+s2

Ps(a1, . . . , as)

which is a polynomial of degree 2s2 − s is the coefficient of the q2n+s2 term in F (z). This
implies that F (z) must also be a modular form, but of weight 2s2 under Γ0(4). The Fourier

expansion of F (z) is of the form qs
2Q[[q2]], and by applying Proposition 3.2, we will find

that the only functions in M2s2(Γ0(4)) are of the form F (z) multiplied by a constant. The

function θF (z)
4s2 , where

θF (z) =
∑

n∈Z+ 1
2

qn
2

= 2q
1
4 + 2q

9
4 + 2q

25
4 + · · · ,

also has a Fourier expansion of the form qs
2Q[[q2]], and it can be shown that θF (z)

4s2 =
∆4s2(n). Since functions of the form F (z) times a constant are the only ones in M2s2(Γ0(4)),

θF (z)
4s2 must be equal to F (z) times some constant. If we plug in n = 0 we will find that

this constant is one. Therefore,

∆4s2(n) =
∑

r1,a1,...,rs,as∈Nodd

r1a1+···+rsas=2n+s2

Ps(a1, . . . , as),

as desired.
We refer the reader to [2] for an overview of the proof, and to [1] for the detailed version.
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