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Abstract. Harmonic functions are functions f : Rn → R satisfying the Laplace equation

∂2f

∂2x1
+ · · ·+ ∂2f

∂2xn
= 0.

In this paper, we will focus on the case where n = 2. By taking n = 2, we can compose
the natural map θ : C → R2 given by θ(x + yi) = (x, y) with f to obtain the composition
θ ◦ f : C→ R. This allows us to apply methods in complex analysis in order to characterize
harmonic functions, and determine several properties that they satisfy. For instance, the
Gauss Mean Value theorem for holomorphic functions

f(z0) =
1

2π

∫ 2π

0

f(z0 + ρeiθ)dθ,

also holds for harmonic functions.

1. Introduction and Relation to Holomorphic Functions

Denote by Ω an open set in the complex plane and let f : Ω→ R be a continuous function
with continuous partial second derivatives. That is, f is a C2-function, and the following
derivatives,

∂2f

∂2x
,

∂2f

∂2y
,

∂2f

∂y∂x
,

∂2f

∂x∂y
are continuous. We say f is harmonic if the Laplace operator

∆f =
∂2f

∂2x
+
∂2f

∂2y
,

vanishes. For the remainder of this paper, Ω will always be used to define an open set and
for any set S ⊆ C, define SC to be the complement of S.

Example. The function f : C → R defined via the map x + yi → x2 − y2 is a harmonic
function. Note that x2 − y2 is the real part of the function g(z) = z2. Indeed, we have
g(x+ yi) = x2 − y2 + 2xyi.

Harmonic functions arise naturally from holomorphic functions. To see this, let f : Ω→ C
be holomprphic and write f(x + yi) = u(x, y) + iv(x, y) for functions u, v : R2 → R. Then,
by the Cauchy Riemann equations, we have

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x
.

Taking second derivatives, we obtain

∂2u

∂2x
=

∂2v

∂y∂x
, and

∂2u

∂2y
= − ∂2v

∂x∂y
,
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and so it follows that
∂2u

∂2x
+
∂2u

∂2y
= 0.

Hence u is harmonic, and similarly, so is v.

Theorem 1.1. Let f : Ω→ C be a holomorphic function for an open set U ⊆ C. Then, the
real and imaginary parts of f are harmonic.

Example. Let f(z) = ln z be a holomorphic function on a well defined region of the complex
plane, and write z = reiθ. Then, f(z) = ln(reiθ) = ln r + iθ. Now, we let z = x+ yi, and so

r =
√
x2 + y2. Therefore, <f(z) = ln

(√
x2 + y2

)
= ln(x2+y2)

2
, which is a harmonic function.

A natural question to ask is whether or not given a harmonic function u : Ω→ C we can
construct a holomorphic function f : Ω→ C such that <f(z) = Ω(z). It turns out that this
is true, but only up to a constant.

Theorem 1.2. Let Ω be a finitely connected region, and let K1, . . . , KN denote the bounded
components of ΩC. For each Ki, pick a point ai in Ki. If u : Ω→ R is a harmonic function,
then there is a holomorphic function f : Ω→ C for which

u(z) = <f(z) +
N∑
j=1

cj ln |z − aj|,

for certain real numbers c1, . . . , cN .

Remark 1.3. The term finitely connected essentially means that Ω doesn’t have infinitely
many holes. If it did, there could be infinitely many bounded components in ΩC .

Before proving the theorem, let us take a moment to understand its significance. Suppose
we had a harmonic function u(z) defined on all of C. Since C has no bounded components
in its complement, this means that there is an analytic function f(z) such that u = <f . If
it happens that u is defined on an open set with holes in it, then we may not necessarily end
up with an analytic function f for which u = <f .

Proof. We follow the proof given in [1]. Start by considering the function

h(z) =
∂u

∂x
− i∂u

∂y
.

The key idea is that this function is actually holomorphic. To see this, we need only check
the Cauchy Riemann equations. But this is equivalent to checking that

∂2u

∂2x
= −∂

2u

∂2y
, and

∂2u

∂x∂y
= −

(
− ∂2u

∂y∂x

)
,

the first of which is tautological and the second of which is just Clairut’s theorem. For each
Kj, let Γj denote a curve contained in Ω containing Kj.
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Γ1

K1

K2

Ω

Γ2

We now define

cj =
1

2πi

∫
Γj

h(z)dz.

First, we must check that cj is real. To do this, note that

=cj = − 1

2π
<
∫

Γj

h(z)dz

= − 1

2π
<
∫

Γj

(
∂u

∂x
− i∂u

∂y

)
dz

= − 1

2π
<
∫

Γj

(
∂u

∂x
− i∂u

∂y

)
(dx+ idy)

= − 1

2π
<
∫

Γj

∂u

∂x
dx+

∂u

∂y
dy.

But the last integral equals 0 by Green’s theorem. Now it’s time to define f(z). Fix a point
b in Ω. The claim is that the function

f(z) =

∫ z

b

h(z′)− c1

z′ − a1

− · · · − cN
z′ − aN

dz′,

is well defined, in the sense that it does not depend on the path from b to z. To prove this,
it suffices to show that for any simple closed curve γ in Ω, we have∫

γ

f(z)dz = 0.

To prove this we only need the Cauchy integral theorem. Let mi denote the winding number
of γ about ai. Then, by the integral formula,∫

γ

h(z)dz =
N∑
j=1

2πimj

∫
Γj

h(z)dz =
N∑
j=1

2πimjcj.

But by the definition of winding number, we also have∫
γ

c1

z − a1

+ · · ·+ cN
z − aN

dz =
N∑
j=1

2πimjcj.
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Thus, the integral over the closed curve is 0, and so f is well defined. Now we must check
that this choice of f satisfies the equation listed above. We start by noting that

f ′(z) = h(z)− c1

z − a1

− · · · − cN
z − aN

.

Next, define

q(z) = <f(z) +
N∑
j=1

cj log |z − aj|.

The crux of the proof rests on adding a suitable constant to f(z) such that q(z) and u(z)
agree on b. For instance if this constant is c, then we redefine f to be f + c, which is still
holomorphic. To prove that q(z) = u(z) it suffices to show that

∂q

∂x
=
∂u

∂x
, and

∂q

∂y
=
∂u

∂y
.

We start by computing ∂q
∂x

. Note that since z = x+ yi, we have dz = dx, and so

∂q

∂x
=

∂

∂x

(
<f(z) +

N∑
j=1

cj log |z − aj|

)

=
∂

∂x
<

(
f(z) +

N∑
j=1

cj log(z − aj)

)

=
d

dz
<

(
f(z) +

N∑
j=1

cj log(z − aj)

)

= < d

dz

(
f(z) +

N∑
j=1

cj log(z − aj)

)

= <

(
f ′(z) +

N∑
j=1

cj
z − aj

)
= <h(z),

by the formula for f ′(z) above. But, recalling that h(z) = ∂u
∂x
− i∂u

∂y
, we obtain ∂q

∂x
= ∂u

∂x
, and

a similar method gives ∂q
∂y

= ∂u
∂y

. Hence, we have q = u, and we are done. �

Harmonic functions enjoy many of the same properties as analytic functions. For example,
the concept of analytic continuation can be extended to harmonic functions as well.

Theorem 1.4. Let U and V be open sets such that V ⊆ U and V is simply connected. If f
and g are harmonic functions that agree on V , then they agree on U as well.

Proof. By Theorem 1.2, since V is simply connected, we can find analytic functions F and
G such that f = <F and g = <G. Let f1 = f and g1 = g. Then, we can write F = f1 + if2

and G = g1 + ig2 where we split F and G based on real and imaginary parts. The key
idea is that f2 and g2 must differ by a constant. Indeed, since f1 = g1 on V , we have
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F −G = 0 + i(f2 − g2). But now we can apply the Cauchy Riemann equations. This gives

∂(f2 − g2)

∂x
=
∂(f2 − g2)

∂y
= 0,

and so f2 and g2 differ by a constant as claimed. Suppose f2− g2 = k for some k ∈ R. Then,
F = G+ ik.

Now, since F and G+ ik agree on V , they must agree on U (since they’re holomorphic).
But this means <F = <(G+ ik) over U , and so f1 = g1, as desired. �

An important property enjoyed by holomorphic functions is the Gauss Mean Value theorem
(c.f. [2]):

f(z0) =
1

2π

∫ 2π

0

f(z0 + ρeiθ)dθ.

Taking real parts, we find that

<f(z0) = < 1

2π

∫ 2π

0

f(z0 + ρeiθ)dθ =
1

2π

∫ 2π

0

<f(z0 + ρeiθ)dθ,

and so harmonic functions also satisfy the Gauss Mean Value theorem.
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