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1 The Fourier Transform

Exponentials are central to the study of calculus. Their properties with respect to integration and differen-
tiation make them uniquely easy-to-study objects in differential equations, complex analysis, algebra, and
more. The Fourier transform and Fourier series allow us to break down a function into an integral or sum
of these exponentials, which we can then analyze individually.

Definition 1.1. The Fourier transform F : R → C of a function f : R → C is defined by the relation

F (ξ) =

∫ ∞

−∞
e−2πiξxf(x) dx .

Remark 1.2. The Fourier transform has many analytic properties, but there is no convenient characteri-
zation of functions with a well-behaved Fourier transform. Thus, we will work with functions f satisfying
the following conditions, which are sufficient to show the most impressive facts about the Fourier transform
while still applying to most practical functions:

1. f is continuous.

2.
∫∞
−∞ |f(x)|dx < ∞. Such functions are called absolutely integrable.

3. The Fourier transform F of f is absolutely integrable.

With this set of hypotheses, we can invert the Fourier transform.

Lemma 1.3 (Fourier inversion theorem). For a function f and its Fourier transform F obeying the hypothe-
ses in Remark 1.2, we have

f(x) =

∫ ∞

−∞
e2πiξxF (ξ) dξ .

Proof. Since f is absolutely integrable, F (ξ) exists for all ξ and since F is absolutely integrable, the integral
given in the statement of Lemma 1.3 also converges. Expanding the definition of F and distributing the
exponential prefactor gives:∫ ∞

−∞
e2πiξxF (ξ) dξ =

∫ ∞

−∞
e2πiξx

∫ ∞

−∞
e−2πiξyf(y) dy dξ

=

∫∫
R2

e2πiξ(x−y)f(y) dy dξ .

From this point, we would really like to exchange the two summations, but doing so would not guarantee
convergence. Instead, we will include a decay factor in the integrand: e−εξ2 . Taking the limit as ε → 0 will
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then allow us to recover the original integral:∫∫
R2

e2πiξ(x−y)f(y) dy dξ = lim
ε→0

∫∫
R2

e2πiξ(x−y) · e−εξ2f(y) dy dξ

= lim
ε→0

∫∫
R2

e2πiξ(x−y) · e−εξ2f(y) dy dξ

= lim
ε→0

∫ ∞

−∞
f(y)

∫ ∞

−∞
e2πiξ(x−y)−εξ2 dξ dy

= lim
ε→0

∫ ∞

−∞
f(y)

∫ ∞

−∞
e−ε(ξ2−2(πi(x−y)

ε )ξ) dξ dy

= lim
ε→0

∫ ∞

−∞
f(y)

∫ ∞

−∞
e
−ε

(
(ξ−πi(x−y)

ε )
2
+(π(x−y)

ε )
2
)
dξ dy

= lim
ε→0

∫ ∞

−∞
e−

π2(x−y)2

ε f(y)

∫ ∞

−∞
e−ε(ξ−πi(x−y)

ε )
2

dξ dy .

Now substituting,

n =
√
ε

(
ξ − πi(x− y)

ε

)
,

we find

lim
ε→0

∫ ∞

−∞
e−

π2(x−y)2

ε f(y)

∫ ∞

−∞
e−ε(ξ−πi(x−y)

ε )
2

dξ dy = lim
ε→0

∫ ∞

−∞
e−

π2(x−y)2

ε f(y)

∫ ∞

−∞
e−n2

(
dn√
ε

)
dy

= lim
ε→0

∫ ∞

−∞

√
π

ε
e−

π2(x−y)2

ε f(y) dy .

The prefactor
√

π
ε e

−π2(x−y)2

ε integrates to 1, and as ϵ → 0, it grows more and more sharply concentrated
about x = y. Then, since f is continuous, the limiting value is simply

lim
ε→0

∫ ∞

−∞

√
π

ε
e−

π2(x−y)2

ε f(y) dy = f(x)

as expected.

The Fourier inversion theorem is really how we should intuitively think of the Fourier transform. F
describes the amplitudes of the various complex exponentials which “integrate together” to form f . The
Fourier inversion theorem is a more natural definition of F and the statement given in Definition 1.1 follows
as a consequence, but we treat the Fourier inversion theorem as a result formally because Definition 1.1
allows us to define the Fourier transform even when the conditions of Remark 1.2 are not met.

2 Fourier Series

For functions defined over a finite domain s : [a, b] → C, we instead define a Fourier series consisting of
countably many terms:

Definition 2.1. The Fourier series of a function f : [a, b] → C with f(a) = f(b) is an infinite sequence
. . . , S−1, S0, S1, . . . ∈ C is defined by the relation

Sn =
1

b− a

∫ b

a

e−2πin x−a
b−a f(x) dx .

Remark 2.2. Analogous to the continuous case, it is easiest to analyze the Fourier series when the following
conditions hold:
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1. f is continuous.

2. The sum
∑∞

n=−∞ Sn is absolutely convergent.

We only need discrete Fourier coefficients to describe intervals because the Fourier series of an interval is
analogous to the Fourier transform of that interval if it were repeated to fill the whole real line. The latter
interpretation is not mathematically rigorous without generalizing the definition of functions to objects
known as distributions (which are beyond the scope of this paper), but we can still analyze intervals with
discrete Fourier series.

We can freely convert between absolutely convergent Fourier series and continuous functions. We will
first require some helper lemmas.

Lemma 2.3. If f : [a, b] → C with f(a) = f(b) is a continuous function whose Fourier transform is the
infinite sequence S of zeroes, f is identically zero as well.

Proof. For contradiction, let there be some a < u < b such that f(u) = v ̸= 0. Then, since f has a Fourier
series which is identically 0, we must have

S0 =
1

b− a

∫ b

a

f(x) dx .

In general, if we have some function

g(x) =

∞∑
n=−∞

e2πin
x−a
b−a Tn,

with only finitely many nonzero Tn, we can then write the integral of f(x)g(x) as a sum of Fourier coefficients
which are all 0: ∫ b

a

f(x)g(x) dx =

∫ b

a

∞∑
n=−∞

e2πin
x−a
b−a Tnf(x) dx

=

∞∑
n=−∞

Tn

∫ b

a

e2πin
x−a
b−a f(x) dx

= (b− a)

∞∑
n=−∞

TnS−n

= 0.

Our strategy now will be to show that there is some trigonometric function g(x) which is so sharply peaked
around u that the integral of f(x)g(x) must be nonzero. WLOG, let v > 0. Since f is continuous, we can
choose some δ, ε > 0 such that for x satisfying |x− u| ≤ δ we have f(x) > ε. Let B be the maximum value
of |f(x)|, which exists since f is continuous and defined over a compact interval. Let

g1(x) = cos

(
x− u

b− a

)
+ ϵ

where ϵ is chosen such that f(x) < 1− ϵ/2 for |x−u| > δ. Choose some δ′ such that f(x) > 1+ ϵ/2 whenever
|x− u| < δ′. Let gk(x) = gk1 (x). Each g can be expressed as a sum of trigonometric functions. However,∫ b

a

f(x)gk(x) dx ≥
∫
|x−y|<δ

f(x)gk(x) dx−
∫
|x−y|>δ

|f(x)gk(x)|dx

≥
∫
|x−y|<δ′

(1 + ϵ/2)kεdx−
∫
|x−y|>δ

(1− ϵ/2)kB dx

≥ 2δ′(1 + ϵ/2)kε− (b− a)(1− ϵ/2)kB.

For large enough k, the integral of f(x)gk(x) is necessarily positive, giving us a contradiction.
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We now show a simple version of the Fourier inversion formula for series.

Lemma 2.4. For an infinite series S and an associated function

f(x) =

∞∑
n=−∞

e2πin
x−a
b−a Sn

satisfying the hypotheses of Remark 2.2, we can recover Sn via the formula

Sn =
1

b− a

∫ b

a

e−2πin x−a
b−a f(x) dx .

Proof. Expanding the definition:

1

b− a

∫ b

a

e−2πin x−a
b−a f(x) dx =

1

b− a

∫ b

a

e−2πin x−a
b−a

∞∑
m=−∞

e2πim
x−a
b−a Sm dx

=

∞∑
m=−∞

Sm
1

b− a

∫ b

a

e2πi(m−n) x−a
b−a dx

=

∞∑
m=−∞

Sm

{
1 m = n

0 m ̸= n

= Sn.

In essence, Lemma 2.4 shows how to derive the Fourier transformation/Fourier series: integrating against
an exponential with a suitable frequency extracts the desired frequency and kills all other frequencies. A
similar result holds in the other direction.

Lemma 2.5. For a function f and its Fourier transform S satisfying the hypotheses of Remark 2.2, we have

f(x) =

∞∑
n=−∞

e2πin
x−a
b−a Sn.

Proof. Let

g(x) =

∞∑
n=−∞

e2πin
x−a
b−a Sn

so that we wish to show that f(x) = g(x). By hypothesis, S is the Fourier series for f . By Lemma 2.4, S is
also the Fourier series for g. Examining Definition 2.1, we see that the Fourier series is linear in the input,
in that the Fourier series of f − g is the Fourier series of f minus that of g. Therefore, the Fourier series of
f − g is identically 0. By Lemma 2.3, f − g = 0 and f = g.

3 Differential Equations

The Fourier transformation and Fourier series are central to the study of differential equations. Since
exponentials have clean differential properties, we can solve many forms of linear differential equations by
writing solutions as the sum of exponentials.

Example 3.1. Waves on a string of length L can be represented by the height y(x, t) of the string at a
position x and time t. Under certain idealized conditions, y obeys the wave equation:

ÿ = v2y′′,

where ÿ is the second derivative of y with respect to time, y′′ is its second derivative with respect to position,
and v is a constant. Initially, we hold the string in place such that

y(x, 0) =


x 0 ≤ x ≤ L/4,

L/2− x L/4 ≤ x ≤ 3L/4

x− L 3L/4 ≤ x ≤ L.
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At time t = 0, we let go of the string but hold on to the ends (so that y(0, t) = y(L, t) = 0 for all t). Find
the height of the string at all times and positions.

Let’s consider an analogous situation where the height starts as a complex exponential. Consider a
function h(x, t) obeying the same differential equation given in Example 3.1, where

h(x, 0) = h0e
2πin x

L .

Then,

ḧ = v2h′′ =

(
2πinv

L

)2

h = −
(
2πnv

L

)2

h

at t = 0. Now, we notice that this expression for h′′ is valid as long as h0 does not depend on x. Therefore,
we can include a multiplicative time-dependent term while still obeying

v2h′′ = −
(
2πnv

L

)2

h.

We then need to satisfy the equation

ḧ = −
(
2πnv

L

)2

h.

We can do this by adding a time-dependent cos term:

h(x, t) = h0e
2πin x

L cos

(
2πnv

L
t

)
.

We used a cos term here instead of a complex exponential to account for the fact that the string starts at
rest. With the cosine, we have ḣ = 0 at t = 0. Since this formula satisfies our initial conditions and the
differential equation, it is the unique solution.

Now, we know how a single complex exponential evolves over time. If we can write the initial string
position as a sum of various complex exponentials, we can determine how each constituent evolves and thus,
what happens to the function as a whole. Of course, this decomposition is exactly what Fourier series do for
us! The Fourier series of y(x, 0) is given by

Sn =
1

L

∫ L

0

e−2πin x
L y(x, 0) dx

=
1

L

∫ L

0

e−2πin x
L dx


x 0 ≤ x ≤ L/4,

L/2− x L/4 ≤ x ≤ 3L/4

x− L 3L/4 ≤ x ≤ L

=
1

L

∫ L/4

0

x
(
e−2πin x

L + e−2πin
L/2−x

L − e−2πin
x+L/2

L − e−2πinL−x
L

)
dx

=
1

L

∫ L/4

0

x
(
e−2πin x

L + (−1)ne2πin
x
L − (−1)ne−2πin x

L − e2πin
x
L

)
dx

= −i
4

L

∫ L/4

0

x sin

(
2πnx

L

)
dx

{
0 2|n
1 2 ∤ n

= −i
L

4

∫ 1

0

x sin
(πnx

2

)
dx

{
0 2|n
1 2 ∤ n

= −i
L

4

(
−x cos(πnx/2)

πn/2
+

sin(πnx/2)

(πn/2)
2

)∣∣∣∣∣
1

0

{
0 2|n
1 2 ∤ n

=
L

(πn)2


0 n ≡ 0, 2 (mod 4),

−i n ≡ 1 (mod 4),

i n ≡ 3 mod 4.
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Define

χ4 =


0 n ≡ 0, 2 (mod 4),

1 n ≡ 1 (mod 4),

−1 n ≡ 3 (mod 4).

Then, we can rewrite y(x, 0) as

y(x, 0) =

∞∑
n=−∞

Sne
2πin x

L

=
L

π2

∞∑
n=−∞

χ4(n)

n2
· e

2πin x
L

i

=
2L

π2

∞∑
n=1

χ4(n)

n2
sin

(
2πnx

L

)
.

Then, we see that

y(x, t) =
2L

π2

∞∑
n=1

χ4(n)

n2
sin

(
2πnx

L

)
cos

(
2πnv

L
t

)
.

If we were really ambitious, we could now go and actually compute this trigonometric sum. Such a calculation
is beyond the scope of this paper, but we can visualize the result using a computer.

4 Poisson Summation Formula

The Poisson Summation Formula allows us to use the Fourier transform to compute periodic sums of a
function.

Theorem 4.1. Poisson Summation Formula Let f : R → C be a continuous function and F : R → C be
its Fourier transform such that both are absolutely integrable and such that f (n) decays at infinity for all n.
Then,

∞∑
x=−∞

f(x) =

∞∑
ξ=−∞

F (ξ).

Proof. Define g : [0, 1] → C as

g(x) =

∞∑
n=−∞

f(x+ n).

A precise treatment of convergence is beyond the scope of this paper, but g(x) converges to a continuous
function and is absolutely integrable due to the conditions on the decay of f (n). Since g is continuous and
periodic we can find its Fourier series S:

g(x) =

∞∑
n=−∞

e2πinxSn.

Notably,

g(0) =

∞∑
n=−∞

f(n) =

∞∑
n=−∞

Sn.
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Expanding the definition of Sn:

Sn =

∫ 1

0

e−2πinxg(x) dx

=

∫ 1

0

e−2πinx
∞∑

m=−∞
f(x+m) dx

=

∞∑
m=−∞

∫ m+1

m

e−2πinxf(x) dx

=

∫ ∞

−∞
e−2πinxf(x) dx

= F (n).

Therefore
∞∑

n=−∞
f(n) =

∞∑
n=−∞

Sn =

∞∑
n=−∞

F (n)

as expected.

Let’s use this formula to solve the Basel problem!

Example 4.2. Find the value of

ζ(2) =

∞∑
n=1

1

n2
.

We would really like to apply the Poisson summation formula directly to f(x) = 1/x2, but we cannot
because it is not continuous. Instead, we will apply it to

fa(x) =
1

x2 + a2
.

Then, we can recover ζ(2) via the relation

2ζ(2) = lim
a→0

(
− 1

a2
+

∞∑
n=−∞

fa(n)

)
.

As we might expect, this approach only allows us to calculate even integer values of the zeta function. Now,
let F : R → C be the Fourier transform of f . For an integer value n:

F (n) =

∫ ∞

−∞

e−2πinx

x2 + a2
dx .

First, assume n > 0. Then, we take the red contour shown in Figure 1, where we take the path

−∞ → −N → −N − iM → N − iM → N → ∞.

The segments from −∞ → −N and N → ∞ are bounded by O
(

1
N

)
. The two vertical segments are bounded

by O
(

M
N2

)
and the segment from −N − iM to N − iM is bounded by O

(
N exp(−2πnM)

M2

)
. Thus, choosing

M = logN ensures that the total contribution is O
(

1
N

)
. Thus, the integral along this contour goes to 0 as

N → ∞.
If n = 0, take the blue contour shown in Figure 1, which goes −∞ to −N along the real axis, −N to

N along a semicircle, and N to ∞ along the real axis. All three segments of this contour are bounded by
O
(

1
N

)
, so the integral as N → ∞ goes to 0.
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Figure 1: The contours used to Fourier transform 1
x2+a2 .

Both of these contours include the residue at x = −ia whereas the contour along the real line excludes
it. Therefore, we must account for the residue there, giving

F (n) = −2πi
e−2πinx

x− ia

∣∣∣∣
x=−ia

=
πe−2πna

a

for nonnegative integer n. Note that negating n turns the integrand into its complex conjugate. Therefore,
F (−n) = F (n). Since F (n) is real, this relation shows that F (−n) = F (n). Now,

ζ(2) =
1

2
lim
a→0

(
− 1

a2
+

∞∑
n=−∞

F (n)

)

=
1

2
lim
a→0

(
− 1

a2
− π

a
+ 2

π

a

∞∑
n=0

e−2πna

)

=
1

2
lim
a→0

(
− 1

a2
+

π

a

(
−1 + 2

1

1− e−2πa

))
=

1

2
lim
a→0

(
− 1

a2
+

π

a
· 1 + e−2πa

1− e−2πa

)
=

1

2
lim
a→0

(
aπ
(
1 + e−2πa

)
−
(
1− e−2πa

)
a2 (1− e−2πa)

)

=
1

2
lim
a→0

(
π
(
1 + e−2πa

)
− 2π2ae−2πa − 2πe−2πa

2a (1− e−2πa) + 2πa2e−2πa

)

=
1

2
lim
a→0

(
2π2e−2πa − 2π2e−2πa + 4π3ae−2πa

2 (1− e−2πa) + 4πae−2πa + 4πae−2πa − 4π2a2e−2πa

)
=

1

2
lim
a→0

(
4π3e−2πa

8π + 4πe−2πa

)
=

1

2
· π

2

3

=
π2

6
.
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