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Abstract

In this article, we discuss the applications of complex analysis in
Fourier theory results and their applications in quantummechanics. Specif-
ically, we derive the Fourier inversion formula and the Poisson summation
formula using contour integration, and then apply these results to wave-
function transformations and the free-particle Schrödinger equation.

1 Analysis Preliminaries

Definition 1.1 (Schwartz function). A function f : R→ C is called a Schwartz
function if for every c ∈ R and every n ∈ N0,∣∣f (n)(x)∣∣ = o

(
|x|−c

)
as |x| → ∞.

Hence, f and all its derivatives decay faster than any power of 1/|x| at infinity.

Definition 1.2 (Fourier Exponential Series). A function f is called an L peri-
odic complex valued function if it has an expansion

f(x) =

∞∑
n=−∞

cn e
i 2πn

L x,

where the Fourier coefficients are

cn =
1

L

∫ L/2

−L/2

f(x) e− i 2πn
L x dx.

Definition 1.3 (The classes Fa and F ). Fix a > 0 and set

Sa :=
{
z ∈ C : |ℑz| < a

}
,

the horizontal strip of half height a. We define Fa to be the collection of functions
f : R→ C that extend to a holomorphic function on the strip Sa and such that
there exists a constant A > 0 such that

|f(x+ iy)| ≤ A

1 + x2
, for all x ∈ R and |y| < a.
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Finally we set the class of all functions that belong to some Fa as

F :=
⋃
a>0

Fa,

Definition 1.4 (L1(R)). A measurable function f : R → C is in the L1(R)
space if

∥f∥1 :=

∫
R
|f(x)| dx < ∞.

This means that f is absolutely integrable or that the total area under |f | is
finite in the space.

Theorem 1.1 (Fubini’s Theorem). Let f(x, y) be continuous on the rectangle

R = [a, b]× [c, d].

Then ∫∫
R

f(x, y) dA =

∫ d

c

(∫ b

a

f(x, y) dx
)
dy =

∫ b

a

(∫ d

c

f(x, y) dy
)
dx.

2 Fourier Transforms and the Fourier Inversion
Theorem

Fourier Transform is a result in mathematics that takes a function as input
and then outputs another function that describes the extent to which various
frequencies are present in the original function. We begin by showing how to
derive a Fourier transform from the series.

A length-L periodic function can only contain exponential waves whose wave-
lengths divide L, so its Fourier expansion is a discrete sum with coefficients cn.
If we now let L → ∞, the function becomes effectively aperiodic. This means
that the wavenumbers kn = n/L pack closer and closer together until they fill
the real line, and the discrete list cn is replaced by a continuous amplitude
function f̂(k).

Periodic functions possess a discrete set of Fourier frequencies, whereas ape-
riodic functions possess a continuous set. We work in the Schwartz space S(R)
(defined by Schwartz functions), whose rapid decay and smoothness guarantee
that the inner products defining the Fourier coefficients converge. A periodic
function expands as the series

f(x) =
∑
n∈Z

cn e
2πinx/L,

using only those exponentials whose wavelengths divide the period L, whereas
an aperiodic function expands as the integral

f(x) =

∫ ∞

−∞
f̂(k) e2πikx dk,
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where the frequency variable k varies continuously. The coefficients cn and
the amplitude f̂(k) are recovered through an inner product just as one extracts
vector coordinates along an orthonormal basis in elementary linear algebra. The
properties of S(R) ensure that each of these integrals is well defined.

Now we derive the Fourier Transform. We set

kn =
n

L
, ∆k =

1

L
,

and define

f̃(kn) = Lcn =

∫ L/2

−L/2

f(x) e−2πiknx dx.

Letting L→∞ (so that kn becomes continuous) gives the Fourier transform

f̂(k) =

∫ ∞

−∞
f(x) e−2πikx dx, k ∈ R.

Remark. We could also define the kernel as e−ikx and compensate with prefac-
tors 1/

√
2π or 1/2π. Our choice e−2πikx keeps the transform and its inverse free

of any numerical factors. However, one can’t use the prefactors 1/
√
2π or 1/2π

and define the kernel as e−2πikx at the same time. The sign in the exponent is
also a matter of convention.

The inverse of f̂ is given by the Fourier inversion theorem, which we prove
below.

Theorem 2.1 (Fourier Inversion Theorem). Assume f ∈ Fa for some a > 0,
and that

f̂(k) =

∫ ∞

−∞
f(u) e−2πi u k du with f, f̂ ∈ L1(R).

Then for every x ∈ R,

f(x) =

∫ ∞

−∞
f̂(k) e2πi x k dk.

Proof. Assume f ∈ Fa for some a > 0, such that 0 < b < a. For every R > 0 we
denote the contour we will be integrating by γR which is defined by a rectangle
with vertices

−R, R, R+ ib, −R+ ib,

whose lower side is L1 = {u−ib : u ∈ R} and upper side is L2 = {u+ib : u ∈ R}.

For k > 0 define

f̂(k) =

∫ ∞

−∞
f(u− ib) e−2πi(u−ib) k du.
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Hence, ∫ ∞

0

f̂(k) e2πixk dk =

∫ ∞

−∞
f(u− ib)

∫ ∞

0

e−2πi(u−ib−x) k dk du

=

∫ ∞

−∞
f(u− ib) 1

2πb+ 2πi (u− x)
du

=
1

2πi

∫
L1

f(w)

w − x
dw,

where w = u− ib and L1 = {u− ib : u ∈ R} is traversed left to right.

Similarly, for k < 0, because we are traversing this side in the opposite direction,∫ 0

−∞
f̂(k) e2πixk dk = − 1

2πi

∫
L2

f(w)

w − x
dw,

where L2 = {u+ ib : u ∈ R}, also oriented left to right.

Now, for fixed x ∈ R, the function w 7→ f(w)/(w − x) has a simple pole at
w = x with residue f(x). Thus for any large rectangular contour γR enclosing
x,

f(x) =
1

2πi

∫
γR

f(w)

w − x
dw.

Letting R→∞, the vertical sides have |f(w)| ≤ C(1 + |w|)−2−ε while their
length is 2b, so each side’s contribution is O(R−1−ε)→ 0. Hence γR deforms to
L1 − L2.

Therefore,

f(x) =
1

2πi

(∫
L1

f(w)

w − x
dw −

∫
L2

f(w)

w − x
dw

)
=

∫ ∞

0

f̂(k) e2πixk dk +

∫ 0

−∞
f̂(k) e2πixk dk

=

∫ ∞

−∞
f̂(k) e2πixk dk.

3 Properties of the Fourier Transform

The Fourier Transform has several properties that expand on its application.

Here,
F←→ represents a Fourier transform.

Lemma 3.1. For any a, b ∈ C and integrable functions f, g : R→ C,

a f(x) + b g(x)
F←→ a f̂(k) + b ĝ(k).
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Proof. Using ĥ(k) =
∫∞
−∞ h(x) e−2πixk dx and the linearity of the integral,

̂af + bg (k) =

∫ ∞

−∞

(
af(x) + bg(x)

)
e−2πixk dx = a f̂(k) + b ĝ(k).

Lemma 3.2. If f(x)
F←→ f̂(k), then for any x0 ∈ R,

f(x− x0)
F←→ e−2πikx0 f̂(k).

Proof. Set u = x− x0 in the definition:

F
[
f(x− x0)

]
(k) =

∫ ∞

−∞
f(u) e−2πi(u+x0)k du = e−2πikx0 f̂(k).

Lemma 3.3. If f(x)
F←→ f̂(k), then for any k0 ∈ R,

e2πik0x f(x)
F←→ f̂(k − k0).

Proof.

F
[
e2πik0 ·f

]
(k) =

∫ ∞

−∞
f(x) e−2πix(k−k0) dx = f̂(k − k0).

Lemma 3.4. Let n ∈ N. If f, f ′, . . . , f (n) ∈ L1(R) (a condition automatically
satisfied when f is in the Schwartz Space), then

f (n)(x)
F←→ (2πik)n f̂(k).

Proof. Because a Schwartz function and all of its derivatives decay faster than
any power of |x|−1, each function belongs to L1(R). This rapid decay forces
every boundary term that comes up in integration by parts to vanish. Hence,
integrating by parts n times gives

F
[
f (n)

]
(k) =

∫ ∞

−∞
f (n)(x) e−2πikx dx = (2πik)n f̂(k).

Lemma 3.5. For f, g ∈ L1(R) define (fg)(x) =
∫∞
−∞ f(x− y)g(y) dy. Then

f · g F←→ f̂(k) ĝ(k).

Proof. Applying Fubini’s theorem,

F [fg](k) =
∫ ∞

−∞

[∫ ∞

−∞
f(x− y)g(y) dy

]
e−2πixk dx = f̂(k) ĝ(k).
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4 Poisson Summation Formula

The Poisson Summation Formula relates the Fourier series coefficients of the
periodic summation of a function to values of the function’s continuous Fourier
transform. This formula has various applications which we discuss after the
proof.

Theorem 4.1 (Poisson summation formula). For a smooth, complex-valued
function f(x) on R which decays at infinity with all derivatives (Schwartz func-
tion), the Poisson summation formula states that

∞∑
n=−∞

f(n) =

∞∑
k=−∞

f̂(k).

where f̂ is the Fourier transform of f .

Proof. Choose b such that 0 < b < a for a function in the family Fa. Let ΓN

be the contour that we will integrate over, and let it be defined by a rectangle
with vertices

−N − 1
2 − ib, N + 1

2 − ib, N + 1
2 + ib, −N − 1

2 + ib,

whose lower side is L1 = {N − 1/2 − ib : N ∈ R} and upper side is L2 =
{N + 1/2− ib :: N ∈ R}.

Since
f(z)

e2πiz − 1

has simple poles at each integer n with residue f(n)
2πi , the residue theorem on ΓN

gives ∑
|n|≤N

f(n) =
1

2πi

∫
ΓN

f(z)

e2πiz − 1
dz.

As N → ∞, the vertical edges each have value O(N−1−ε) → 0 because of
the strip decay, so only the horizontal edges will contribute, giving∑

n∈Z
f(n) =

1

2πi

(∫
L1

f(z)

e2πiz − 1
dz −

∫
L2

f(z)

e2πiz − 1
dz

)
,

where L1 is the lower horizontal line ℑz = −b and L2 is the upper one ℑz = +b.
On L1, |e2πiz| = e2πb > 1, so we expand

1

e2πiz − 1
=

1

e2πiz

∞∑
m=0

e−2πimz.

Therefore ∫
L1

f(z)

e2πiz − 1
dz =

∞∑
m=0

∫
L1

f(z) e−2πi(m+1)z dz,
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Since, each of these integrals can be shifted down to the real axis,∫ ∞

−∞
f(x)e−2πi(m+1)x dx = f̂(m+ 1).

Hence ∫
L1

f(z)

e2πiz − 1
dz =

∞∑
m=0

f̂(m+ 1).

On L2, |e2πiz| = e−2πb < 1, so we use

1

e2πiz − 1
= −

∞∑
m=0

e2πimz,

which leads to

−
∫
L2

f(z)

e2πiz − 1
dz =

∞∑
m=0

∫
L2

f(z) e2πimz dz =

∞∑
m=0

f̂(−m).

Putting it all together,∑
n∈Z

f(n) =

∞∑
m=0

f̂(m+ 1) +

∞∑
m=0

f̂(−m) =
∑
k∈Z

f̂(k),

The Poisson summation formula has many applications in number theory,
heat kernel, and analysis. For example, we can derive the “functional equation”
of the theta function using this formula.

Lemma 4.2. For ℜ(s) > 0, define

θ(s) =

∞∑
n=−∞

e−πn2s.

Then
θ(s) = s−1/2 θ

(
1/s

)
.

Proof. Let f(x) = e−πsx2

. Its Fourier transform is

f̂(p) =

∫ ∞

−∞
e−πsx2

e−2πixp dx =
1√
s
e−πp2/s.

By the Poisson summation formula,∑
n∈Z

e−πsn2

=
∑
n∈Z

f̂(n) =
1√
s

∑
n∈Z

e−πn2/s,

from which θ(s) = s−1/2 θ(1/s).
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5 Applications of Fourier Theory in Quantum
Mechanics

5.1 Position and Momentum Space Representations

An application of the Fourier Transform is in the field of Quantum Mechanics.
The Fourier Transform allows physicists to precisely model equations in quan-
tum mechanics in a mathematical context. In quantum mechanics, a particle’s
state of motion is defined by ψ(x), a complex valued function called the wave-
function. This function describes the mathematical description of the likelihood
of finding the particle at various positions in space. The Fourier function ψ̂(p)
of the wave function ψ(x) describes the probability amplitude of the particle’s
momentum space. The formulas are defined as

ψ̂(p) =
1√
2πℏ

∫ ∞

−∞
ψ(x) e−ipx/ℏ dx,

ψ(x) =
1√
2πℏ

∫ ∞

−∞
ψ̂(p) eipx/ℏ dp.

where ψ(x) is the Fourier transform of ψ̂(p).
Here, notice that using the Fourier transform, we can switch between the

momentum and position of a particle, and that one can be used to find the
other.

Remark. The 1/
√
2π factor matches the 2π scaled convention used in the pre-

vious sections.

5.2 The Free–Particle Schrödinger Equation

The Schrödinger equation plays the role of Newton’s laws and conservation of
energy in classical mechanics at a quantum level. It is a wave equation in terms
of the wavefunction that analytically predicts the probability of outcomes, such
as where a particle is. The state of a particle moving on the line is described
by a wavefunction ψ(x, t) ∈ C. When the particle is free of external forces, the
wavefunction must satisfy the time-dependent Schrödinger equation

iℏ
∂ψ

∂t
(x, t) = − ℏ2

2m

∂2ψ

∂x2
(x, t), −∞ < x <∞, t ≥ 0,

where ℏ is Planck’s constant and m > 0 is the particle’s mass.

The equation is linear with constant coefficients, so Fourier analysis allows
us to derive a solution for this equation. Throughout this section, we assume
the initial data ψ0 is a Schwartz function, where ψ0(x) = ψ(x, 0).

Theorem 5.1 (Free-particle solution). For every t ≥ 0, the unique solution to
the one-dimensional free Schrödinger equation

iℏ
∂ψ

∂t
(x, t) = − ℏ2

2m

∂2ψ

∂x2
(x, t), ψ(x, 0) = ψ0(x),
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is

ψ(x, t) =
1√
2πℏ

∫ ∞

−∞
ψ̂0(k) exp

[
i
kx

ℏ
− i

ℏk2

2m
t
]
dk,

where

ψ̂0(k) =
1√
2πℏ

∫ ∞

−∞
ψ0(y) e

− iky/ℏ dy

is the Fourier transform of the initial state. Hence, ψ̂0(k) is the momentum-
space amplitude at t = 0, and the integral above is its inverse Fourier transform
multiplied by the free particle phase factor e−iℏk2t/2m.

Proof. For each fixed t ≥ 0, define the Fourier transform of the function by

ψ̂(k, t) :=
1√
2πℏ

∫ ∞

−∞
ψ(x, t) e− ikx/ℏ dx.

Now we apply the properties of the Fourier Transform to the ψ function. Because
ψ(x, t) and all its x-derivatives decay rapidly as |x| → ∞, we differentiate under
the integral sign and integrate by parts without boundary terms.

Fx

[
∂tψ(·, t)

]
(k) =

∂

∂t
ψ̂(k, t), Fx

[
∂2xψ(·, t)

]
(k) = −k

2

ℏ2
ψ̂(k, t).

Applying the Fourier transform (in x) to the free-particle Schrödinger equation

iℏ ∂tψ(x, t) = −
ℏ2

2m
∂2xψ(x, t)

gives for each k,

iℏ
∂ψ̂

∂t
(k, t) =

ℏ2k2

2m
ψ̂(k, t).

This ordinary differential equation in t has the solution

ψ̂(k, t) = ψ̂(k, 0) exp
(
−i ℏk

2

2m
t
)
,

where ψ̂(k, 0) is the Fourier transform of the initial wave-function ψ(x, 0).

Finally, inverting the transform,

ψ(x, t) =
1√
2πℏ

∫ ∞

−∞
ψ̂(k, t) e ikx/ℏ dk =

1√
2πℏ

∫ ∞

−∞
ψ̂(k, 0) e− iℏk2t/(2m)e ikx/ℏ dk.

Absolute convergence of each integral follows from the rapid decay of ψ and
its derivatives, which ensures that ψ̂(k, 0) decays faster than any power of |k|.
Hence, differentiation under the integral sign is justified.
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