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1 Introduction

Is it possible for us to write every number as a sum of two squares? This
problem is widely thought about, but has also been solved. We know that a
nonnegative integer can be written as a sum of 2 squares if and only if its prime
factorization contains no element ab for a ≡ 3 (mod 4) and b odd. However, is
it possible to write every nonnegative integer a a sum of three squares? The
answer here is also no, as numbers of the form 4b(8k + 7) for integers b and k
cannot be represented this way. It turns out that every nonnegative integer can
be represented as a sum of 4 squares1. Another way that we can write this, as
we will see later, is g(2) = 4, as we need 4 numbers of power 2. How do we
see the minimum number of terms with power k needed in order to represent
any nonnegative integer? Is there a k for which there is no minimum number
of terms, and as n increases, the number of terms needed to represent it does
as well? This is known as Waring’s problem, who initially conjectured that for
all k, g(k) < ∞. This was proven to be correct by Hilbert in 1909, but he did
not use the Circle Method, as it had not been developed at the time.

2 The Circle Method

First, we can define integers k and s, where k is the exponent of all the terms
in the series, and s is the number of terms in the series. As we have mentioned
before, g(k) is the function which outputs lowest s for the input k. We can
define x to be the set of numbers (x1, x2, . . . , xs). Additionally, we can define a
function R(n) to be

R(n) = Rs,k(n) = {x ∈ Ns : n =

s∑
i=1

xi},

or the number of solutions to this sum given the values of s and k. One thing
to keep in mind is that all the xi terms cannot be more than n1/k. Hence,

1This is known as Lagrange’s four square number theorem. You can look it up, but the
essence of the proof is that 1. two numbers that can be represented as a sum of four squares
can be multiplied to get another number that can be represented this way and 2. every prime
can be represented as a sum of four squares.

1



1 ≤ xi ≤ X for X = floor(n1/k)2. Now, an important integral to introduce is
this: ∫ 1

0

e(αm)dα

where e(αm) is just e2πiαm, but written in a less clunky way. We know that
the integral evaluates to 1 if m = 0, and is equal to 0 for every other number.
From this, it is easy to see that

R(n) =
∑

0≤x1≤X

· · ·
∑

0≤xs≤X

∫ 1

0

e(α(xk1 + · · ·+ xks − n))dα.

This is because we are summing over all the possible values of xi for each one,
and whenever it equals n, the integral evaluates to 1. Summing up 1 n times
ultimately gives the value for R(n).

We can now define the function

f(α) = fk(α,X) =
∑

0≤x≤X

e(αxk).

This lets us rewrite our previous integral/sums as∫ 1

0

f(α)se(−αn)dα.

This may not be obvious at first glance, so we can break it down: the f(α)s

term adds all the xis together in every possible way that it did in the sums
beforehand. If they end up adding to n, then the e(−αn) term cancels that
out, leaving the integral to evaluate to 1 n times. The probability that the sum
evaluates to n is O(X−k), so the expected value of R(n) could be estimated at
around Xs ∗X−k = Xs−k.

3 Major and Minor arcs

In order to get a better estimate of R(n) using our latest integral form, we need
to partition the interval [0, 1] into two different classifications: major and minor
arcs. These arcs fulfill the requirement that∫ 1

0

f(α)se(−αn)dα =

∫
M

f(α)se(−αn)dα+

∫
m

f(α)se(−αn)dα

where M represents the parts that are in the major arc and m for the minor
one. We can classify the major arc as follows:

M = {x ∈ R
Z

: |x− a

q
| < Xδ−k}

2I don’t know how to write the floor function in LaTeX.
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for a ∈ R, q ∈ Z, and δ > 0, as a very small positive real number. In other

words, along this interval, around each fraction
a

p
, there is a small interval which

is i the major arc. We ultimately define M as

M =
⋃

1≤a≤q≤P δ
Ma,q

. These sections hold the most ”weight” in the integral, and the minor arc is
just everything that the major arc does not take up in the interval.

It turns out that ∫
m

f(α)se(−αn)dα = o(Xs−k)

and using something called a singular series S(n) and a term J :

J =
Γ(1 + 1/k)s

Γ(s/k)
.

In total, the major arc becomes∫
M

f(α)se(−αn)dα = S(n)P s−kJ + o(Xs−k).

Adding these two arcs together finalizes the integral to be∫ 1

0

f(α)se(−αn)dα = S(n)P s−kJ + o(Xs−k)

as 2o(Xs−k) = o(Xs−k).

4 Applications

In general, we discussed the function R(n), but this could be generalized as
R(n; s,A) with n being the target number, s being the umber of terms we want
to combine, and A being the list we choose from. In Waring’s Problem, which
was discussed so far, A was the set of all perfect integer powers of k, but they
can be anything. For example, if A is the set of all primes and s is 3, we get
the ternary Goldbach conjecture, which states that all odd numbers 5 or greater
can be written as a sum of 3 primes. This statement is equivalent to the better
known binary Goldbach conjecture, which states that every even number greater
than 5 can be written as a sum of two prime numbers3.

3This can be seen by taking any odd number and subtracting 3, which is prime, to get an
even number.
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