
CLASSIFICATION OF FATOU COMPONENTS

TAE KYU KIM

1. Introduction

We build up the machinery necessary to state and prove the Fatou component classification
theorem, following Dozier’s 2012 senior thesis on this topic [Doz12]. Similar to Dozier’s paper,
we introduce the topic in the following order:

(1) Hyperbolic geometry. We define Poincaré metrics on D and H, the essentially
unique metrics on D and H that preserve angles with respect to every automorphism
on D and H. We also find geodesics on D and H with respect to the Poincaré metrics.

(2) Uniformization. Using hyperbolic geometry, we show that most open subsets of
C have universal cover isomorphic to the disk. These subsets are named hyperbolic
surfaces.

(3) Properties of hyperbolic surfaces. We derive several topological properties of
hyperbolic surfaces from the Poincaré metrics, define normal families of holomorphic
maps, and prove Montel’s theorem that gives a sufficient condition for normality.

(4) Classification of maps on hyperbolic surfaces. We prove the Schwarz-Pick
lemma for hyperbolic surfaces (an extension of the Schwarz lemma on the disk) to
show holomorphic maps are distance non-increasing with respect to the Poincaré
metric. Then, we show that a holomorphic self-map on a hyperbolic surface can be
classified into four cases: Attracting, Escape, Finite Order, and Irrational Rotation.

(5) Fatou and Julia sets. We define Fatou and Julia sets with normal families and
prove several key results concerning the dynamics near fixed points.

(6) Fatou component classification theorem. Using the “classification of maps on
hyperbolic surfaces” and lemmas from “Fatou and Julia sets,” we prove that Fatou
components can be classified into five classes: Superattracting, Geometrically Attract-
ing, Parabolic, Siegal Disk, and Herman Ring.

(7) Further extensions. Finally, we conclude the paper with a discussion on other
results on the topic of Fatou components that were too technical or advanced to be
covered in this paper.

The tools we develop from hyperbolic geometry are not only useful in proving the uni-
formization theorem but imperative for the Schwarz-Pick lemma, which states that holo-
morphic self-maps on hyperbolic surfaces are distance non-increasing. This structure on
holomorphic maps on Ĉ gives rise to a precise description of the possible dynamics on hyper-
bolic surfaces. This result translates to our theorem on Fatou components, after developing
the appropriate theory on Fatou and Julia sets and the dynamics related to fixed points of
holomorphic maps.
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2. Notation

• Ĉ = C ∪ {∞} is the Riemann sphere
• H = {z ∈ C : Im(z) > 0} is the upper half-plane
• Dr = {z ∈ C : |z| < r} is the open disk of radius r
• D = D1 = {z ∈ C : |z| < 1} is the open disk of radius 1
• C∗ = C \ {0} is the punctured complex plane
• D∗ = D \ {0} is the punctured unit disk
• f ◦k = f ◦ · · · ◦ f is the kth iterate of f where f : S → S is a function from some set
S to itself. When k = 0, f ◦k is the identity function on S
• AutU is the (conformal) automorphism group of U . For this paper, U is always an

open subset of Ĉ.
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3. Hyperbolic Geometry

3.1. Metrics on Manifolds. To specify a geometry (some additional structure like cur-
vature) on a smooth manifold M , we need a notion of distance. We do this by specifying
a Riemannian metric which consists of a positive, definite inner product on each tangent
space so that the inner products vary smoothly. The inner product induces a metric in the
following way:

d(x, y) = ‖x− y‖ =
√
〈x− y, x− y〉.

The manifolds that we will be working with have two real dimensions, and so we can more
simply write the metric at a point z = x+ iy as

(3.1) ds2 = a11 dx
2 + 2a12 dx dy + a22 dy

2

where [aij] is a positive-definite matrix that depends smoothly on the point z. We say that
the metric is conformal if it is invariant under local rotations i.e., the length of the tangent
vector is unchanged by a rotation about that point.

In particular, a conformal metric preserves length under a π/2 rotation. Thus, the metric
on 〈dx, dy〉 equals the metric on 〈− dy, dx〉, the second of which is equal to

(3.2)
(
dsπ/2

)2
= a11 dy

2 − 2a12 dx dy + a22 dx
2.

Comparing (3.1) and (3.2), we find a11 = a22 and a12 = 0. Then, we may write

ds = γ(z)|dz|

where γ(z) is a smoothly varying function of z (note that γ2 = a11 = a12). Since ds2 is
independent of the direction of dz, we have obtained the general form for a conformal metric
on a smooth manifold with 2 real dimensions.

Pullbacks are another another way to obtain a (not-necessarily conformal) metric given a
metric and a holomorphic map.

Definition 3.1 (Pullback of metric). A holomorphic map f : S1 → S2 of Riemann surfaces
and a conformal metric ds = γ(z)|dz| on S2 together induce a metric f ∗(ds) on S1, the
pullback of γ along f , by

f ∗(ds) = γ(f(z))|df(z)| = γ(f(z)) · |f ′(z)||dz|.

Intuitively, we can measure distances between two points in S1 by mapping them to two
points S2 using f , then reading off their distances in S2.

We care about metrics that are invariant along conformal automorphisms.

Definition 3.2 (Conformally invariant). A conformal metric ds = γ(z)|dz| is conformally
invariant if for every f ∈ Aut(S), the induced metric is exactly the original metric ds =
f ∗(ds). That is,

γ(z)|dz| = γ(f(z)) · |f ′(z)||dz|.

In the subsequent subsections, we will find conformally invariant metrics for the disk and
the half-plane and show that there is a unique conformally invariant metric (up to constant
scaling) for each subset of C.
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3.2. Disk and Half-plane. We are primarily interested in studying metrics on the disk
due to Theorems 3.3 and 4.2, which state that any nonzero open subset of Ĉ is conformally
isomorphic to some copies of D, C, or Ĉ. We also study the half-plane H since it is conformally
isomorphic to D but sometimes more convenient to work with.

Theorem 3.3 (Riemann Mapping theorem). Any proper open subset of C that is simply
connected is conformally isomorphic to the unit disk D.

Proof. See Theorem 1.3 of Chapter 12 of the Complex Analysis book. �

Example. For the proper open subset H ⊂ C, the conformal isomorphism D→ H is given by

z 7→ i · 1 + z

1− z
.

The following two lemmas classify the conformal automorphisms on D. Note that for
Proposition 3.5, conformal automorphisms on D are exactly the holomorphic functions with
nonzero derivatives on D.

Lemma 3.4 (Schwarz). Let f : D → D be a holomorphic function with f(0) = 0. Then
|f(z)| ≤ |z| for all z and |f ′(0)| ≤ 1. If equality holds in any of these expressions, then f is
a conformal automorphism given by f(z) = eiθz for some θ ∈ [0, 2π).

Proof. See Section 2 of Chapter 14 of the Complex Analysis book. �

Proposition 3.5. A map f belongs to Aut(D) if and only if it can be written as a Blaschke
factor

Ba,θ(z) = eiθ
z − a
āz − 1

where a ∈ D and θ ∈ [0, 2π). We adopt the notation Ba = Ba,0.

Proof. In Problem 24 of Chapter 1 of the Complex Analysis book, we showed that the
Blaschke factor is a bijective function from D to itself. To show that the map is conformal,
we check that the derivative is never zero.

d

dz
Ba,θ(z) =

d

dz
eiθ

z − a
āz − 1

= eiθ
(āz − 1)− (z − a)ā

(āz − 1)2

= eiθ
aā− 1

(āz − 1)2
.

Since we chose a to have aā < 1, the numerator is nonzero, and thus the Blaschke factor is
a conformal automorphism.

Conversely, suppose f ∈ Aut(D). There exists some a ∈ D such that f(a) = 0. Then
g = f ◦ Ba is an automorphism with g(0) = 0. Let h = g−1, and taking derivatives of
g(h(z)) = z and plugging in z = 0 gives g′(0)h′(0) = 1. By the Schwarz lemma, |g′(0)| ≤ 1
and |h′(0)| ≤ 1, which implies |g′(0)| = |h′(0)| = 1; hence, g(z) = eiθz for some θ. So
f = g ◦B−1a = eiθB−1a , and f is a Blaschke factor as desired. �

Now we classify the automorphisms on H.
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Proposition 3.6. A map f belongs to Aut(H) if and only it can be written as f(z) = az+b
cz+d

with ad− bc = 1 and a, b, c, d ∈ R. It follows that Aut(H) ∼= PSL2(R), the projective linear
group of 2× 2 matrices with real entries and determinant 1.

Proof. This can be computed directly from Proposition 3.5 and the conformal map f : D→ H
given by

f(z) = i · 1 + z

1− z
, f−1(z) =

z − i
z + i

.

For a clean proof using matrices, see Section 6 of Shurman’s lecture notes for MATH 311
[Shu]. �

Now with our classification of Aut(D) and Aut(H), we can find the conformally invariant
metrics on D and H. The derivation is simplest for H.

Proposition 3.7. There is a unique (up to multiplication by a positive constant) conformally
invariant metric on H, given by

ds =
|dz|

Im(z)
.

Proof. Consider the pullback of ds = γ(z)|dz| through automorphisms of the form g(z) =
az + b where a, b ∈ R and a > 0. Plugging into the equation from Definition 3.2, we have

γ(z)|dz| = γ(az + b) · a|dz|.

Setting z = i gives γ(ai + b) = γ(i)
a

. We may let γ(i) = 1 since we will regard metrics
equivalent up to scaling by a positive factor. Thus, for z = ai+ b, we get

ds = γ(z)|dz| = |dz|
Im(z)

.

Now, we must show that this metric is actually invariant over all f ∈ Aut(H). We show
that for a given point w ∈ H, the metric and its pullback along f agree at w. Because the
group of maps z 7→ az+ b with a, b ∈ R acts transitively on H (or by straight computation),
there is a map g(z) = az + b such that h = g−1 ◦ f fixes w. By the previous part of the
proof, the metric is invariant over the pullback along g.

To show that the metric is invariant over the pullback along h, transform h : H → H
to the disk to obtain the corresponding h̃ : D → D. Since h̃ is holomorphic with a fixed
point w̃, the Schwarz lemma |h̃′(w̃)| = 1. By the chain rule, it follows that |h(w)| = 1, so
by Definition 3.2, the pullback along h preserves the metric. Finally, by the chain rule, the
pullback along f = g ◦ h preserves the metric as desired. �

Similarly there is a unique conformally invariant metric on D.

Proposition 3.8. There is a unique (up to multiplication by a positive constant) conformally
invariant metric on D, given by

ds =
|dz|

1− |z|2
.

Proof. We leave the proof as an exercise. It may be helpful to remember that the conformal
map D→ H is

z 7→ i ◦ 1 + z

1− z
.

�
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Figure 1. Assorted Geodesics of D

Figure 2. Geodesics of H1

These metrics on simply connected domains are called Poincaré metrics, and for the re-
mainder of the paper, we will assume that the Poincaré metric is being used unless otherwise
stated.

3.3. Geodesics. Any metric ds on U naturally gives rise to a distance function dU defined
by

dU(x, y) = inf
γ

ˆ
γ

ds

where we take the infimum over all piecewise-smooth paths γ with endpoints at x and y.

Definition 3.9 (Isometry). A map that preserves this notion of distance is said to be an
isometry for the metric.

Definition 3.10 (Geodesic). A geodesic segment in U is a path that is locally the shortest
path between two points. This is the path γ in the definition of the distance function that
gives the minimum path integral

´
γ
ds between the two endpoints. We call a geodesic a

geodesic line if it is maximal i.e., there is no other geodesic of which it is a proper subset.

Intuitively, if an ant were to walk along a “straight line” according to the geometry defined
by the metric, then its path would be a geodesic line. Some geodesics of D and H are shown
in Figures 1 and 2.

We specialize to the case of U = H and D.

Proposition 3.11 (Geodesics in H). The geodesic lines of H in its Poincaré metric consists
of circles/lines that are orthogonal to ∂H. That is, they are circular arcs that intersect the
real axis orthogonally at two points, as well lines orthogonal to the real axis.

Proposition 3.12 (Geodesics in D). The geodesic lines of D in its Poincaré metric consists
of circles/lines that are orthogonal to ∂D. That is, they are circular arcs that intersect ∂D
orthogonally at two points, as well diameters of ∂D.

1https://thatsmaths.com/2013/10/11/poincares-half-plane-model/

https://thatsmaths.com/2013/10/11/poincares-half-plane-model/
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Proof. We sketch the proof for H; the full proof can be found in Dozier’s paper [Doz12].
Given two points w1, w2 ∈ H, we may transform them to i and ki for some real k > 0

by an automorphism f ∈ Aut(H). Then, the geodesic line through i and ki is the vertical
ray iR+ and the geodesic line through w1 and w2 is f−1(iR+) since f and f−1 are isometries
with respect to the Poincaré metric. Moreover, f is a Mobius transformation which takes
circles/lines to circles/lines, so the desired geodesic through w1 and w2 is part of a circle or
line. Since angles are preserved by conformal isometries, the geodesic remains orthogonal to
the real axis during the transformation.

For D, we transform the circular/linear geodesics of H to circles/lines on D, which remain
orthogonal to the boundary ∂D. �

Example. We can explicitly find the distance along a circular geodesic centered at 0 for H
without much trouble. Our circle is parameterized by z = reit where r > 0, t ∈ [a, b], and
0 < a < b < π.

We directly compute:

L =

ˆ
ds

=

ˆ
1

Im(z)
|dz|

=

ˆ b

a

1

r sin t
· r dt

=

ˆ b

a

csc t dt

= [− log|csc t+ cot t|]ba .

For instance, the Poincaré distance between −1 + i and 1 + i is

dH(−1 + i, 1 + i) = − log

∣∣∣∣csc
3π

4
+ cot

3π

4

∣∣∣∣+ log
∣∣∣csc

π

4
+ cot

π

4

∣∣∣
≈ 1.763.

Example. We can integrate the metric on D from 0 to a boundary point of D to obtain the
distance function

dD(0, z) =
1

2
log

1 + |z|
1− |z|

.

Notice that when z = 0, the distance is 0, and as |z| → 1, the distance goes to ∞.

4. Uniformization

Uniformization allows us to adapt the hyperbolic geometry of D to a variety of spaces.
First, we define covering spaces using the wording given in the Complex Analysis book to
avoid introducing new terminology from topology.

Definition 4.1 (Covering space). Let U, V ⊂ Ĉ be two open subsets. Suppose that p : U →
V is a surjective continuous function. We say p is a covering map, and U is a covering space
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Figure 3. A covering map from n disks onto one disk.2

of V if for every z ∈ V , there is an open neighborhood W containing z such that p−1(W )
consists of a union of sets A1, A2, . . . such that p restricted to each An is a bijective function
from An to W .

Example. The simplest picture of a covering map is n open disks projecting down onto a
single open disk as shown in Figure 3. Each p−1(W ) consists of n copies of W .

Theorem 4.2 (Uniformization of plane domains). Let U be a connected open subset of Ĉ.

Then the universal covering space of U is conformally isomorphic to either Ĉ, C, or D.

Proof. For the sake of brevity, we leave out certain technical details, but the full proof can
be found in Dozier’s paper [Doz12]. First, we note that if D, C, or Ĉ were a covering space

of U , then it follows from the simply connectedness of D, C, and Ĉ that it is also a universal
cover.

Now, we prove the theorem in three parts:

(1) Classify the open subsets of Ĉ with universal cover isomorphic to C and Ĉ,
(2) Show that the universal cover of C \ {0, 1} is isomorphic to D,
(3) Show that the universal cover of any open subset of C \ {0, 1} is isomorphic to D.

Part 1. We claim that there are no subsets of C whose universal cover is isomorphic to
Ĉ, and the only subsets of C covered by C are C and the punctured plane C∗ = C \ {0}. To

start, we note that any space covered by Ĉ or C can be obtained by taking the quotient of
the spaces by a group of analytic automorphisms acting freely and properly discontinuously
on that space. As a refresher, we define these terms:

• A group G acts freely on a set X, if for all x ∈ X, g · x = x implies g = I ∈ G. That
is, g sending any x to itself implies g is the identity. Only the identity element fixes
any x.
• A group action G on a topological space X is properly discontinuous if X is a locally

compact space (each small portion of X looks like a compact space) and for every
compact subset K ⊂ X, the set {g ∈ G : gK ∩K 6= ∅} is finite. For instance, if G
consists of the maps x → x + a for all a ∈ R, then G acts freely on C, but is not
properly discontinuous.

2https://en.wikipedia.org/wiki/Covering_space

https://en.wikipedia.org/wiki/Covering_space
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There are no non-trivial subgroups of the automorphism group of Ĉ with the above two
properties, since every analytic automorphism is a Möbius transformation, which has a fixed
point.

For C, the analytic automorphisms are again the Möbius transformations, but we may
force the fixed point to be ∞ by taking transformations of the form z → az + b for complex
number a, b. Thus, the non-trivial subgroups that act freely and properly discontinuously
are isomorphic to Z or Z⊕Z, which when taken the quotient with C give C∗ and the torus,
respectively. We omit the torus from our discussion since it cannot be embedded in C and
thus is not a subset of C.

Part 2. Now, we show that there exists a covering map p : D→ C \ {0, 1} from the unit
disk to the triply punctured sphere. We do this geometrically by tiling D with hyperbolic
triangles then using the union of the central two triangles as our fundamental domain, which
turns out to be topologically equivalent to C \ {0, 1}.

The first triangle has vertices −1, 1, i, and we generate the tiling by reflecting the vertices
over the opposite sides (draw a geodesic segment that is perpendicular to the side and passes
through the vertex we want to reflect). This iterative process is shown in Figure 4. To verify
that the tiling indeed covers the disk, draw a geodesic segment from p = 0 to any point
z ∈ D. We reflect this geodesic segment over the sides of the original triangle so that we
reach a new point z′ contained entirely within the original triangle. See Figure 5. The path
traced out to reach z and z′ are the same and equal the Poincaré distance dU(p, z). Since the
length of the path from p to z′ is finite, there must have been a finite sequence of reflections
of the path on the sides of the triangle to reach z′; we can now convert this into a finite
sequence of reflections of z′ over the sides of the tiling to reach z. This shows that every
point in D is eventually covered by the tiling.

Let Γ0 be the group of compositions of two reflections over the sides of the tiling, and let
F be the union of the two central triangles with vertices −1, 1, i and −1, 1,−i. Since no two
points in the interior of F are in the same orbit of Γ0, it is clear that F is a fundamental
domain for Γ0. That is, F contains exactly one point from each coset of the quotient D/Γ0.

The side S−1,i from −1 to i is identified with the side S−1,−i from −1 to −i, and similar
for the sides S1,i and S1,−i. See Figure 6 for the identification of edges of F . Since F ⊂ D
does not contain the vertices ±1,±i, it turns out that F is topologically equivalent to the
triply punctured sphere.

Part 3. We generalize our result from U = C \ {0, 1} to a open subset U ⊂ C \ {0, 1}
by using the above constructed covering map p : D → C \ {0, 1}. Consider a connected
component V of p−1(U) ⊂ D. We can restrict p to a covering map V → U , and hence, the
universal covers of U and V are isomorphic. Now, to show that D is a universal cover of
V , we construct a sequence of subsets V = V0, V1, V2, . . . of the unit disk and covering maps
pn : Vn → Vn−1 such that {Vn}n≥0 are increasing larger spaces that approach the whole disk.
We do this by taking pn as the squaring function z2 composed with Blaschke factors to avoid
the branch point at 0.

Define cn = p1 ◦ · · · ◦ pn as covering maps from Vn to V0 = V . Let f0 : Ũ → V be the
universal covering map, then from the property of universal covers, there exists a covering
map fn : Ũ → Vn such that cn ◦ fn = f0. By a compactness argument, some subsequence of
c1, c2, . . . converges to a holomorphic map c : D→ V0 = V . The corresponding subsequence
of f1, f2, . . . converges to a holomorphic function f : Ũ → C. See Figure 7 The rest of the
proof consists of showing that Im(f) = D and that f is an isomorphism between Ũ and D,



10 TAE KYU KIM

(a) Hyperbolic triangle with
vertices at 1, i, and −1.

(b) Reflection of the vertices
over the sides

(c) Disk after many iterations

Figure 4. The tiling of D with hyperbolic triangles is defined iteratively
through reflections.

Figure 5. z′ is a copy of z in the original triangle T .

by which we have shown that the universal cover of U is conformally isomorphic to the unit
disk. �

By uniformization, whenever U is a connected proper subset of C, there exists a universal
covering map p : D → U . By a pullback along p, the Poincaré metric on D passes to local
metrics on U . More specifically, given a point z ∈ U , choose a z′ ∈ D in the fiber of z (i.e.,
z′ ∈ p−1(z)) then we can “pushforward” the metric ds on D to dsU on U by noting that p
restricted to a neighborhood of z′ is bijective. The choice of z′ does not matter since the
deck transformation that takes z′ to another z′′ ∈ p−1(z) is a conformal automorphism of D,
and hence the conformally invariant metric ds on D is unchanged.

Note that p is a local isometry that maps sufficiently small neighborhoods in D to its
image by an isometry, which gives rise to a metric dsU . Note that p may not be a global
isometry. For instance, the distance between distinct z′, z′′ ∈ p−1(z) is positive so ds > 0,
but we desire dsU = 0 since the images of the two points are the same.

The induced metric dsU is conformally invariant since any conformal automorphism on
U can be lifted to an automorphism of D, which must preserve ds and hence the original
automorphism on U preserves dsU . We also refer to the metric dsU as Poincaré metrics and
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Figure 6. Identifying the sides of F forms a triply punctured sphere.

Ũ

V = V0 V1 V2 V3 · · · D

U

p

p1 p2 p3 p4

f0 f1 f2 f3 f

p∞

Figure 7. Commutative diagram for the proof of the uniformization theorem.

call U a hyperbolic surface since dsU gives U a hyperbolic geometry similar to that of D and
H.

5. Properties of Hyperbolic Surfaces

In this section, we derive several key properties of hyperbolic surfaces, which are necessary
to study the Julia and Fatou sets. We first define the closed ball of radius r about z0 where
the “radius” is measured with respect to the Poincaré metric on U :

B(z0, r) = {z ∈ U : dU(z0, z) ≤ r}.
Example. For U = D, we may integrate the metric given in Proposition 3.8 to obtain a
formula for the distance from the origin:

(5.1) dU(0, z) =
1

2
log

1 + |z|
1− |z|

.

Then the ball B
(
0, 1

2

)
is identical to the open disk Dr with radius r = 1

2
log 3 ≈ 0.549.

We derive two key topological properties of hyperbolic surfaces.

Proposition 5.1 (Closed ball is compact). Let U be a hyperbolic surface and z0 ∈ U . The
closed ball B(z0, r) = {z : dU(z0, z) ≤ r} is compact for any r > 0.
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Proof. First, suppose U = D. By composing with an isometry, we may assume z = 0.
Since B(0, r) is evidently closed, we only need to show it is contained in a compact set. By
inspection of Equation (5.1), as r → ∞, |z| → 1−. Thus, for any given r > 0, we may find
some R < 1 such that B(0, r) ⊂ DR. This implies B(0, r) is contained in the compact set
DR.

For the general case, consider the covering map p : D → U . We may assume 0 ∈ p−1(z0)
by composing with an isometry on D. Note that B(z0, r) ⊂ p(B(0, r)) since p is a local
isometry; note that equality may not hold since p(B(0, r)) may consist of several copies
of B(z0, r). By the previous paragraph, B(0, r) is contained a compact set K, and hence
B(z0, r) is contained in the compact set p(K). �

Proposition 5.2. Every hyperbolic surface U is contained in a union of a nested sequence
of compact subsets K1 ⊂ K2 ⊂ · · · of U .

Proof. By Proposition 5.1, we choose a basepoint z0 ∈ U and take Kn = B(z0, n) ⊂ U . Since
every point z ∈ U has a finite Poincaré distance from z0, it follows that U =

⋃∞
n=1Kn. �

Since Julia and Fatou sets are defined in the language of normal families, we must develop
some related theory.

Definition 5.3 (Normal family). A collection of holomorphic maps F ⊂ {f : Ĉ → Ĉ} is
said to be a normal family if every sequence of maps in F has a subsequence that converges
locally uniformly to a holomorphic map.

Intuitively, F is a normal family of holomorphic maps if every limit point of F is also a
holomorphic map, where we require the convergence to be locally uniform.

The following theorem by Montel gives us a condition that lets us easily check if F is a
normal family. Note that this Montel’s theorem is the harder variant from class that we did
not prove.

Theorem 5.4 (Montel). Let S be a Riemann surface and F a family of maps S → Ĉ with

the property that there are three distinct points a, b, c such that f(S) ⊂ Ĉ \ {a, b, c} for all
f ∈ F . Then the family F is normal.

Proof. Since normality is a local property, we may assume S is a small open subset U of
the plane. Moreover, by composing with a Möbius transformation, we can also assume
that {a, b, c} = {0, 1,∞}. From the uniformization theorem (Theorem 4.2), there exists a

covering map p : D→ C \ {0, 1}. Each map f ∈ F lifts to a map f̃ : U → D. The family of

lifts {f̃} is bounded and equicontinuous family of holomorphic maps, where equicontinuity
comes from Cauchy’s formula for the derivative. Hence, the Arzelà-Ascoli Theorem says that
any sequence f̃1, f̃2, . . . has a uniformly convergent subsequence. Thus, {f̃} is normal.

The limit g = limn→∞ f̃n of a sequence in {f̃} may be such that g(U) contains points in
the boundary ∂D. Thankfully, by the way that the covering map p was constructed, it may
be easily extended to a map P : D→ C. Then, the family F = {f = p ◦ f̃} is also normal,

since if a sequence {f̃n}n≥1 converges to g, then the corresponding sequence {p ◦ f̃n}n≥1 in
F converges to P ◦ g. �

Montel’s theorem was instrumental in the early work on complex dynamics. We may
also analyze the behavior of the Poincaré metric near the boundary of an embedded surface
(hyperbolic surfaces are often embedded in the complex plane).
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Proposition 5.5. Let U ⊂ Ĉ be a hyperbolic surface, and let z1, z2, . . . be a sequence of
points converging to a boundary point ẑ ∈ ∂U . Then for a given r > 0, the closed balls
B(zn, r) converge uniformly to ẑ as n→∞.

Proof. The idea is to think of B(zn, r) as images of a fixed ball B(0, r) by a sequence of
universal covering maps, then apply Montel’s theorem to obtain the limit. We leave the
details of the proof to Dozier’s paper [Doz12]. �

6. Classification of Maps on Hyperbolic Surfaces

We use the Schwarz lemma (Lemma 3.4) and hyperbolic isometries to show that holomor-
phic maps on the disk are distance non-increasing.

Lemma 6.1. Suppose that f : D → D is holomorphic. Then for any two distinct points
p1, p2 ∈ D, we have dD(p1, p2) ≥ dD(f(p1), f(p2)), with equality if and only if f is a conformal
isomorphism.

Proof. The proof we give is merely computational; for a more elegant approach with tangent
spaces, see Dozier’s paper [Doz12].

Fix z1 ∈ D and define the Möbius transformations

M(z) =
z1 − z
1− z1z

, φ(z) =
f(z1)− z
1− f(z1)z

.

Since M(z1) = 0 or equivalently M−1(0) = z1, the composition φ(f(M−1(z))) maps 0 to 0
and the unit disk to itself. Thus, we may apply Schwarz lemma and obtain

|φ(f(M−1(z)))| =

∣∣∣∣∣ f(z1)− f(M−1(z))

1− f(z1)f(M−1(z))

∣∣∣∣∣ ≤ |z|.
Now call z2 = M−1(z) and our inequality becomes∣∣∣∣∣ f(z1)− f(z2)

1− f(z1)f(z2)

∣∣∣∣∣ ≤
∣∣∣∣ z1 − z21− z1z2

∣∣∣∣ .
The Poincaré distance between z1 and z2 is

d(z1, z2) = tanh−1
∣∣∣∣ z1 − z21− z1z2

∣∣∣∣
where we note that tanh−1 is a strictly increasing function. Thus, we have proved the
inequality part of the lemma.

If equality holds for all z1, z2 ∈ D, then f is evidently a conformal isomorphism since it
preserves distance. �

The following theorem generalizes the above result from the unit disk to hyperbolic sur-
faces.

Theorem 6.2 (Schwarz-Pick). Let f : S → S ′ be a map between hyperbolic surfaces, con-
sidered along with their Poincaré metrics. Then one of the following possibilities holds:

(1) f is conformal and a global isometry
(2) f is a covering map, but is not injective. In this case, f is a distance non-increasing

local isometry, but not a global isometry.
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(3) f strictly decreases all non-zero distances.

Proof. Consider the lift of f to f̃ : D → D from the universal cover of S to that of S ′. By
Lemma 6.1, f̃ is either a conformal automorphism or strictly decreases all non-zero distances.
In the first case, f is either a conformal global isometry or a covering map. In the second case,
f̃ decreases the hyperbolic lengths of all paths, so f decreases all non-zero distances. �

In the following theorem, we let S = S ′ from Theorem 6.2 and study the iterates of
the self-map f : S → S. This classification will be essential to our main theorem on the
classification of Fatou Components.

Theorem 6.3 (Classification). For any holomorphic map f : S → S of hyperbolic surfaces,
exactly one of the following four possibilities holds:

(1) (Attracting) f has a fixed point p, contained in a neighborhood N such that all orbits
{f ◦n(z)} of points z ∈ N converge to p.

(2) (Escape) Every orbit of f eventually escapes any compact subset K ⊂ S.
(3) (Finite Order) Some iterate f ◦n is the identity and every point of S is periodic.
(4) (Irrational Rotation) (S, f) is a rotation domain. That is, S is conformally isomor-

phic to a disk D, punctured disk D∗, or annulus Ar = {z : 1 < |z| < r}; and f
corresponds to an irrational rotation z 7→ e2πiθ with θ /∈ Q.

Proof. The reader should convince themselves that no two of the above cases can occur
simultaneously. We apply Schwarz-Pick (Theorem 6.2) to f .

Distance-Decreasing Case. Suppose f is not a local isometry. Then by Schwarz-Pick, f
strictly decreases all distances. If every orbit eventually escapes any compact subset K ⊂ S,
then we are in the Escape case.

Thus, suppose there is some z0 ∈ S such that the orbit {zn = f ◦n(z0)}n≥0 visits some
compact subset L ⊂ S infinitely many times. Let K be a compact neighborhood of L∪f(L).
Since dS(f(z), f(w)) < dS(z, w) for all z, w ∈ S, by the compactness of K, there exists a
constant cK < 1 such that for any z, w ∈ K, we have dS(f(z), f(w)) < cKdS(z, w). Then,
for any zm ∈ L, since zm+1 ∈ f(L) ⊂ K, we have dS(zm+2, zm+1) < cKdS(zm+1, zm). Since
infinitely many zm lie within K, it follows that there exists a subsequence of {zm} such
that the distances dS(zm+1, zm) decrease exponentially by at least a factor of cK . Because
distances between consecutive points are strictly decreasing even outside of K, the limit of
the consecutive distances for the whole sequence goes to 0; that is, limn→∞ dS(zn+1, zn) = 0.
Thus, the sequence {zn} converges to a point p, which must be a fixed point of f by continuity.

Now, let Br = B(p, r) be any ball around p contained inside of K. For any z ∈ Br,
dS(p, f(z)) < cKdS(p, z) since f fixes p. Thus, dS(p, f ◦n(z)) < cnKdS(p, z) < cnKr, and hence
the orbit of z converges to p. It follows that f belongs to the Attracting case.

Distance-Preserving Case. Now, suppose f is a local isometry. First, suppose S is
simply connected so that we may assume S = D. By Schwarz-Pick, f is a covering map,
so it must be a conformal automorphism of D, i.e., a Möbius transformation. If f has a
fixed point, then by the Schwarz lemma we are in the Finite Order or Irrational Rotation
case depending on the rotational angle. If f does not have a fixed point in D, then by the
Brouwer fixed-point theorem, the extension of f to D has one or more fixed points on the
boundary ∂D, in which case all orbits converge to the boundary, which implies we are in the
Escape case.
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Now suppose that S is not simply connected. If f ◦k is the identity for some k, then we
are in the Finite Order case, so assume this does not happen. Let φ : (D, 0)→ (S, z0) where
z0 is some fixed based point and φ maps 0 to z0.

Let G be the deck transformations of the covering i.e., all homeomorphisms of D such that
the projection p is preserved. For the example of n disks projecting onto one disk (Example
4), the deck transformation consist of permutations of the n disks. The map f lifts via φ
to a map F : D → D that must be a conformal automorphism since f was a covering map.
Then, let Γ be the group generated by F and the elements of G. Specifically, Γ consists of
sequences of deck transformations and F , a conformal automorphism of the disk. It turns
out that if Γ is a discrete topological group then we are in the Escape case, otherwise in
the Irrational Rotation case. We omit the details of the proof since they require topological
groups, which would detract us from the focus of this paper. However, advanced readers are
encouraged to read the details in Dozier’s paper [Doz12]. �

7. Julia and Fatou Sets

In this section, we define and derive several key properties of Julia and Fatou sets. We
restrict our study to holomorphic maps f : Ĉ → Ĉ although Fatou and Julia sets can be
defined in more general settings. It turns out that any holomorphic map f : Ĉ → Ĉ is
rational, i.e., can be written as a ratio of two polynomials p/q. We define the degree of f to
be the maximum degrees of p and q where p and q do not share any common factors. By
the fundamental theorem of algebra, any rational map of degree at least 1 is surjective.

Although f is defined over Ĉ, which is not a hyperbolic surface, we often consider f
restricted to a subset of C, which is a hyperbolic surface and thus admits the Poincaré
metric.

Intuitively, Julia sets consist of points whose orbits are sensitive to small deviations in the
starting point, while points in the Fatou set are not. More formally, they are defined with
normal families.

Definition 7.1. The Fatou set of a rational map f consists of all points z ∈ Ĉ for which
there exists a neighborhood N 3 z such that the family {(f |N)◦n : n ∈ Z+} is normal. We
refer to such N as a neighborhood of normality. The Julia set J(f) is the complement of the

Fatou set in Ĉ.

Note that by definition, the Fatou set is open and the Julia set is closed.

Example. Let f(z) = z2 be the squaring map. If |z0| < 1, then f ◦k(z0) tends towards 0
as k → ∞, and moreover, we can find an open neighborhood around z0 contained in D1−ε
whose orbit also tends towards 0. We are careful to pick our neighborhood of z0 with some
distance away from the boundary ∂D since otherwise, the orbit of the neighborhood does
not go to 0 uniformly. If |z| > 1, the orbit goes to ∞. Thus, we conclude the Fatou set of

z2 is D and the Julia set is Ĉ \ D.

The Fatou and Julia sets are robust in the following sense.

Lemma 7.2 (Invariance). We say that a set S is fully invariant under f if f(S) ⊂ S and
f−1(S) ⊂ S i.e., z belongs to the image of S if and only if a belongs to S. Both Julia and
Fatou sets are fully invariant.
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Proof. Suppose z is in the Fatou set with N 3 z as its neighborhood of normality. Then
we claim f(z) is in the Fatou set with f(N) as its neighborhood of normality. The iterates
{f ◦k|f(N)} is exactly {f ◦k+1|N}, which is a right-shifted version of the iterates for z, i.e.,
{f ◦k|N}. Since normality only depends on the long-term behavior of the family of functions,
the result follows. The proof is similar for f−1(z) and its neighborhood of normality f−1(N).

�

When analyzing dynamical systems, the study of fixed points is usually a good starting
point because fixed points are easier to analyze than arbitrary points and the neighborhoods
of fixed points typically behave predictably based on characteristics of the fixed point.

Note that if a rational map has infinitely many fixed points, then its fixed points have a
limit point since Ĉ is compact. Then, f must be the identity for which the dynamics are
trivial. Thus, unless f is the identity, it must have finite and isolated fixed points. We
classify these fixed points based on the derivatives of f at that point.

Definition 7.3 (Multiplier of Fixed Points). Suppose that z0 ∈ Ĉ is a fixed point of f .
We can choose a local coordinate chart so that z0 corresponds to the origin. We define the
multiplier λ of z0 (with respect to f) to be the derivative f ′(0) using the chosen coordinates.

To check that the multiplier is well-defined, one can verify that the derivative does not
depend on the choice of local coordinates using the chain rule and the formula for the
derivative of an inverse function. However, the multiplier is not generally well-defined for
points not fixed by f . We can salvage the definition for periodic points:

Definition 7.4 (Multiplier of Periodic Points). A point z0 ∈ Ĉ is a periodic point of f if
there exists some k for which z0 is a fixed point of f ◦k. The multiplier of such a periodic
point of f is defined to be the multiplier of f ◦k at its fixed point z0. If k is chosen to be
minimal, then k is said to be the period of z0.

Next, we prove a lemma on the Fatou and Julia sets of f ◦k.

Lemma 7.5 (Iterate Invariance). For any integer k > 0, the Fatou set of f ◦k coincides with
the Fatou set of f , and J(f ◦k) = J(f).

Proof. It is clear that if {f ◦n|N} is normal, then {f ◦nk|N} is normal; hence the Fatou set
of f is contained in that of f ◦k. For the converse, let z be a point in the Fatou set of f ◦k

and N 3 z be a neighborhood of normality. Let {f ◦nj} be some sequence of iterates of
f for which we desire to find a locally uniformly convergent subsequence. Note that any
sequence in the family {f ◦nk|N}n≥1 has a locally uniformly convergent sequence, and same
holds for each of the families {f ◦nk+1|N}, . . . , {f ◦nk+(k−1)|N}. At least one of these k families
shares infinitely many elements with {f ◦nj}, and since that common sequence has a locally
uniformly convergent subsequence, so does {f ◦nj}. Thus, z is in the Fatou set as desired.
The result for the Julia set follows immediately. �

Similarly, results on fixed points can often be extended to periodic points. For our pur-
poses, however, we do not require discussion of periodic points.

We return to our discussion of fixed points of f . The dynamics near a fixed point z0 is
strongly influenced by the multiplier of that point.

Definition 7.6. Suppose f is a rational map and that z0 is a periodic point with multiplier
λ.
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• If |λ| < 1, then z0 is said to be attracting. If λ = 0, then z0 is superattracting.
• If |λ| > 1, then z0 is repelling.
• If λn = 1 for some n, and f is not the identity, then z0 is parabolic.
• If |λ| = 1 and λn 6= 1 for any n, then z0 is indifferent.

In the following several propositions, we derive dynamic properties for these fixed points
and their neighborhoods, which explain the characteristic nicknames from Definition 7.6.

Proposition 7.7. Every attracting fixed point z0 of f is in the Fatou set. Furthermore, the
set A of all z ∈ Ĉ whose orbits converge to z0 is an open subset of the Fatou set. This set
is called the basin of attraction of z0. The connected component of A containing z0 is called
the immediate basin of attraction.

Proof. Choosing local coordinates, we may assume z0 = 0. Choose µ such that |λ| < µ < 1.
By a Taylor series expansion centered at z0, there is some small ball (in the Euclidean metric)
B around z0 such that |f(z)| < µ|z| for all z ∈ B. Then it follows that the iterates of f |B
converge uniformly to the constant map z → z0, and hence B is a neighborhood of normality.

Now suppose z ∈ A. Then for some k, f ◦k ∈ B. It follows that N = (f ◦k)−1(B) is a
neighborhood of z contained in A. Thus, A is open. The iterates of f |N converge uniformly
to z0, so A is contained in the Fatou set. �

Proposition 7.8. Every repelling fixed point of z0 of f is in the Julia set.

Proof. Choosing local coordinates, we can assume that z0 = 0. Through Taylor series ex-
pansion and induction, one can show that the derivative of f ◦k at 0 is equal to λk. Since
|λ| > 1, no subsequence of these derivatives will converge to a finite value.

Analysis tells us that the derivatives of a sequence of analytic functions converge to the
derivative of the locally uniform limit of the functions, assuming such a limit exists. Hence,
the iterates of f cannot form a normal family on any neighborhood of z0, and so z0 is in the
Julia set. �

Proposition 7.9. If f has degree at least two, then any parabolic fixed point z0 is in the
Julia set.

Proof. Again, choose local coordinates so that z0 = 0. By taking an appropriate iterate of
f , assume that the multiplier of the fixed point is 1. By Lemma 7.5, if z0 belongs to the
Julia set of an iterate of f , then it belongs to the Julia set of f . On a small neighborhood
of z0, we may describe f with the Taylor series

f(z) = z + anz
n + · · ·

for some nonzero an. Then taking iterates of f , we get

f ◦k(z) = z + kana
n + · · · .

Hence, the nth derivative of f ◦k is n! · k · an, which goes to ∞ as k →∞. As in the proof of
Proposition 7.8, the iterates of f do not constitute a normal family on any neighborhood of
z0, so z0 is in the Julia set. �

8. Fatou Component Classification Theorem

Our main result concerns the Fatou components of f .
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Definition 8.1 (Fatou Components). The connected components of the Fatou set of f are
called the Fatou components of f .

Proposition 8.2. The image f(U) of any Fatou component U is itself a Fatou component.

Proof. The continuous image of any connected set is connected, so f(U) is connected. Since
it is also part of the Fatou set, it must be contained in some Fatou component U ′. Our goal
is to prove f(U) = U ′, particularly by proving f(U) is closed relative to the Fatou set.

Consider the closure U of U in Ĉ. As a closed subset of a compact set, U is compact and
hence its image f(U) is also compact, hence closed. Note that the boundary of U is contained
in the Julia set; otherwise U would not be a Fatou component. Thus by Proposition 7.2,
the image of the boundary is also in the Julia set. Hence, f(U) consists of f(U) along with
some points in the Julia set f(∂U). In other words, f(U) is the intersection of the closed set
f(U) with the Fatou set of f . This is enough to prove that f(U) is closed in the Fatou set
and hence, that f(U) = U ′. �

Now, we state two somewhat technical lemmas. The proofs can be found in Dozier’s
paper [Doz12].

Lemma 8.3 (Convergence to Boundary Fixed Points). Let f : C→ C be rational of degree

at least two, and U ⊂ Ĉ a hyperbolic surface with f(U) ⊂ U . Suppose that some orbit of f
in U has no accumulation point in U . Then there is some boundary point p ∈ ∂U such that
all orbits in U converge (in U) to p.

Definition 8.4. Let f be a holomorphic function defined on some neighborhood of V of the
origin, such that 0 is a fixed point of f with multiplier λ. We say that a path γ : [0,∞) →
V \ {0} converges to the origin if limt→∞ γ(t) = 0.

Lemma 8.5 (Snail). With the set-up in Definition 8.4, if the path γ satisfies f(γ(t)) =
γ(t+ 1), then either |λ| < 1, or λ = 1.

The snail lemma is named for the snail-like path drawn in the proof if one assumes (for
the sake of contradiction) that |λ| = 1 and λ 6= 1.

Finally, we state two results on the Julia sets, the proofs of which we omit for brevity.
The proofs can be found in Dozier’s paper [Doz12].

Proposition 8.6. If f is a rational map of degree at least 2, then J(f) is an infinite set.

Proposition 8.7. If f is a rational map of degree at least 2, then the Julia set J(f) contains
no isolated points.

We are now ready to state and prove the main result of this paper, a precise classification
of the five types of Fatou components that rational maps on Ĉ can exhibit.

Theorem 8.8 (Five Possibilities). Suppose f : Ĉ → Ĉ is a rational map of degree at least
2, and U is a connected component of the Fatou set such that f(U) = U . Then exactly one
of the following holds:

(1) (Superattracting): U is an immediate basin of attraction for a superattracting fixed
point.

(2) (Geometrically Attracting): U is an immediate basin of attraction for a geometrically
attracting fixed point.
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(3) (Parabolic) U has a parabolic fixed point on its boundary to which all orbits in U
converge.

(4) (Siegal Disk) U is a Siegal disk, i.e., there is a conformal isomorphism U → D that
conjugates f to a rotation z 7→ e2πiθz with θ ∈ R \Q.

(5) (Herman Ring) U is a Herman ring, i.e., there is a conformal automorphism U → Ar,
where Ar = {a : 1 < |z| < r} is some annulus, conjugating f to a rotation z 7→ e2πiθz

with θ ∈ R \Q.

Proof. Since the Julia set is infinite (Proposition 8.6), we can assume that U ⊂ C \ {0, 1}
and so by the uniformization theorem, U is a hyperbolic surface. We consider the four cases
of Theorem 6.3 on f |U :

Attracting. In this case, f |U must have either a superattracting or geometrically at-
tracting fixed point. Since an immediate basin of attraction is the connected component
containing the fixed point, it follows that by definition, U must be Superattracting or Geo-
metrically Attracting.

Escape. Since there is no accumulation point in U for any orbit, we can apply Lemma
8.3 to conclude that all orbits in U converge to some boundary point p ∈ ∂U . We claim
that p is a parabolic fixed point, i.e., the multiplier of p is a root of unity and f is not the
identity. Skipping some details for brevity, we can construct a path γ that follows an orbit
in U , both of which converge to p. The snail lemma (Lemma 8.5) implies that the multiplier
λ of p is either 0 < |λ| < 1 or λ = 1. The first case cannot happen since the boundary point
p is in the Julia set, and all fixed points with |λ| < 1 are Fatou set by Proposition 7.7. In
the second case, we get that p is a parabolic fixed point as desired. Since the orbits of all
points in U converge to p, we see that U is Parabolic.

Finite Order. In this case, some iterate of f is the identity. However, this is impossible
since f is rational and its degree is assumed to be at least 2.

Irrational Rotation. In this case, we have three cases for U as stated in Theorem 6.3.
If U is isomorphic to the disk, then U is a Siegal Disk, and if U is isomorphic to the annulus
Ar, then U is a Herman Ring. The only remaining case is when U is isomorphic to the
punctured disk D∗, which we claim is impossible.

If U were isomorphic to D∗ . Then one component of the complement of U would consist
of a single point, which would have to belong to the Fatou set since the Julia set does
not contain isolated points (Proposition 8.7). But U is a Fatou component, so this cannot
happen. �

9. Further Extensions

In this section, we discuss further results on this topic of Fatou components.
Our main result Theorem 8.8 showed that there were five possibilities for Fatou compo-

nents, but do all of them actually occur? For instance, can we find a holomorphic map
f : Ĉ→ Ĉ that has a Siegal disk as a Fatou component?

The answer is yes, for all five types of Fatou components, but the proof is difficult for
Siegal disks and Herman rings. The superattracting, geometrically attracting, and parabolic
cases are more readily observed as bulbs and petals protruding from a single (fixed) point,
respectively. More information on this topic can be found in the third section of Dozier’s
paper [Doz12].
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In this paper, we studied holomorphic maps on Ĉ, which is equivalent to rational maps
p/q where p and q are polynomials in z. The dynamics of rational maps are easier than those
of transcendental maps.

Definition 9.1. Fatou components that are not eventually periodic are called wandering
domains.

Transcendental maps may have wandering domains; however, rational maps do not.

Theorem 9.2 (No Wandering Domain). Fatou components of rational maps are eventually
periodic.

Moreover, iterates of transcendental maps can tend towards essential singularities, similar
to how the iterates in a parabolic Fatou component tend towards a boundary point of the
Fatou component, i.e., a singularity in the Julia set.

Definition 9.3. Transcendental maps may have Baker domains, a type of Fatou component
in which the iterates tend to an essential singularity.

Baker domains exhibit more complex dynamics than any other types of Fatou components.
See Rippon [Rip08] for more exposition on Baker domains.
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