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Abstract

Many combinatorial objects, such as the number of involutions of length n, are easily
described but do not have a simple explicit formula. However, using techniques from
complex analysis, a simple expression for the asymptotic growth of such objects can be
obtained. In this paper, we first outline methods of describing and finding generating func-
tions for labeled and unlabeled combinatorial classes. We then provide techniques, with
applications, for analyzing the asymptotic behaviour of coefficients of generating func-
tions with poles and algebraic singularities. Finally, we do the same for entire generating
functions.

1 Symbolic Methods

1.1 Combinatorial Classes

Definition 1.1. A combinatorial class, A, is defined as a set with a size function such that the
size of any element is a non-negative integer, and there are a finite number of elements of any
given size. We denote the size of an element α ∈ A by |α|A or just |α| when the class is evident.

Definition 1.2. The counting sequence of the class is the sequence (an)n≥0 where an is the
number of objects in the class with size n. We call

A(z) =
∞∑
n=0

anz
n

the corresponding ordinary generating function.

Definition 1.3. We let [zn]f(z) represent the coefficient of zn in the power series f(z).

Example. For example, we can consider the combinatorial class of binary words, that is se-
quences of characters a and b, where the size of an element is the length of the word. The
counting sequence for binary words of size n is then 2n, as each of the n letters could be either
a or b and we make this choice n times. The ordinary generating function of this class is thus∑∞

n=0 2nzn = 1
1−2z

, because it is a geometric series.

Definition 1.4. Two combinatorial classes A and B are isomorphic (we write A ∼= B ) if and
only if they have the same counting sequence.
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1.2 Constructing Combinatorial Classes

Definition 1.5. We let E be a neutral class with one element of size 0. We let Z be an atomic
class with one element of size 1, which we call the atom.

Definition 1.6. The Cartesian product of two classes A = B × C is the set of ordered pairs
A = {α = (β, γ)|β ∈ B, γ ∈ C} with the size of an element given by |α|A = |β|B + |γ|C . We
denote An as the product of A with itself n times.

Definition 1.7. The disjoint sum of two classes A = B + C, is the union B × E� ∪ C × E�
with the size of an element the same as it was in B and C.

Remark 1.8. The neutral elements serve as markers to distinguish elements of B and C in
order to formalize the construction for sets which are not disjoint. We are, in effect, taking the
disjoint union of the sets.

Definition 1.9. For a class A with no object of size 0, we define the sequence class as the
infinite sum, SEQ(A) = E + A+ A2 + A3 + · · · . We denote SEQk(A) as the sequences with k
components (the generating function for this is Ak-since it is the ordered sequence of k objects).

Example. We can consider binary words as SEQ({a, b}). For instance, the sequences of size 4
(SEQ4({a, b}))are aaaa, aaab, aaba, aabb, abaa, abab, abba, abbb, baaa, baab, baba, babb, bbaa, bbab, bbba, bbbb.

Definition 1.10. For a class A with no object of size 0, we define the cycle of A as
CYC(A) = (SEQ(A) \ E)/S, where S is the equivalence relation between circular shifts of
sequences.We define CYCk(A) as SEQk(A)/S

Example. If we consider CYC({a, b}), the cycles of size 4 are aaaa, aaab, abab, aabb, abbb, bbbb.

Definition 1.11. The multiset is defined as the quotient MSET(A) = SEQ(A)/R where R
is the equivalence relation between two sequences which are permutations of each other. We
define MSETk(A) similarly as SEQk(A)/R.

Example. For CYC({a, b}), the multisets of size 4 are aaaa, aaab, aabb, abbb, bbbb.

Proposition 1.12. We have the following:

1. If A = B × C, then A(z) = B(z)C(z).

2. If A = B + C, then A(z) = B(z) + C(z).

3. If A = SEQ(B), then A(z) = 1
1−B(z)

.

Proof.

1. Suppose A = B × C. Then we have

an =
∑

n1+n2=n

bn1cn2

because an object of size n is made up of a pair of objects of size n1 and n2 from B and C
with n1 +n2 = n. This is precisely the relationship between [zn]A(z) and [zn]B(z)×C(z),
so A(z) = B(z)C(z).
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2. Suppose A = B + C. We then have an = bn + cn because an object in a is either one of
bn elements in B or cn elements in C. Thus we have A(z) = B(z) + C(z).

3. If A = SEQ(B), we have A = E + B + B2 + B3 + · · · . By the previous parts of this
proposition, we have A(z) = 1 + B(z) + B(z)2 + B(z)3 + · · · . Summing this geometric
series yields A(z) = 1

1−B(z)
.

Example. We can represent the positive integers as the combinatorial class I = SEQ≥1(Z).
The generating function is z

1−z .

Definition 1.13. A labeled object of size n is a graph of n vertices, with an injective labeling
function from the vertices to the integers. The object is well-labeled if the labels are the integers
from 1 to n. A combinatorial class is a labeled class if it is made up of well-labeled objects. We
define the counting sequence again as an = |{x ∈ A : |x| = n}|. The atomic class Z for labeled
objects is the graph with one vertex labeled 1.

When counting labeled classes, we use exponential generating functions.

Definition 1.14. The exponential generating function of a counting sequence is

A(z) =
∞∑
n=0

an
zn

n!
.

Example. Permutations are the class of labeled, directed paths. They have the counting se-
quence Pn = n! and consequently the exponential generating function

∑∞
n=0

n!zn

n!
=
∑∞

n=0 z
n =

1
1−z .

Example. Urns are the class of totally disconnected graphs. There is thus one possible labeling
for each object. They have the counting sequence Un = 1 and consequently the exponential
generating function

∑∞
n=0

zn

n!
= ez.

Example. Cycles are the class of circular graphs with positive orientation. They have the count-
ing sequence Cn = (n−1)! and consequently the exponential generating function

∑∞
n=1

(n−1)!zn

n!
=∑∞

n=1
zn

n
= log( 1

1−z ).

Definition 1.15. The labeled product A?B is the set of ordered pairs (a, b) where a and b are
consistent relabelings of structures from A and B respectively (i.e. a and b preserve the relative
ordering of the structures). We defiine Ak as the labeled product of A with itself k times.

We can define SEQ, CYC, and SET for labeled classes.

Definition 1.16. We define SEQ(A) as before, as E+A+A2 + · · · but with a labeled product
instead of the Cartesian product. Again, we define SEQk(A) = Ak.

Definition 1.17. We define SET(A) as the sequences of A under the equivalence relation of
sequences being the same if they are permutations of each other. SETk(A) are the sets formed
from k-sequences of A.
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Definition 1.18. We define CYC(A) as the sequences of A (excluding the neutral class) under
the equivalence relation of sequences being the same if they are cyclic rotations of each other.
CYCk(A) are the cycles formed from k-sequences of A.

Example. We can consider our previous examples in the light of these new constructions. Sym-
bolically, we have that permutations are SEQ(Z), urns are SET(Z), and cycles are CYC(Z).

Proposition 1.19. We have that

1. If A = B ? C, A(z) = B(z)C(z)

2. If A = SEQ(B), A(z) = 1
1−B(z)

3. If A = SET(B), A(z) = eB(z)

4. If A = CYC(B), A(z) = log( 1
1−B(z)

).

Proof.

1. Suppose A = B ? C. The number of relabelings of a pair of objects b and c are given by(|b|+|c|
|b|

)
. This is because the relabeling will use all the numbers from 1 to |b| + |c|, and

a relabeling is entirely determined by which numbers are chosen to label b because the
relative order of the numbers will fully define it. Thus we conclude

an =
∑

n1+n2=n

(
n

n1

)
bn1cn2

because we sum over all possible sizes of objects n1, n2, all possible objects with such
sizes, and all possible relabellings.

When multiplying EGFs, if a(z) = b(z)c(z), by expanding out the product and considering
the zn coefficient, we have an

n!
=
∑n

k=0
1
k!
bk

1
(n−k)!

cn−k. Multiplying by n!, we get an =∑n
k=0

(
n
k

)
bkcnk , which is exactly the relation between an and the sequences bn and cn in a

labeled product. Thus a(z) = b(z)c(z) if A = B ? C.

2. Let A = SEQ(B). SEQ is defined in terms of labeled products and disjoint sums, so which
we can convert to generating functions to get A(z) = 1 +B(z) +B(z)2 + · · · = 1

1−B(z)
by

summing geometric series.

3. Because our elements of the sequence are labeled, they are distinct, so we have a k! to
1 correspondence between sequences and sets of B (one for every permutation), so if
A = SETk(B), A(z) = 1

k!
B(z)k. Thus, we have that, if A = SET(B), A(z) = 1 + B(z) +

B(z)2

2!
+ B(z)3

3!
+ · · · = eB(z), as desired.

4. Similarly, we have a k to 1 correspondence between k-sequences and k cycles of B (one
for every cycle), so if A = CYCk(B), A(z) = 1

k
B(z)k. We also have, if A = CYC(B),

A(z) = B(z) + B(z)2

2
+ B(z)3

3
+ · · · = log( 1

1−B(z)
), as desired.
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This gives us a way to symbolically find the generating function of classes like urns, permu-
tations, and cycles without directly calculating the counting sequence.

Example. Another way of thinking about permutations is as being made up of disjoint cycles.

This can be represented as SET(CYC(Z)). Under this construction, the EGF is elog( 1
1−z ) = 1

1−z ,
which is what we found before, when considering permutations as SEQ(Z).

1.3 Examples

Example. Fibonacci numbers can be constructed the number of ways of representing n as the
sum of 1 and 2. We can thus consider SEQ(I{1,2}) which has counting sequence Fn+1. Because
I{1,2} has generating function z+z2, we have that the generating function for the Fn+1 is 1

1−z−z2
(or, shifting, the generating function for Fn is z

1−z−z2 ).
We can use this generating function to find the explicit formula for the Fibonacci numbers.

We can use partial fractions, to find

F (z) =
z

1− z − z2
=

1√
5

(
1

1− φz
− 1

1− ψz

)
where φ = 1+

√
5

2
and ψ = 1−

√
5

2
. Expanding 1

1−φz and 1
1−ψz as geometric series, we have that

F (z) = 1√
5

∑∞
n=0(φn − ψn)xn. Thus Fn = [zn]F (z) = 1√

5
(φn − ψn).

Example. The Catalan Numbers are generated by the class of rooted full binary trees with the
size of a tree being the number of internal nodes (the nodes which have children).

We can consider elements of the combinatorial class: they are either just a single external
node with size 0 (i.e. a neutral element) or made up of an internal root (a single structure of
size 1) with two trees (the two subtrees). We thus have C ∼= E+Z×C×C. By converting this
to generating functions, we have C(z) = 1 + zC(z)2. Which we can solve with the quadratic

formula to give C(z) = 1−
√

1−4z
2z

(the other root would have a 1
z

term).
We can use this formula to derive an explicit formula. Expanding with Newton’s generalized

binomial theorem, and simplifying, we have that

C(z) =
1

2z
− 1

2z

∞∑
k=0

(
1/2

k

)
(−4z)k

= − 1

2z

∞∑
k=1

(1/2)(−1/2)(−3/2) · · · (−k + 3/2)

k!
(−4)kzk

=
∞∑
k=1

(1)(3) · · · (2k − 3)2k−1

k!
zk−1

=
∞∑
k=0

(1)(3) · · · (2k − 1)2kk!

(k + 1)!k!
zk

=
∞∑
k=0

(2k)!

(k + 1)k!k!
zk,

so Cn = [zn]C(z) = 1
k+1

(2k)!
k!k!

= 1
k+1

(
2k
k

)
.
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Example. The combinatorial class T of rooted labeled trees is isomorphic to Z ?SET(T ) (a root
with a set of trees), so we have T (z) = zeT (z). We will be able to solve this later with the help
of the Lagrange Inversion formula.

Example. The combinatorial class of 2-regular graphs is an unordered collection of disjoint
undirected cycles. Furthermore, the cycles must be of size 3 or more, because cycles of size 1
and 2 are not 2-regular. The generating function for undirected cycles of length greater than 2
is half of that for directed cycles of length greater than 2, since you can choose two directions
for the cycle. We let UCY C>2 be the class of undirected cycles of length 3 or more. Note that
the counting sequence (and consequently generating function) of UCY C>2 is half of CYC>2

Thus this class can be represented as SET(UCY C>2(Z)). Thus the generating function is

e
1
2

(
log 1

1−z−z−
z2

2

)
=

1√
1− z

e−
z
2
− z

2

4 .

We will be able to approximate coefficients with Darboux’s theorem.

Example. Derangements are permutations with no cycles of size 1. We can thus construct

them as SET(CYC>1(Z)). The EGF is thus elog( 1
1−z )−z = e−z

1−z . Expanding out the generating
function, we find that

[zn]
e−z

1− z
= [zn]

(
1− z +

z2

2
− z3

6
+ · · ·

)
(1 + z + z2 + · · · ) =

n∑
i=0

(−1)i
1

n!
.

Thus the number of derangements of n is n!
(∑n

i=0(−1)i 1
n!

)
≈ n!

e

Example. Involutions are permutations with cycles of size 1 and 2. They can thus be constructed

as SET(CYC1,2(Z)). Thus their EGF is ez+
z2

2 . We will see how to asymptotically approximate
the coefficients with Hayman’s method.

Example. Permutations with no cycles of size at most q can be constructed as SET(CYC>q(Z)).
Thus the EGF is

e
∑
n>q

zn

n = elog 1
1−z−

∑
1≤n≤q

zn

n =
1

1− z
e−z+···+z

q/q.

We will see how to find the asymptotic value of the coefficients by analyzing poles.

Example. Stirling numbers of the first kind are permutations of n with k disjoint cycles, denoted

[nk]. We can consider it as SET(U×CYC(Z)), where U serves to count the cycles. The generating

function is thus S(u, z) = eu log( 1
1−z ) = ( 1

1−z )u with [nk] = n![uk][zn]S(u, z).
Bell numbers are the number of ways of partitioning the numbers from 1 to n into nonempty

subsets. It thus can be represented as SET(SET≥1(Z)). The generating function B(z) is thus
ee
z−1. Differentiating gives B′(z) = B(z)ez. Multiplying out the right hand side of the equality

and equating the zn coefficients gives Bn+1 =
∑n

k=0

(
n
k

)
Bk as a recurrence for the Bell numbers.

We can modify the combinatorial construction for the Bell numbers by counting the counting
the number of ways of partitioning n objects into k nonempty subsets; these are known as
Stirling numbers of the second kind and denoted {nk}. Letting U again count the size of a
partition, we find that this combinatorial class equals SET(U × SET≥1(Z)), for which the
generating function is S(u, z) = eu(ez−1), with {nk} = n![uk][zn]S(u, z).

6



2 Lagrange Inversion

Theorem 2.1. Let f(u) and φ(u) be formal power series in u, with φ(0) = 1. Then there is a
unique formal power series u = u(t) that satisfies u = tφ(u). Further, the value of f(u(t)) of f
at u(t), when expanded in a power series in t about t = 0, satisfies

[tn]{f(u(t))} =
1

n
[un−1]{f ′(u)φ(u)n}

Proof. We prove this for polynomials f and φ. This will imply it for the full formal power
series because discarding the upper terms with degree greater than n of the power series does
not affect our equation.

Consider t = u
φ(u)

. Since φ equals 1 at 0, it must be nonzero on some neighborhood of 0,

so that u
φ(u)

= u + O(u2). The derivative (with respect to u) is nonzero at 0, so t = u
φ(u)

must
have some inverse mapping on a neighborhood of 0, in which u can be expressed as an analytic
function in terms of t.

Because u = tφ(u), we have

1

n
[un−1]{f ′(u)φ(u)n} =

1

n
[un−1]

{
f ′(u)

(u
t

)n}
=

1

n
[u−1]

{f ′(u)

tn

}
.

We can use the residue theorem to find that this last expression equals 1
2πi

∫
C
f ′(u)
t(u)n

, with C a
small contour encircling the origin.

Because u is an analytic function of t, we are justified in making a change of variables from
u to t in the integral in question, giving us

1

n

1

2πi

∫
C

f ′(u)

t(u)n
du =

1

n

1

2πi

∫
C

f ′(u(t))u′(t)

tn
dt =

1

n
[tn−1]{f ′(u(t))u′(t)} = [tn]f(u(t)),

as desired.

Example. We previously showed the generating function for rooted labeled trees satisfies
T (z) = zeT (z). We use Lagrange Inversion with f(u) = u, t = z and φ(u) = eu, so that
T (z) = f(u(z)). Then

[zn]T (z) =
1

n
[un−1]enu =

1

n

nn−1

(n− 1)!
=
nn−1

n!
.

Consequently, there are nn−1 rooted labeled trees with n vertices. Furthermore, as there is an
n to 1 correspondence between rooted labeled trees and labeled trees, there are nn−2 labeled
trees.

3 Asymptotic Growth Rate: Poles

Theorem 3.1. (Growth rate theorem) Let f(z) =
∑
anz

n be analytic in some region containing
the origin, and let z0 be a singularity of smallest modulus not zero, and let ε > 0. Then for suf-

ficient large n we have |an| <
(

1
|z0| + ε

)n
, and for infinitely many n we have |an| >

(
1
|z0| − ε

)n
.
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Proof. It is well-known that the radius of convergence of a Taylor series is equal to the radius
of the largest open disc with the given center (in this case zero) on which the given function
is holomorphic. Thus, the radius of convergence of

∑∞
n=0 anz

n is is |z0|, and by the Cauchy-

Hadamard theorem we have 1
|z0| = lim supn→∞

n
√
|an|, which is equivalent to the desired result.

The main method of this section is to find a simple function with similar singularities of
the generating function, and use growth rate of said simple function as an estimate from the
growth rate theorem.

Let R be the minimum modulus such that f has a singularity of this modulus. Consider all
singularities on this circle. We first consider meromorphic functions.

Definition 3.2. If f is meromorphic and z0 is a pole of order r, then the Laurent expansion
in a punctured disk is f =

∑r
j=1 a−j(z− z0)−j +

∑∞
j=0 aj(z− z0)j. The Principle Part, denoted

by PP (f : z0) is the former sum.

For a meromorphic function f(z), near a pole z0, it turns out that f is well approximated
by the principal part of its Laurent expansion. We will use this fact to come up with an
approximation for the asymptotic behavior of the coefficients of f. Letting the singularities
with minimum modulus R be z0, . . . , zs, we have that since f − PP (f : z0) is analytic at z0,

h = f − PP (f : z0)− PP (f : z1)− · · · − PP (f : zs)

is analytic on all of |z| = R′, for some R′ > R.
So, by the growth rate theorem, the power series coefficients of h about the origin cannot

grow faster than
(

1
R′

+ ε
)n

for sufficiently large n. This means that if f =
∑∞

n=0 anx
n and if

g(z) =
∑s

k=0 PP (f ; zk) =
∑∞

n=0 bnx
n, then an = bn +O

((
1
R′

+ ε
)n)

as n→∞.
This brings us to the following theorem:

Theorem 3.3. Let f be meromorphic in a neighborhood containing the origin. Let R > 0 be
the modulus of the pole(s) z0, . . . , zl of smallest modulus. Let R′ > R be the modulus of the
pole(s) of f of next smallest modulus, and let ε > 0. Then

[zn]f(z) = [zn]
l∑

j=0

PP (f ; zj) +O

((
1

R′
+ ε

)n)
.

Proof. If we subtract PP (f ; z0) from f(z), then the resulting function g(z) is analytic at z0.
We claim that subtracting PP (f ; z1) from g is the same as subtracting PP (g; z1) from g, that
is, that PP (f − PP (f ; z0); z1) = PP (f ; z1).

To see this, note that PP (f−PP (f ; z0); z1) = PP (f ; z1)−PP (PP (f ; z0); z1), but the second
term on the right vanishes as PP (f ; z0) is analytic at z1. By induction, we can extend this to all
of f ’s poles of smallest modulus. The result then follows from the growth rate theorem, as we
have shown that subtracting from f(z) the sum of all of its principal parts of its singularities
of smallest modulus R yields a function that is analytic on a larger disk |z| < R′.

The following lemma gives us a means to practically calculate the asymptotics of these
principal parts.
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Lemma 3.4. We have PP (f : z0) =
∑

n≥0 z
n
∑r

j=1
(−1)ja−j

zn+j0

(
n+j−1
j−1

)
, where r is the order of the

pole at z0.

Proof. We calculate:

PP (f ; z0) =
r∑
j=1

a−j
(z − z0)j

=
r∑
j=1

(−1)ja−j

zj0(1− (z/z0))j

=
r∑
j=1

(−1)ja−j

zj0

∑
n≥0

(
n+ j − 1

j − 1

)
(z/z0)n

=
∑
n≥0

zn
r∑
j=1

(−1)ja−j

zn+j
0

(
n+ j − 1

j − 1

)

In other words, a pole of order r at z0 contributes
∑r

j=1
(−1)ja−j

zn+j0

(
n+j−1
j−1

)
to the coefficients

zn of f.

Example. Ordered Bell numbers.
We investigate the asymptotic behavior of the ordered bell numbers, which are defined as:

a set of n elements has
{
n
k

}
(ie. Stirling numbers of the second kind) into k classes. If we

pick one of these classes in particular, but do not care about the order of the elements within
the classes, then we see that [n] has k!

{
n
k

}
ordered partitions into k classes. The ordered bell

number b(n) is the total number of ordered partitions of [n], ie.
∑

k k!
{
n
k

}
.

We first derive an identity on the Stirling numbers of the second kind, which as stated are
the number of partitions of a set of n elements into k classes. For the set Ω of objects we take
the collection of all kn ways of arranging n distinguishable balls in k labeled boxes. Further,
such an arrangement will have property Pi if box i is empty. Then k!

{
n
k

}
is the number of

objects with no properties.
Let S be some set of properties. If S ⊆ N and there are N arrangement of balls in boxes

have at least the set S of properties. Then n counts the arrangements of n labeled balls into
just k−|S| labeled. boxes, because all of the boxes that are labeled by S must be empty. There
are clearly (k − |S|)n such arrangements. Hence, N = (k − |S|)n if |S| ≤ k, and 0 otherwise.

If we sum over all sets S of r properties, we obtain for r ≤ k, Nr =
(
k
r

)
(k−r)n, whose opsgf is

N(x) =
∑

0≤r≤k
(
k
r

)
(k− r)nxr. We can now invoke the sieve to find that the number of arrange-

ments that have exactly t empty cells is the coefficient of xt in N(x − 1). On the other hand,
the number of arrangements that have exactly t empty cells is

(
k
t

)
(k − t)!

{
n
k−t

}
= k!

t!

{
n
k−t

}
,

which results in the identity
∑

0≤r≤k
(
k
r

)
(k − r)n(x− 1)r = k!

∑
0≤t≤k

{
n
k−t

}
xt

t!
.

Now we can return to approximating the ordered bell numbers. We want to determine the
growth rate of {b(n)} as n grows large. We can multiply both sides of the identity for Stirling
numbers by e−y from 0 to ∞. This yields b̃(n) =

∑
r≥0

rn

2r+1 . Thus, the EGF of the ordered Bell

numbers is f(z) =
∑

n>0
b̃(n)
n!
zn = 1

2−ez .
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Luckily, this only has simple poles, at the points log 2±2kπi. The principle part at z0 = log 2
is (−1/2)/(z − log 2), which contributes 1

2(log 2)n+1 to the coefficients of zn. There are no other

singularities of f(z) with modulus log 2, so h(z) = f(z) − (−1/2)
z−log 2

is analytic in the larger

circle of radius | log 2 + 2πi|, which equals ρ =
√

(log 2)2 + 4π2, which is roughly 6.32. Thus,

the coefficients of h(z) are O((0.16)n). Thus, the ordered Bell numbers b̃(n) are of the form
b̃(n) = 1

2(log 2)n+1n! +O((0.16)nn!).
The result can be improved by taking more terms of the asymptotic exapnsion from the

principal parts of f(z) at its remaining poles, taken in increasing order of their absolute values.

Example. Permutations with no small cycles.
We found earlier that the EGF of the permutations on n elements with all cycles of length

greater than q is 1
1−ze

−z+···+zq/q. Let q be fixed, and fq(n) denote the number of such permuta-
tions on n elements.

Note that the only singularity of this function is a pole at z = 1 with principle part e−Hq

(1−z) ,
where Hq is the qth harmonic number.

In this case, the difference between the function and the its principal part at z = 1 is

h(z) = fq(z)− e−Hq

1− z
=
e−z+···+z

q/q − e−Hq
1− z

which is an entire function, as z = 1 is a zero of the function in the numerator. This means
that the estimate will be very accurate.

From the growth rate theorem, the n-th coefficient of h(z) is O(εn) as n → ∞ for every
ε > 0. This yields the estimate

f(n, q)

n!
= e−Hq +O(εn),

as n→∞.
The error term here is noticeably small, suggesting that the probability that a randomly

chosen permutation of order n having only cycles of length strictly greater than q, ie. f(n,q)
n!

is
actually very close to being independent of n, an interesting result.

4 Asymptotic Growth Rate: Algebraic singularities

Now we move on to consider algebraic singulaities of f, ie. the singularity z0 of f with smallest
modulus is a branch point: f(z) = (z0 − z)αg(z) for some non-integer real α, and g is analytic
at z0.

In this section, we derive Darboux’s lemma, which allows us to deduce asymptotics for
generating functions with algebraic singularities. It turns out that the process is very similar
to the case of meromorphic functions, but the proof is nontrivial.

By considering f(zz0) instead of f, we can assume WLOG that z0 = 1, so f is analytic in
the unit disk with a branch point at z = 1. Suppose that z0 = 1 is the only singularity of f on
some disk |z| < 1+ρ. We can expand g in a power series g(z) =

∑
k≥0 gk(1−z)k that converges

in a neighborhood of z = 1. Plugging this into our expression for f, we obtain the expansion
f(z) =

∑
k≥0 gk(1− z)k+α.

10



It turns out that, like the case of meromorphic functions, each successive term in the above
series generates the next term in the asymptotic exapansion of the coefficients of f. Furthermore,
the function g0(1− z)α has for its coefficient of zn, the main contribution to that coefficient of
f. To prove these results, and the following Darboux theorem, we proceed with a few lemmas.

Lemma 4.1. Let {an}, {bn} be two sequences that satisfy (a)an = O(n−γ) and (b)bn − O(θn)
where 0 < θ < 1. Then,

∑
k akbn−k = O(n−γ.

Proof. We first have

∣∣∣∣∣∣
∑

0≤k≤n/2

akbn−k

∣∣∣∣∣∣ ≤ { max
0≤k≤n/2

|ak|}{
∑

0≤k≤n/2

Cθn−k}

≤ maxC,Cn−γ{C ′θn/2}
≤ C ′′θ̃n

where (0 < θ̃ < 1).

Additionally, we have ∣∣∣∣∣∣
∑

n/2<k≤n

∣∣∣∣∣∣ ≤ { max
n/2<k≤n

|ak|}{
∑

n/2<k≤n

θn−k}

≤ C ′′′n−γ

proving the lemma.

Lemma 4.2. If β is a nonreal integer, then [zn](1− z)β ∼ n−β−1

Γ(−β)
.

Proof. We have

[zn](1− z)β =

(
β

n

)
(−1)n =

(
n− β − 1

n

)
=

(n− β − 1)!

n!(−β − 1)!
=

Γ(n− β)

Γ(−β)Γ(n+ 1)
.

By stirling’s formula, ie. Γ(n+ 1) ∼
(
n
e

)n√
2πn, the result easily follows.

Lemma 4.3. Let u(z) = (1 − z)γv(z), where v(z) is analytic in some disk |z| < 1 + ρ. Then,
[zn]u(z) = O(n−γ−1).

Proof. Apply lemma with an = [zn](1 − z)γ and bn = [zn]v(z). Since v is analytic in a disk
|z| < 1 + ρ, we have bn = O(θn), and the result follows from the second lemma.

We are now ready to prove Darboux’s Theorem:

Theorem 4.4. (Darboux): Let v(z) be analytic in some disk |z| < 1 + ρ, and suppose that in
a neighborhood of z = 1 it has the expansion v(z) =

∑
vj(1− z)j. For some noninteger real β,

we then have

[zn]{(1−z)βv(z)} = [zn]{
m∑
j=0

vj(1−z)β+j}+O(n−m−β−2) =
m∑
j=0

(
n− β − j − 1

n

)
+O(n−m−β−2).

11



Proof. We have

(1− z)βv(z)−
m∑
j=0

vj(1− z)β+j =
∑
j>m

vj(1− z)β+j = (1− z)β+m+1ṽ(z)

and the regions of analyticity of ṽ and v are the same. The result follows from the third
lemma.

Example. 2-regular graphs.

Recall that the EGF of the number of 2-regular graphs on n vertices is f(z) = e−z/2−z
2/4

√
1−z ,

which has a branch point at z = 1. Applying Darboux’s Lemma, we have β = −1/2 and
v(z) = exp(−z/2− z2/4). Let γ(n) denote the number of

Expanding this about z = 1 yields

e−z/2−z
2/4 = e−3/4 + e−3/4(1− z) +

1

4
e−3/4(1− z)2 + · · · ,

and from Darboux, this expansion leads to an asymptotic formula for the coefficients of f(z),
which are γ(n)/n!, where γ(n) is the number of 2-regular graphs of n vertices. Using m = 2 in
Darboux yields

γ(n)

n!
= e−3/4

(
n− 1/2

n

)
+ e−3/4

(
n− 3/2

n

)
+

1

4
e−3/4

(
n− 5/2

n

)
+O(n−7/2).

This can be further simplified with the asymptotic exansion of the binomial coefficient, that(
n−α−1

n

)
is roughly equal to n−α−1

Γ(−α)
·
(

1 + α(α+1)
2n

+ α(α+1)(α+2)(3α+1)
24n2

)
,

and substituting this into our expresion yields

γ(n) ≈ n!e−3/4

√
nπ
{1− 5

8n
+

1

128n2
+ · · · }.

Darboux’s method can be extended to when there are more branch points on the circle of
convergence; the result is due to Szego.

5 Hayman’s Method

We now introduce Hayman’s Method, which applies to the case where the generating function
in question is entire, that is, it has no singularities to which we can apply the aforementioned
analyses. The motivating example of this section will be the exponential ez. In fact, applying
Hayman’s Method to obtain the asymptotic growth rate of its coefficients will precisely yield
Stirling’s Formula.

We first consider a simple yet suboptimal approach. By Cauchy’s Integral Formula, we have

1

n!
=

1

2πi

∫
Γ

ez

zn+1
dz,

12



where Γ is some path enclosing the origin, which we let be a circle with radius r. Applying the
triangle and ML inequalities then yields

1

n!
≤ 1

2π

∫
Γ

∣∣∣∣ezdzzn+1

∣∣∣∣
≤ 1

2π
· 2πr ·max

|z|=r

|ez|
|z|n+1

=
er

rn
.

ez has no singularities, so r can be chosen arbitrarily. In particular, we can choose it to minimize
this upper bound. To do this, we set the derivative of er

rn
to 0 and solve for r:

d

dr

er

rn
=
er(rn − nrn−1)

r2n
= 0

=⇒ r = n

=⇒ min
r≥0

er

rn
=
en

nn
.

Hence, the bound obtained from this argument is 1
n!
≤ ( e

n
)n. Comparing to Stirling’s Formula,

1
n!
∼ 1√

2πn
( e
n
)n, we see that this simple argument gives the correct exponential growth, though

we are off by a factor of 1√
2πn

.

Definition 5.1. Let f(z) =
∑

n≥0 anz
n be a function converging within some radius R, with

0 < R <∞. Letting h(r) = log(f(r)), define a(r) := rh′(r) and b(r) := r2h′′(r) + rh′(r). Then
we say f(z) is H-admissible if:

1. f(r) > 0 on some interval (R0, R).

2. There exists some function δ(r) defined on (R0, R) such that 0 ≤ δ ≤ π and such that as
r → R uniformly for |θ| ≤ δ(r),

f(reiθ) ∼ f(r)eiθa(r)− 1
2
θ2b(r).

3. As r → R, uniformly for δ(r) ≤ |θ| < π,

f(reiθ) = o

(
f(r)√
b(r)

)

4. limr→R b(r) =∞.

Example. f(z) = ez is admissible with δ(r) = r−2/5:

1. This condition is clearly satisfied because ex > 0 for all x ∈ R.

2. We let R = ∞, and in order that δ(r) = r−2/5 < π for all r ∈ (R0, R) be satisfied,
we let R0 = 1. Since a(r) and b(r) are both r, we wish to show that for all ε, there

13



exists an X such that for all r > X, for all |θ| ≤ r−2/5,
∣∣∣ ere

iθ

er(1+iθ−θ2/2)
− 1
∣∣∣ < ε. We let

X = (3 log(1 + ε))−5 and verify that this choice works:∣∣∣ ere
iθ

er(1+iθ−θ2/2)
− 1
∣∣∣ =

∣∣er((1+iθ−θ2/2−iθ3/3!+θ4/4!+... )−(1+iθ−θ2/2)) − 1
∣∣

=
∣∣er(−iθ3/3!+θ4/4!+... ) − 1

∣∣
=

∣∣∣∣ ∞∑
k=1

(r(−iθ3/3! + θ4/4! + . . . ))k

k!

∣∣∣∣
≤

∞∑
k=1

|r(−iθ3/3! + θ4/4! + . . . )|k

k!

= er|−iθ
3/3!+θ4/4!+...| − 1 ≤ er|−iθ

3/6+θ4/24| − 1

≤ er(|θ|
3/6+|θ|4/24) − 1 ≤ er|θ|

3/3 − 1 (because |θ| ≤ 1)

≤ er
−1/5/3 − 1 < ε,

as desired.

3. We calculate: ∣∣∣∣ereiθ√rer

∣∣∣∣ = erRe(eiθ−1)
√
r

= er(cos θ−1)
√
r,

which tends to 0 for any nonzero θ, because it is well-known that the growth rate of
exponentials is larger than that of polynomials with real exponents.

4. Clearly limr→∞ r =∞.

For each of the below results, f =
∑

n≥0 anz
n is an admissible function with R, a(r), b(r)

and δ(r) as in its definition above.

Lemma 5.2. limr→R δ(r)
2b(r) =∞.

Proof. We have:

|f(reiδ)|
f(r)

∼
∣∣eiδ(r)a(r)− 1

2
δ(r)2b(r)

∣∣ = e−δ(r)
2b(r)/2, (by Condition 2)

|f(reiδ)|
f(r)

= o

(
1√
b(r)

)
(by Condition 3)

= o(1) (by Condition 4)

=⇒ lim
r→∞

e−δ(r)
2b(r)/2 = 0 =⇒ lim

r→∞
δ(r)2b(r) =∞,

as desired.

Lemma 5.3. We have

anr
n =

f(r)√
2πb(r)

(
exp

(
− (a(r)− n)2

2b(r)

)
+ o(1)

)
14



Proof. We prove this via an estimation of Cauchy’s Integral

anr
n =

1

n!

dn

dzn
f(rz)|z=0

=
1

2πi

∫
|z|=1

f(rz)

zn+1
dz

=
1

2π

∫ 2π

0

f(reiθ)

einθ
dθ

=
1

2π

(∫ δ(r)

−δ(r)
+

∫ 2π−δ(r)

δ(r)

)
f(reiθ)

einθ
dθ

Applying the ML inequality and then Condition 4 of admissibility yields∣∣∣∣ ∫ 2π−δ(r)

δ(r)

f(reiθ)

einθ
dθ

∣∣∣∣ ≤ 2(π − δ(r)) max
δ(r)≤θ≤2π−δ(r)

|f(reiθ)| = o(f(r))√
b(r)

uniformly in n as r → R. As for the second integral, from Condition 2 of admissibility, we have∫ δ(r)

−δ(r)

f(reiθ)

einθ
dθ = f(r)

∫ δ(r)

−δ(r)
(1 + o(1)) exp

(
iθ(a(r)− n)− 1

2
θ2b(r)

)
dθ

= f(r)

(∫ δ(r)

−δ(r)
exp

(
iθ(a(r)− n)− 1

2
θ2b(r)

)
dθ + o

(∫ ∞
∞

exp

(
− 1

2
b(r)θ2

)
dθ

))

= f(r)

(∫ δ(r)

−δ(r)
exp

(
iθ(a(r)− n)− 1

2
θ2b(r)

)
dθ + o

(
1√
b(r)

))

We approximate this last integral as∫ δ(r)

−δ(r)
exp

(
iθ(a(r)− n)− 1

2
θ2b(r)

)
dθ

=

∫ δ(r)

−δ(r)
exp

(
− 1

2

(
θ
√
b(r)− ia(r)− n√

b(r)

)2

− (a(r)− n)2

2b(r)

)
dθ

=
1√
b(r)

exp

(
− (a(r)− n)2

2b(r)

) δ(r)
√
b(r)−ia(r)−n√

b(r)∫
−δ(r)
√
b(r)−ia(r)−n√

b(r)

e−t
2/2dt

=
1√
b(r)

exp

(
− (a(r)− n)2

2b(r)

) δ(r)
√
b(r)∫

−δ(r)
√
b(r)

e−t
2/2dt (by Cauchy’s Integral Theorem)

=

√
2π

b(r)
exp

(
− (a(r)− n)2

2b(r)

)
(1 + o(1)) (By Lemma 5.2).
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Finally, combining each of these estimates gives us

anr
n =

f(r)

2π

√
2π

b(r)
exp

(
− (a(r)− n)2

2b(r)

)
(1 + o(1)) +

o(f(r))√
b(r)

=
f(r)√
2πb(r)

exp

(
− (a(r)− n)2

2b(r)

)
+

f(r)√
2πb(r)

exp

(
− (a(r)− n)2

2b(r)

)
o(1) +

f(r)√
2πb(r)

o(1)

=
f(r)√
2πb(r)

exp

(
− (a(r)− n)2

2b(r)

)
+

f(r)√
2πb(r)

o(1)

(
exp

(
− (a(r)− n)2

2b(r)

)
+ 1

)
=

f(r)√
2πb(r)

(
exp

(
− (a(r)− n)2

2b(r)

)
+ o(1)

)
,

where the last equality follows from noting that exp
(
− (a(r)−n)2

2b(r)

)
cannot approach infinity as

r → R, because a(r) and b(r) are nonzero for r ∈ (R0, R).

Lemma 5.4. There exists an R1 < R such that a(r) is strictly monotonically increasing in
(R1, R). Furthermore, we have limr→R a(r) =∞.

Proof. The former statement follows immediately from the fact that b(r) = ra′(r) → ∞ as
r → R. As for the latter statement, substituting n = −1 into Lemma 5.3 yields

0 =f(r)

(
exp

(
− (a(r) + 1)2

2b(r)

)
+ o(1)

)
=⇒ exp

(
− (a(r) + 1)2

2b(r)

)
= o(1)

=⇒ lim
r→R

(a(r) + 1)2

2b(r)
=∞,

which, since limr→R b(r) =∞, implies the desired result.

Lemma 5.4 shows that, for sufficiently large integers n, the equation a(r) = n has a unique
solution rn which satisfies rn → R as n → ∞. This observation, in light of Lemma 5.3, leads
us to the main result of this section.

Theorem 5.5. Let rn be the positive real root of the equation a(rn) = n, for n ∈ Z+. Then

an ∼
f(rn)

rnn
√

2πb(rn)
as n→ +∞.

Example. Since we have shown that f(z) = ez is admissible and that a(r) = b(r) = r, Stirling’s

Formula 1
n!
∼ 1√

2πn

(
e
n

)n
follows immediately from substituting rn = n.

Remark 5.6. Notice that once we know that a certain function is admissible, applying Theorem
5.5 is very straightforward. The “hard work” is in showing that a function is in fact admissible.
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6 Saddle point method

The saddle point method helps to find good approximations to integrals of the form∫
γ(t)

F (z, t)dz,

where t is a real parameter, and F is analytic with respect to z in some domain G(t) ∈ C
containing the path γ(t). As we will see below, such integrals arise from applying Cauchy’s
Integral Formula to the coefficients of an EGF.

Before diving into an example, we provide a brief outline of the Saddle Point Method:

1. Substitute the path of integration with another one, call it σ(t), without changing the
value of the integral (i.e. without crossing singular points) such that along σ(t), |F (z, t)|
has some sharp peaks and is small everywhere else.

2. Apply the Method of Laplace:

(a) Choose neighborhoods of these peaks large enough that the main contribution to the
value of the integral is being captured,

(b) In these neighborhoods, substitute the integrand with simpler functions.

(c) Asymptotically estimate the resulting integrals.

Remark 6.1. The name “saddle point method” comes from the way of finding sharp peaks when
choosing an appropriate path: By the Maximum Modulus Principle, |F (z, t)| does not have any
maxima or minima other than zeroes in the interior of G(t) (the latter of which comes from
applying the Principle to 1

F (z,t)
). Thus, the only points where d

dz
|F (z, t)| = 0 and F (z, t) 6= 0

are saddle points.

Suppose that ζ ∈ G(t) is a saddle point of F (z) = F (z, t), that is, F (ζ) 6= 0, F ′(ζ) = · · · =
F (k−1)(ζ) = 0 and F (k)(ζ) 6= 0 for some k ≥ 2. Furthermore, suppose that k = 2, so that, for
|z − ζ| small enough, the function logF (z) can be expanded as

logF (z) = logF (ζ) +
F ′′(ζ)

F (ζ)

(z − ζ)2

2
+O((z − ζ)3).

Since |F (z)| = e< logF (z), |F (z)| is of fastest decrease for the same z that < logF (z) is of fastest
decrease. It follows that, since

< logF (z)−< logF (ζ) = <
(
F ′′(ζ)

F (ζ)

(z − ζ)2

2

)
+O((z − ζ)3)

is minimized when (z−ζ)2
2

= −F ′′(ζ)
F (ζ)

, or arg(z − ζ) = ±1
2

(
π − arg F ′′(ζ)

F (ζ)

)
, |F (z)| is of fastest

decrease for

z = ζ + r exp

(
i

2

(
π − arg

F ′′(ζ)

F (ζ)

))
,

with r ∈ R. This line is called the saddle point’s axis or direction of steepest descent. Thus, for
suitable functions, the path σ in Step 1 should be chosen such that the highest points of |F (z)|
along σ are also saddle points of |F (z)|, and in small neighborhoods of such a saddle point, σ
approximates its axis.
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Example. We seek to estimate the number of involutions of length n as n → ∞. As shown in
the sixth example of section 1.3, the EGF counting these involutions is

F (z) =
∞∑
n=0

Fn
zn

n!
= ez+z

2/2.

The first step in our asymptotic analysis is to apply the residue theorem, which yields

Fn
n!

=
1

2πi

∮
ez+z

2/2

zn+1
dz,

where the path of integration encircles the origin exactly once, counterclockwise. We set the
derivative of the integrand to 0 to determine the saddle points:

d

dz

ez+z
2/2

zn+1
=

d

dz
exp

(
z +

z2

2
− (n+ 1) log z

)
= exp

(
z +

z2

2
− (n+ 1) log z

)(
1 + z − n+ 1

z

)
= 0

=⇒ z2 + z = n+ 1.

Thus, there are two saddle points, namely,

−1

2
±
√

5

4
+ n = −1

2
±
√
n
(

1 +
5

8
n−1 +O(n−2)

)
.

It will turn out that we only need to work with one of these saddle points; let us therefore

(arbitrarily) consider the saddle point at ζn = −1
2
+
√

5
4

+ n. Letting h(z) = z+ z2

2
−(n+1) log z

be the logarithm of the integrand, the power series expansion of h centered in ζn is given by

h(z) = h(ζn) +

(
1 +

n+ 1

ζ2
n

)
(z − ζn)2

2
+
∞∑
k=3

(−1)k
n+ 1

k

(
z − ζn
ζn

)k
, (6.1)

which converges for |z − ζn| < ζn. Because the coefficient of (z − ζ)2 is real, the axis of the
saddle point ζn is perpendicular to the real line. We therefore show that the path γ = γ1 + γ2

given by

γ1 = {z : z = ζn + it,−δn ≤ t ≤ δn}
γ2 = {z : |z|2 = ζ2

n + δ2
n, arg(ζn + iδn) ≤ arg(z) ≤ 2π − arg(ζn + iδn)},

with δn ∈ R to be determined, can be used to estimate the integral in question. Specifically, we
seek to do this by replacing

∫
γ1
eh(z) with a sufficiently well-approximating complete Gaussian

integral and showing that
∫
γ2
eh(z) tends to 0 as n→∞. In order to successfully do the former,

δn must be chosen such that for z ∈ γ1, we have

1. h(z) ∼ h(ζn) + h′′(ζn)(z − ζn)2, and

2. h′′(ζn)δ2
n →∞
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as n→∞. The last sum of (6.1) can be rewritten as −(n + 1)
(
z−ζn
ζn

)3∑∞
k=0

(−1)k

k+3

(
z−ζn
ζn

)k
, and

since ζn ∼
√
n, we have (n + 1)(z − ζn)3ζ−3

n ∼ (n−1/2 + n−3/2)(z − ζn)3. So, the first condition
is satisfied if δ is chosen small enough so that

δ3 = o(
√
n) as n→∞. (6.2)

The quantity h′′(ζn) = 1 + n+1
ζ2n

tends to 2 as n→∞, because ζ2
n ∼ n. Thus, in order to satisfy

the second condition, δ has to be chosen such that

δ2 →∞ as n→∞. (6.3)

We will use δ = n1/8, since this choice satisfies both (6.2) and (6.3). First, let us show that the
integral over γ2 vanishes as n→∞. For z ∈ γ2, we have

|eh(z)| = e<h(z) ≤ exp

(
ζn +

ζ2
n

2
− (n+ 1) log ζn

)
= exp

(
(n+ 1)(1− log ζn)− ζ2

n

2

)
(Recalling n+ 1 = ζ2

n + ζn)

=

(
e

ζn

)n+1

e−ζ
2
n/2.

Applying the ML inequality to the integral over γ2 then yields∣∣∣∣ ∫
γ2

eh(z) dz

∣∣∣∣ ≤ 2π
√
ζ2
n + δ2

(
e

ζn

)n+1

e−ζ
2
n/2

= 2π

√
1 +

(
δ

ζn

)2(
e

ζn

)n
e−ζ

2
n/2+1,

which indeed tends to zero as n→∞.
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For z ∈ γ1, we have

1

2πi

∫
γ1

eh(z)dz =
1

2π

∫ δ

−δ
eh(ζn+it) dt

=
1

2π

∫ δ

−δ
eh(ζn)−h′′(ζn)t2/2(1 +O(nδ3ζ−3

n )) dt (since eO(z) = 1 +O(z))

=
eh(ζn)(1 +O(n−1/8))

2π
√
h′′(ζn)

δ
√
h′′(ζn)∫

−δ
√
h′′(ζn)

e−u
2/2 du

(
u =

√
h′′(ζn)t

)

=
eh(ζn)(1 +O(n−1/8))

2π
√
h′′(ζn)

(∫ ∞
−∞

e−u
2/2 +O

(∫ ∞
δ

e−u
2/2 du

))
(Since

√
h′′(ζn)→

√
2 > 1)

=
eh(ζn)(1 +O(n−1/8))

2π
√
h′′(ζn)

(∫ ∞
−∞

e−u
2/2 +O

(∫ ∞
δ

−ue−u2/2 du
))

=
eh(ζn)(1 +O(n−1/8))

2π
√
h′′(ζn)

(∫ ∞
−∞

e−u
2/2 +O

(
e−δ

2/2
))

=
eh(ζn)√
2πh′′(ζn)

(
1 +O(n−1/8)

)
.

Since ζ2
n = n−

√
n+ 3

2
+O(n−1/2) and since

log ζn+1
n = (n+ 1) log

(√
n

(
1− 1

2
√
n

+
5

8n
+O(n−2)

))
= (n+ 1) log

√
n− (n+ 1)

(
1

2
√
n
− 5

8n
+O(n−2) +

1

2

(
1

2
√
n
− 5

8n
+O(n−2)

)2

+O(n−3/2)

)
= (n+ 1) log

√
n− (n+ 1)

(
1

2
√
n
− 5

8n
+O(n−2) +

1

2

(
1

4n
+O(n−3/2)

))
= (n+ 1) log

√
n−

(√
n

2
− 1

2
+O(n−1/2)

)
,

we have

eh(ζn) = eζn+ζ2n/2 ζ−(n+1)
n =

exp
(
n/2 +

√
n/2 + 1/4 +O(n−1/2)

)
n(n+1)/2 exp

(
−
√
n/2 + 1/2 +O(n−1/2)

)
=

1
√
n
n+1 exp

(
n

2
+
√
n− 1

4

)
(1 +O(n−1/2)).

Combining this with the above result gives us

Fn
n!
∼ eh(ζn)√

2πh′′(ζn)
∼ 1

2
√
πnn+1

exp

(
n

2
+
√
n− 1

4

)
.

Finally, using Stirling’s formula n! ∼
√

2πn
(
n
e

)n
, we obtain

Fn ∼
nn/2√

2
exp

(
n

2
+
√
n− 1

4

)
as n→∞.
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