
L-FUNCTIONS

VARUN RAJKUMAR

Abstract. The goal of this paper is to cover the analytic continuation of L-functions and

to prove the functional equation along with some interesting uses to other topics in math.

The sources we have used are: [Apo98] [RS21].

1. Introduction

The Dirichlet L-function was originally made to help understand the distribution of prime

numbers. However, it also has really interesting properties which are useful in other areas of

math. More specifically, in this paper, we will talk about how L-functions relate to complex

analysis and prove the analytic continuation and functional equation of L(s, χ). The Dirichlet

L-function is defined as is defined as the sum of
∞∑
n=1

χ(n)

ns
.

It was originally introduced when Peter Gustav Lejeune Dirichlet used it to prove Dirich-

let’s theorem on arithmetic progressions, which states that there are an infinite number of

primes in the form of qk + r if gcd(k, r) = 1. It has since been used in many other proofs,

such as the Prime number theorem for arithmetic progressions [Sel50], and, more recently,

the Modularity theorem. This paper will prove the functional equation for the Dirichlet

L-function which states that

L(1− s, x) =
ks−1Γ(s)

(2π)s
{e−πis/2 + χ(−1)eπis/2}G(1, χ)L(s, χ),

and give an analytic continuation for L(s, x) using ζ(s, a).

2. Outline of Proof

• Prove the contour integral representation of C(s, a) to give an analytic continuation

of ζ(s, a).

• Use the formula that associates ζ(s, a) with L(s, χ) to prove the analytic continuation

of L(s, χ).

• Define and Prove Hurwitz Formula.

• Use Hurwitz Formula to prove the functional equation for ζ(s, a).
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• Get the functional equation for L(s, x).

3. Definitions

Definition 1. The Dirichlet character χ(s) is any function from Z =⇒ C that satisfies the

following properties:

• There exists a k such that χ(n) = χ(n+ k).

• If gcd(n, k) > 1 then χ(n) = 0.

• If χ(mn) = χ(m)χ(n).

The Dirichlet Character χ(s) will be used in a series for the definition for L(s, χ). In this

paper, we will call k the mod for χ.

Definition 2. The Dirichlet L-function L(s, χ) is defined as

L(s, χ) =
∞∑
n=1

χ(n)

ns
.

The Hurwitz Zeta function is a series that is closely related to L-functions.

Definition 3. The Hurwitz Zeta function ζ(s, a) is defined as

ζ(s, a) =
∞∑
n=0

1

(n+ a)s
.

The Riemann Zeta function is a special case of the Hurwitz Zeta function when a = 0.

Definition 4. The Riemann Zeta function is defined as

ζ(s) =
∞∑
n=0

1

ns

Now take L(s, χ) and let k be the mod for χ.

L(s, x) =
∞∑
n=1

χ(n)

ns

=
k∑
r=1

∞∑
q=0

χ(qk + r)

(qk + r)s

=
1

ks

k∑
r=1

χ(r)
∞∑
k=0

1

(q + r
k
)s

= k−s
k∑
r=1

χ(r)ζ
(
s,
r

k

)
.

Note that this is true because χ(qk + r) = χ(r) because k is the mod for χ. This fact will

be important later on in the paper.
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4. Analytic Continuation of ζ(s, a)

Theorem 1. The series ζ(s, a) converges absolutely when <(s) > 1. The series converges

uniformly in every half-plane where <(s) ≥ 1 + ε, ε > 0, so ζ(s, a) is analytic.

Proof. This is true because of the fact that
∞∑
n=1

|(n+ a)−s| =
∞∑
n=1

(n+ a)−<(s) ≤
∞∑
n=1

(n+ a)−(1+ε)

Since ζ(1 + ε, a) converges, we can use the Weierstrass M-test to prove that the series

converges uniformly. The Weierstrass M-test states that if the sum of the absolute value

converges, the sum converges uniformly. And since this fact is true, the sum converges

uniformly and absolutely. �

The theorem we just proved will be used to prove the integral representation of the Hurwitz

zeta function.

Theorem 2. For <(s) > 1,

Γ(s)ζ(s, a) =

∫ ∞
0

xs−1e−ax

1− e−x
dx.

Proof. First we will prove it for real s > 1, then use analytic continuation to extend it. Our

strategy will be too convert the integral for Γ(s) into a sum involving ζ(s, a). First, we take

the integral representation for Γ(s) and make the substitution x = (n+ a)t

Γ(s) =

∫ ∞
0

e−xxs−1dx = (n+ a)s
∫ ∞
0

e−(n+a)tts−1dt.

Or, in other words

Γ(s)(n+ a)−s =

∫ ∞
0

e−nte−atts−1dt.

If we sum over n = 0 to ∞ we get

ζ(s, a)Γ(s) =
∞∑
n=0

∫ ∞
0

e−nte−atts−1dt.

Now if we switch the sum and the integral we get

ζ(s, a)Γ(s) =

∫ ∞
0

∞∑
n=0

e−nte−atts−1dt

=

∫ ∞
0

ts−1e−at
∞∑
n=0

e−ntdt

=

∫ ∞
0

ts−1e−at

1− e−t
dt.
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Figure 1

This proves the integral representation for the Hurwitz Zeta Function. �

The integral representation will help prove the contour integral representation. The next

theorem shows a contour integral representation for the Hurwitz Zeta function. We will

integrate over figure 1, which we will call γ. In γ, the circle is C2, which goes counter

clockwise and the middle is at (0, 0), the bottom line is C1, which goes toward the circle, and

the above line is C3, which goes away from the circle. The radius of the circle (C2) is defined

as c ≤ 2π. In the proof, we will take the limit as c −→ 0 and prove the theorem below. The

length of bottom and top line is ∞.

Theorem 3. If 0 ≤ a ≤ 1, then

I(s, a) =
1

2πi

∫
γ

zs−1eaz

1− ez
dz

and I(s, a) is an entire function of s. We also have

ζ(s, a) = Γ(1− s)I(s, a).

Remark. We can use this theorem to prove the analytic continuation of the Hurwitz Zeta

function. We can also define ζ(s, a) as Γ(1− s)I(s, a) for <(s) ≤ 1.

Proof. In the integral, zs is rse−πis on C1 and rseiπs on C3. We consider a compact disk

|s| ≤ M and prove that C1 and C2 converges uniformly on every disk. Since the integrand

is an entire function of s this will prove that I(s, a) is entire (use Morera’s Theorem). For

C1, we have, for r ≥ 1,

|zs−1| = r<(s)−1|e−πi(<(s)−1+it)| = r<(s)−1eπt ≤ rM−1e−πM .

For C3, for r ≥ 1, we have

|zs−1| = r<(s)−1|eπi(<(s)−1+it)| = r<(s)−1e−πt ≤ rM−1eπM .

Using this, we can get, on either C1 or C3, that

|z
s−1eaz

1− ez
| ≤ rM−1eπMe−ar

1− er
=
rM−1eπMe(1−a)r

er − 1
.

Since er − 1 < er/2 when r > log(2) so the integrand is bounded by ArM−1e−ar where A is

a constant depending on M . Since
∫∞
c
rM−1e−ar converges when c > 0, C1 and C3 converge

uniformly on every compact disk |s| ≤ M . Now that we have the convergence right, our
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plan for the proof will be to split the integral into 2 parts and prove that 1st part goes to

Γ(s)ζ(s, a), and the second part goes to 0. Now, let’s take

2πiI(s, a) =

(∫
C1

+

∫
C2

+

∫
C3

)
zs−1g(z)dz,

where g(z) = eaz

1−ez . On C1 and C3, g(z) = g(−r) and on C2, we let z = ceiθ. We have:

2πiI(s, a) =

∫ ∞
c

rs−1e−πisg(−r)dr + i

∫ −π
π

cs−1e(s−1)iθceiθg(ceiθ)dθ +

∫ ∞
c

rs−1eπisg(−r)dr

= 2i sin(πs)

∫ ∞
c

rs−1g(−r)dr +

∫ −π
π

eisθg(ceiθ)dθ.

Dividing by 2i, we get

πI(s, a) = sin(πs)I1(s, c) + I2(s, c)

where I1 and I2 are functions of c and s that replace the integrals. Now letting c −→ 0 gives

us

lim
c−→0

I1(s, c) =

∫ ∞
0

rs−1e−ar

1− er
dr = Γ(s)ζ(s, a)

for real part > 1. Now we must show that as c −→ 0, I2(s, c) −→ 0. To do that we use the

fact that g(z) is analytic in |z| < 2π except for a simple pole at z = 0. Therefore zg(z) is

analytic everywhere inside |s| < 2π which means it is bounded. We have |g(z)| ≤ A
|z| , where

|z| = c < 2π and A is constant. This means that

I2(s, c) ≤
c<(s)

2

∫ π

−π
eiθ
A

c
dθ ≤ Aeπ|t|c<(s)−1.

If <(s) > 1 and c −→ 0 we get that I2(s, c) −→ 0 which means that sin(πs)Γ(s)ζ(s, a), and

since Γ(s)Γ(1− s) = πsin(πs), this proves that ζ(s, a) = Γ(1− s)I(s, a) which completes the

proof. �

We can now use this theorem to prove the functional equation later on. But first note

that in this theorem, Γ(1− s)I(s, a) is well defined for <(s) ≤ 1, so therefore we can use this

to define ζ(s, a) for <(s) ≤ 1.

Definition 5. If <(s) ≤ 1, we can define ζ(s, a) as

ζ(s, a) = Γ(1− s)I(s, a).

This equation proves the analytic continuation of ζ(s, a) in the whole plane. Now, we

must show the analytic continuation of L(s, x).
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5. Analytic Continuation of L(s, x)

To prove the analytic continuation of L(s, x), we will use what we proved at the start of

the paper:

L(s, x) = k−s
k∑
r=1

χ(r)ζ
(
s,
r

k

)
.

Theorem 4. The following is true:

(1) ζ(s, a) is analytic on all s except for a simple pole at s = 1 with residue 1.

(2) For the principle character χ1 mod k, L(s, χ1) is analytic except for s=1 with residue

ϕ(k)/k.

(3) If χ 6= χ1, L(s, x) is entire function of s.

Remark. In this theorem, χ1 is defined as 1 is gcd(n, k) = 1, and 0, if gcd(n, k) > 1 where k

is the mod.

Proof. We will first begin by proving (1). Since I(s, a) is entire, the only possible poles

are at s = 1, 2, 3, . . . when Γ(1 − s) = ∞. But theorem 1 shows that ζ(s, a) is analytic at

s = 2, 3, 4, . . ., so s = 1 is the only possible pole. Now, we must show that the pole is residue

1. When s is an integer, the integrals evaluated at C1 and C3 cancel each other leaving only

C2. This means that if s is an integer we have (using the Cauchy Residue Theorem):

I(s, a) =
1

2πi

∫
C2

zs−1eaz

1− ez
dz = Res

zs−1eaz

1− ez
.

Letting s = 1 gives us the following:

I(1, a) = Res z=0
eaz

1− ez
= lim

z−→0

zeaz

1− ez
= lim

z−→0

1

1− ez
= lim

z−→0

−1

ez
= −1.

Now, to prove the residue at s = 1 for ζ(s, a), we compute the limit

lim
s−→1

(s− 1)ζ(s, a) = − lim
s−→1

(1− s)I(s, a)Γ(1− s) = −I(1, a) lim
s−→1

Γ(2− s) = Γ(1) = 1

which proves (1). To prove (2) and (3), we use the fact that

∑
r(mod k)

χ(r) = {0, if χ 6= χ1; φ(k), if χ = χ1}.
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Since ζ(s, r
k
) has a simple pole at s = 1, χ(r)ζ(s, r

k
) also has a simple pole at s = 1 with

residue χ(r). Therefore, calculating the residue of L(s, x), we have:

Ress=1L(s, x) = lim
s−→1

(s− 1)L(s, x)

= lim
s−→1

(s− 1)k−s
k∑
r=1

χ(r)ζ
(
s,
r

k

)
=

1

k

k∑
r=1

χ(r)

= {0, if χ 6= χ1;
φ(k)

k
, if χ = χ1}.

This proves (2), because if we plug in χ = χ1, we get φ(k)
k

, and it proves (3), because if we

let χ 6= χ1, we get 0, and because L(s, x) has no other poles, this proves that L(s, x) is an

entire function of s. �

We can now use the analytic continuation of ζ(s, a) on L(s, χ) using the fact that

L(s, χ) = k−s
k∑
r=1

χ(r)ζ(s,
r

k
)

and plugin ζ(s, r
k
). Now, Since ζ(s, a) converges, L(s, χ) converges.

6. Functional Equation for the Hurwitz Zeta Function

To prove the functional equation for L-functions, we will first need to prove Hurwitz’s

formula, which is another interpretation of ζ(s, a) that makes sense for <(s) < 0. After

that, we will prove the functional equation for ζ(s, a) which will then be used to prove the

functional equation for the Dirichlet L-function in the next chapter.

Lemma 5. Let S(r) donate the region that remains when we remove all open disks with

radius r, for 0 ≤ r ≤ π, with centers at z = 2πni, n = 0,±1,±2,±3, . . . . Then when

0 < a ≤ 1 the function

g(z) =
eaz

1− ez
is bounded in S(r) (the bound depends on r).

Proof. Let z = x+iy and consider the punctured rectangle Q(r) = {z : |x| ≤ 1, |y| ≤ π, |z| ≥
r}, so in other words there is a 1 × π rectangle with a circular hole in the middle at (0,0)

with radius r. This is a compact set so g is bounded on Q(r). Since |g(z + 2πi)| = g(z), g

is bounded in the punctured infinite strip

{z : |x| ≤ 1, |z − 2nπi| ≥ r, n = 0,±1,±2,±3, . . . }.
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Now we show that g is bounded outside the strip. Let |x| ≥ 1 and take

|g(z)| =
∣∣∣∣ eaz

1− ez

∣∣∣∣ =
eax

|1− ez|
≤ eax

|1− ex|
.

For x ≥ 1 we have |1− ex| = ex − 1 and eax ≤ ex, so

|g(z)| ≤ ex

ex − 1
≤ 1

1− e−x
≤ 1

1− e−1
=

e

e− 1
.

Now we need to prove it for x ≤ −1. We have |1− ex| = 1− ex so

|g(z)| ≤ eax

1− ex
≤ 1

1− e−x
≤ 1

1− 1
e

=
e

e− 1
.

We have now proven that g(z) is bounded on |x| ≤ 1, x ≥ 1, and x ≤ −1. This completes

the proof. �

We can now prove a theorem called Hurwitz’s formula. For this theorem we will use a

function called F (x, s) given by

F (x, s) =
∞∑
n=1

e2πinx

ns
,

where x is real and <(s) > 1. Note that x is periodic by 1, so F (x, s) = F (x + 1, s). Also

note that F (1, s) = ζ(s) and that the series converges absolutely for <(s) > 1 due to theorem

1. If x is not an integer the series also converges for <(s) > 0. From now on, we will refer

to F (x, s) as the periodic zeta function.

Theorem 6. (Hurwitz’s Formula) If 0 < a ≤ 1 and <(s) > 1, then

ζ(1− s, a) =
Γ(s)

(2π)s
{e−πis/2F (a, s) + eπis/2F (−a, s)}

Proof. For this proof, we will consider the function IN(s, a) and prove that it is related to

I(s, a), then we will use the fact that Γ(s)ζ(s, a) = I(s, a) to prove the functional equation.

Consider the function

IN(s, a) =
1

2πi

∫
C(N)

zs−1eaz

1− ez
dz

where C(N) is the contour shown in Figure 2 (page 10), where the radius of the inside circle

is c < π, and the radius of the outside circle is (2n + 1)π. In the smaller circle, the we are

rotating counter clock-clockwise, in the bigger circle, we are rotation clockwise, in the line

in the upper half plane, we are moving away from (0, 0), and in the line from the bottom

half plane, we are moving toward (0, 0). Note that N must be an integer. First, we must

prove that I(s, a) (all the way back on theorem 2) is the same as IN(s, a) as N −→ ∞ and

with <(s) < 0. To do this, it suffices to show that the outer circle tends to 0 as N −→ ∞.

On the outer circle, we have z = Reiθ, −π ≤ θ ≤ π, so

|zs−1| = |Rs−1eiθ(s−1)| = R<(s)−1e−tθ ≤ R<(s)−1eπ|t|.
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Since the outer circle lies on the set of S(r) of Theorem 5, the integrand is bounded by

Aeπ|t|R<(s)−1, where A is the bound for g(z) because of Theorem 5. This means the integral

is bounded by

2πAeπ|t|R<(s),

and this goes to 0 as R −→∞ if <(s) < 0. Therefore, replace s by 1− s we get that

lim
n−→∞

IN(1− s, a) = I(1− s, a)

if <(s) > 1. Now we need to compute IN(1− s, a). We will use Cauchy’s Residue Theorem.

We have:

IN(s, a) = −
N∑

n=−N,n6=0

R(n) = −
N∑
n=1

{R(n) +R(−n)}

where

R(n) = Resz=2πni

(
zs−1eaz

1− ez

)
.

This means that

R(n) = lim
z−→2πni

(z − 2πni)
z−seaz

1− ez
=

e2πnia

(2πni)s
lim

z−→2πni

z − 2πni

1− ez
= − e2nπia

(2nπi)s
,

hence this gives us

IN(1− s, a) =
N∑
n=1

e2πnia

(2πni)s
+

N∑
n=1

e−2πnia

(−2πni)s
.

Now, we can take out the (2πni)s and factor it out and leave ns:

IN(1− s, a) =
e−πis/2

(2π)s

N∑
n=1

e2πnia

ns
+
eπis/2

(2π)s

N∑
n=1

e−2πnia

ns
.

Now, we let n −→∞, so IN(s, a) would become I(s, a) from what we proved previously, and

we have

I(s, a) =
e−πis/2

(2π)s
F (a, s) +

eπis/2

(2π)s
F (−a, s).

This gives

ζ(1− s, a) = Γ(s)I(1− s, a) =
Γ(s)

(2π)s
{e−πis/2F (a, s) + eπis2F (−a, s)},

which completes the proof of the theorem. �

Now, we use this to prove the functional equation for the Hurwitz Zeta Function. We can

also prove the functional equation for the Riemann Zeta function by letting s = 1, but we

will not do that here to keep the paper on topic.
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Figure 2

Theorem 7. If h and k are integers, 1 ≤ h ≤ k, then for all s

ζ(1− s, h
k

) =
2Γ(s)

(2πk)s

k∑
r=1

cos

(
πs

2
− 2πrh

k

)
ζ(s,

r

k
).

Proof. This comes from the fact that F (x, s) is a linear combination of ζ(s, a) when x is

rational. Assuming x = h
k

we can rearrange the terms according to residue classes mod k by

writing

n = qk + r,

where 1 ≤ r ≤ k and q = 1, 2, 3, . . . . This gives us, for <(s) > 1,

F (
h

k
, s) =

∞∑
n=1

e2πinh/k

ns

=
k∑
r=1

∞∑
q=0

e2πinh/k

(qk + r)s

=
k∑
r=1

e2πinh/k
∞∑
q=0

1

(qk + r)s

= k−s
k∑
r=1

e2πinh/kζ(s,
r

k
).

Now if we take h
k

in Hurwitz’s Formula (Theorem 6) and use this association with F (x, s)

and ζ(s, a), we have:

ζ(1− s, h
k

) =
Γ(s)

(2πk)s

k∑
r=1

(e−πis/2e2πirh/k + eπis/2e−2πirh/k)ζ(s,
r

k
)

=
2Γ(s)

(2πk)s

k∑
r=1

cos

(
πs

2
− 2πrh

k

)
ζ(s,

r

k
),

which is true for real part > 1, but we can extend it analytically to all s which completes

the proof. �
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7. Functional Equation for L(s, χ)

Now that we have finished the proof for the Hurwitz Zeta Functions, we can put everything

together and get the functional equation for L(s, χ).

Theorem 8. Let χ be a Dirichlet Character mod k, and let d be the induced modulus, and

we have:

χ(n) = ψ(n)χ1(n)

where χ is a character mod d and χ1 is the principle character. Then for all s, we have

L(s, χ) = L(s, ψ)
∏
p|k

(
1− ψ(p)

ps

)
Proof. First let <(s) > 1 and use the Euler Product to get

L(s, x) =
∏
p

(
1− χ(p)

ps

)
.

Since χ(p) = ψ(p)χ1(p) and χ1(p) = 0 is p|k and χ1(p)= 1 if p - k, so we have

L(s, x) =
∏
p-k

1

1− ψ(p)
ps

=
∏
p

1

1− ψ(p)
ps

×
∏
p|k

(
1− ψ(p)

ps

)

= L(s, ψ)
∏
p|k

(
1− ψ(p)

ps

)
.

This completes the proof for <(s) > 1 and we can extend it analytically to all s using analytic

continuation. �

To associate F (x, s) and L(s, χ), we need a to prove another theorem.

Theorem 9. Let χ be a primitive character mod k. Then for <(s) > 1 we have

G(1, χ̄)L(s, χ) =
k∑

h=1

χ̄(h)F

(
h

k
, s

)
,

where G(m,χ) is the Gauss Sum:

G(m,χ) =
k∑
r=1

χ(r)e2πirm/k.

Note that χ̄ is the complex conjugate of χ, and a primitive character means that you

cannot turn χ mod n into χ mod m.
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Proof. Take the sum

k∑
h=1

χ̄(h)F

(
h

k
, s

)
=

k∑
h=1

∞∑
n=1

χ̄(h)e2πnih/kn−s

=
∞∑
n=1

n−s
k∑

h=1

¯χ(h)e2πnih/k

=
∞∑
n=1

n−sG(n, χ̄).

But G(n, χ̄) is seperable because χ is primitive, so G(n, χ̄) = G(1, χ̄)χ(n), so we have

k∑
h=1

χ̄(h)F (
h

k
, s) = G(1, χ̄)

∞∑
n=1

χ(n)n−s = G(1, χ̄)L(s, χ),

which completes the proof. �

Now using everything, we can finish proving the functional equation for the Dirichlet

L-function.

Theorem 10. The functional equation for Dirichlet L-function is defined as

L(1− s, x) =
ks−1Γ(s)

(2π)s
{e−πis/2 + χ(−1)eπis/2}G(1, χ)L(s, χ)

Proof. We let x = h
k

in Hurwitz’s formula then multiply each one by χ(h) and sum over h.

This gives us

k∑
h=1

χ(h)F (1− s, −h
k

) =
Γ(s)

(2π)s

{
e−πis/2

k∑
h=1

χ(h)F

(
h

k
, s

)
+ eπis/2

k∑
h=1

χ(h)F

(
−h
k
, s

)}
.

Since F (x, s) is periodic within x with period 1 and χ(h) = χ(−1)χ(−h) we can get∑
h mod k

χ(h)ζ(1− s, h
k

) =
Γ(s)

(2π)s
{e−πis/2 + χ(−1)eπis/2}

k∑
h=1

χ(h)F

(
h

k
, s

)
.

Now, when we multiply both sides by ks−1, we get the functional equation for L(s, χ)

which completes the proof. �

This finishes the paper.
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