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Abstract. Modular forms are incredibly interesting functions which have a variety of
applications. They are especially intertwined with many facets of number theory, such as
elliptic curves and the famous monstrous moonshine conjecture. The two fields were unified
by the modularity theorem, which Wiles used to prove Fermat’s last theorem. However,
given all of their applications they are still of particular interest individually and can be
used in a variety of surprising ways.

1. Modular Forms

We must first define the modular group, around which modular forms are built. .

Definition 1.1. The modular group SL2(Z) is the set of all matrices

(
a b
c d

)
with integer

entries and determinant 1, i.e ad− bc = 1.

Notice that SL2(Z) is a group action on the space H. By definition,(
a b
c d

)
τ =

aτ + b

cτ + d
.

It can also be checked that the image of any point τ ∈ H under some matrix M ∈ SL2(Z)
remains in H. Now we are ready to define modular forms.

Definition 1.2. A modular form of weight k is a function f : H→ C that is:

(1) Analytic in the upper half plane H.
(2) Satisfies the condition

f(τ)(ck + d)k = f

(
aτ + b

cτ + d

)
for all

(
a b
c d

)
∈ SL2(Z). (modularity condition)

(3) f is holomorphic at ∞.

A modular form of weight 0 is known as a modular function

Proposition 1.3. As a consequence, we also have the following:

(1) If f and g are both modular forms of weight k, then so is f + g.
(2) If f and g are modular forms of weight m and n, then fg is a modular form of weight

m+ n.
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Proof. (1) Obviously f + g is holomorphic on H and at ∞, so it suffices to check the
modularity condition:

(f + g)(τ)(ck + d)k = f(τ)(ck + d)k + g(τ)(ck + d)k

= f

(
aτ + b

cτ + d

)
+ g

(
aτ + b

cτ + d

)
= (f + g)

(
aτ + b

cτ + d

)
i.e (f + g)(τ) also satisfies the modularity condition as desired.

(2) Similarly all that needs to be checked are the modularity conditions of fg. We have

(fg)(τ)(ck + d)m+n = f(τ)(ck + d)m · g(τ)(ck + d)n

= f

(
aτ + b

cτ + d

)
· g
(
aτ + b

cτ + d

)
= (fg)

(
aτ + b

cτ + d

)
from which it follows that fg is also a modular form, moreover of weight m+ n.

�

Now this is an undoubtedly strange definition, however it turns out that this is very
motivated for the following key reason:

Theorem 1.4. Matrices A =

(
1 1
0 1

)
and B =

(
0 −1
1 0

)
generate SL2(Z).

This result can be proved either geometrically or noting that since determinants are mul-
tiplicative, it suffices to observe what happens when we multiply by each matrix a certain
number of times. A formal proof is in [3]

Now, suppose we have two matrices X and Y for which the modularity condition holds.
Since XY ∈ SL2(Z), then the modularity condition holds for XY as well. Thus, since all
matrices in SL2(Z) can be generated from matrices A and B, condition (2) reduces to the
following:

f(τ) = f(τ + 1) and f

(
−1

τ

)
= τ kf(τ).

It can also be noted that no nonconstant modular forms of odd weight exist, since doing
so would give f(τ) = f(τ)(−1)k with matrix M = −I2

2. Eisenstein Series

Perhaps the nicest example of nonconstant modular forms come as Eisenstein Series.

Definition 2.1. For even k ≥ 4, the Eisenstein Series of weight k can be written as

Gk(τ) =
∑

(m,n)6=(0,0)

1

(mτ + n)k
.
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A proof of the Eisenstein series being a modular form can be found in [3]. One thing to be
noted about modular forms is that they satisfy the periodic condition f(τ) = f(τ + 1). The
following, known as q expansion can be motivated by considering other periodic functions
which satisfy the same recurrence. The most famous nonconstant example of such a function
in the complex plane is the exponential function, namely e2πi·τ . Let q = e2πi·τ . Then, q =
e2πi·(τ+1) as well because e2πi = 1, so this motivates us to rewrite the sum as a series in q,
hence the name q expansion. But how do we do so? First we must figure out what exactly
happens when τ = x+ yi. Expanding, we have

q = e2πiτ = e−2πy · e2πix =⇒ 0 < |q| < 1

since y is positive (recall that f has domain H.). Then, since f(τ) = f(τ + n) if and only if

n ∈ Z, we can define a new function
∼
f (q) = f(τ). In other words, we can take a modular

form over H and convert it to a function over the (punctured) open unit disk, which we shall
denote D′.

First remark that
∼
f is analytic on D′ and furthermore bounded (due to holomorphicity

at ∞). Thus, due to the Riemann Removable Singularity Theorem, there is an analytic

continuation of
∼
f from D′ to D. We are almost there: it is possible to write a power series

centered around 0, which will give us a relatively nice q expansion since we are dealing with
the open unit disk now.

Now it is known that all modular forms have q-expansions centered at 0.

Theorem 2.2.

Gk(τ) = 2ζ(k) + 2
(2πi)k

(k − 1)!

∞∑
n=1

σk−1(n)qn.

where σk−1(n) is the sum of the kth powers of the divisors of n.

Proof. The following proof is from [4].

We will use the identity

1

τ
+
∞∑
d=1

(
1

τ − d
+

1

τ + d

)
= π cot(πτ) = πi− 2πi

∞∑
m=0

qm.

This can be shown by integrating the series of 1
sin2(πz)

term by term and rearranging.

Differentiating k − 1 times with respect to τ and rearranging yields∑
n∈Z

1

(τ + n)k
=

(−2πi)k

(k − 1)!

∞∑
m=1

mk−1qm.

Then, ∑
(c,d)∈Z

1

(cτ + d)k
= 2

∞∑
d=1

1

dk
+ 2

∞∑
c=1

∑
d∈Z

mk−1qcm

= 2ζ(k) + 2
(2πi)k

(k − 1)!

∞∑
n=1

σk−1(n)qn

as desired.
�
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Euler showed that for general k even,

ζ(k) =
∞∑
n=1

1

nk
=
−(2πi)kBk

k! · 2
,

where Bk are the Bernoulli numbers, the coefficients of the power series of the function
f(x) = x

ex−1 . Upon noting now that

Gk(τ) = 2ζ(k)− 4kζ(k)

Bk

∑
n≥1

σk−1(n)qn,

the following definition makes sense:

Definition 2.3. The normalized Eistenstein Series Ek(τ) is defined as Ek(τ) = Gk(τ)
2ζ(k)

, i.e

Ek(τ) = 1− 2k

Bk

∑
n≥1

σk−1q
n, q = e2πiτ .

Remark that we only defined Eisenstein series for even k ≥ 4. This was due to issues
regarding the absolute convergence of E2(τ). However, it actually can be defined properly.

Definition 2.4. We define E2(τ) = 1− 24
∑

n≥1 σ(n)qn.

This is not actually a modular form. The second modularity condition fails; it actually
holds that

E2

(
−1

τ

)
= τ 2E2(τ)− 6i

π
τ.

In general, there are no modular forms of weight 2. That being said, E2(τ) is still a function
of particular interest.

Consider the function 2E2(2τ)−E2(τ). It can be shown that this satisfies the modularity
conditions for the subgroup

Γ0(N) =

{(
a b
c d

)
∈ SL2(Z), N | c.

}
where N = 2.

In general, it is useful to define modular forms for finite-index subgroups of SL2.

Definition 2.5. A modular form for some subgroup Γ ⊂ SL2(Z) is a function f : H → C.
satisfying

(1) f is holomorphic.
(2) Satisfies the condition

f(τ)(ck + d)k = f

(
aτ + b

cτ + d

)
for all

(
a b
c d

)
∈ Γ.

(3)

1

(cτ + d)k
f

(
aτ + b

cτ + d

)
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is bounded as τ → i∞ for all

(
a b
c d

)
∈ SL2(Z). This condition is known as being

holomorphic at the cusps.

3. Application to Sum of Four Squares and Other Interesting Facts

Now that we have lots of background in place, we are ready for some applications. It may
be surprising that many of the following can be proved using applications of modular forms.

Theorem 3.1. (Lagrange) Every integer n ≥ 0 is the sum of four positive integer squares
(not necessarily distinct)

Jacobi was able to actually find the number of such quadruples. Namely,

Theorem 3.2. (Jacobi) For positive integers n ≥ 0, number of quadruples (a, b, c, d) of
integers r4(n) satisfying

a2 + b2 + c2 + d2 = n is

{
8σ(n) n odd

24σ(nodd) n even.

where nodd = n/(2ν2(n)), i.e the largest odd number that divides n.

Proof. To count the number of quadruples, we introduce the generating function

θ(τ) =
∑
m∈Z

e2πim
2τ =

∑
m∈Z

qm
2

,

known as a theta function. The key is that when θ(τ) is raised to the fourth power, we get
the following relation:

θ(τ)4 =
∑
n≥0

r4(n)qn

where each coefficient counts what we want. Due to the Poisson Summation formula, it
can be shown that θ(τ)4 is a modular form of weight 2 under subgroup Γ0(4). Recall that
2E2(2τ)− E2(τ) ∈M2(Γ0(2)) ⊂M2(Γ0(2)). Similarly, 2E2(4τ)− E2(2τ) ∈M2(Γ0(4)).

It can be separately shown the space M2(Γ0(4)) has only 2 dimensions. If we let

f1 = E2(2τ)− E2(τ) and f2 = 2E2(4τ)− E2(2τ),

since f2 has no linear coefficient and f1 does, f1 and f2 are not scalar multiples of each other,
i.e they can be used as the basis for M2(Γ0(4)). Knowing that θ4(τ) ∈ M2(Γ0(4)), we can
freely write θ4(τ) = af1 + bf2, i.e as some linear combination of f1 and f2. Now,

f1 = 1 + 24
∑
n≥1

σ(nodd)qn

f2 = 1 + 24
∑
n≥1

σ(nodd)q2n

Comparing coefficients, it follows that

θ(τ)4 =
1

3
f1 +

2

3
f2 = 8

∑
2|n

σ(n)qn + 24
∑
2-n

σ(nodd)qn

as desired. �
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We stated in the above proof that M2(Γ0(4)) has only two dimensions. Let Mk denote
the modular forms of weight k. It’s also interesting to consider dimMk, and there’s a way to
explicitly find the dimension for all even k.

Theorem 3.3. For even k, dimMk =

{⌊
k
12
c k ≡ 2 (mod 12)

1 +
⌊
k
12
c k 6≡ 2 (mod 12)

The proof of this can be found in [3], but it’s too long to include here. Nonetheless, it is
interesting.

Another interesting application of modular forms comes when looking at the zeta function
ζ(k).

Proposition 3.4. For all integers k > 0, ζ(k)
πk ∈ Q.

The solution to this relies on the fact that if some modular form f has any rational
coefficient in it’s q expansion, then its constant term is also rational. Since modular forms
are also modular forms up to scaling (since constants are also modular forms of weight 0).

Then, dividing Gk(τ) by (2πi)k

(k−1)! yields the given solution.

4. A special type of Modular Form - The j function

The j-function is a modular function (i.e it is a modular form of weight 0) which satisfies
many interesting properties. It was initially studied due to its connection with the monster
group, a conjecture known as monstrous moonshine.

Definition 4.1. The modular invariants are defined to be

g2(τ) = 60G4(τ) and g3(τ) = 140G6(τ)

Definition 4.2. The modular discriminant ∆(τ) is defined as

∆(τ) = g2(τ)3 − 27g3(τ)2.

Remark that this is a modular form of weight 12. Furthermore, this function has many
interesting properties such as being a cusp form, in where its Fourier series has constant
term 0. Finally, the modular discriminant is nonvanishing on H, as proved in [3].

Now we are ready to define the j function.

Definition 4.3. The j-function (or j-invariant) can be defined as a function j : H → C
satisfying

j(τ) = 1728
g2(τ)3

g2(τ)3 − 27g3(τ)2
= 1728

(g2(τ))3

∆(τ)
.

Clearly, this is a modular form of weight 0. Furthermore, it can be shown that the q-
expansion of j(τ) is

j(τ) =
1

q
+ 744 + 196844q + 21493760q2 + · · · .

These coefficients are surprisingly related to the monster group, which is the largest sporadic
simple group.
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However, there are more interesting properties to be unearthed which are unrelated to

monstrous moonshine, such as the closeness of e
√
163π to an integer. This constant, known

as Ramanujan’s constant has approximation

eπ
√
163 = 262537412640768743.999999999999 . . .

which is extremely close to an integer! The reason behind this lies behind the following:

Theorem 4.4. j
(

1+i
√
163

2

)
= −6403203.

The proof behind this requires introducing elliptic curves and complex multiplication which

will not be discussed in this paper, however the initial claim of eπ
√
163 being very close to an

integer can be justified as follows:

When τ = 1+i
√
163

2
, the corresponding value of q can be computed as

q = e2πiτ = −e−π
√
163.

Plugging this into the q-expansion of j(τ) gives

j(τ) =
1

q
+ 744 +O(−e−π

√
163)

=⇒ eπ
√
163 ≈ 6403203 − 744

where in the above expression we omit the error terms and simply stick to the approxi-

mation. In any case, since O(−e−π
√
163) is very small, the resulting value will be very close

to an integer.
There also exist other values which have similar properties, known as Heegner numbers,

which are, as written in [6], ”The values of −d for which imaginary quadratic fields Q(
√
−d)

are uniquely factorable into factors of the form a + b
√
−d. Here, a and b are half-integers,

except for d = 1 and 2, in which case they are integers. The Heegner numbers therefore corre-
spond to binary quadratic form discriminants −d which have class number h(−d) equal to 1,
except for Heegner numbers −1 and −2, which correspond to d = −4 and −8, respectively.”

It can be shown that there exist finitely many Heegner numbers, and they are:

−1,−2,−3,−7,−11,−19,−43,−67, and− 163

These exhibit similar properties. For example,

eπ
√
43 = 884736743.999 . . . and eπ

√
67 = 147197952743.99999 . . .
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