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1. Preliminaries

1.1. Confusing Notation. We introduce the notation that will be used for the remainder
of this paper. We define

|(z1, . . . , zn)| =
√
|z1|2 + · · ·+ |zn|2 (z1, . . . , zn) ∈ Cn,

for (z1, . . . , zn) ∈ Cn. We generally denote this point by a single letter z. Notice that we
have |z−w| ≤ |z− x|+ |x−w| for z, x, w ∈ Cn (this is geometrically obvious identifying Cn

with R2n). If α = (α1, . . . , αn) ∈ (Z+)n, we write

zα = (zα1
1 , . . . , zαn

n ).

In the case that zi = αi = 0, we take zαi
i = 1. We write α! = α1! · · · · · αn!, and |α| =

α1 + · · · + αn. We write 1 = (1, . . . , 1) ∈ (Z+)n, and in general N = (N, . . . , N). We write
α ∈ (Z+)n ≥ 0 if αi ≥ 0 for all i. For n ∈ N, we say α ≤ n if αi ≤ n for all i.

1.2. Structure of Cn. In this paper, we aim to generalize the concepts of complex analysis
into multiple dimensions. To do this, we must first generalize concepts such as open sets and
limits.

Definition 1.1. Let z ∈ Cn and r > 0. We define the open ball of radius r centered at z to
be the set

Bn(z, r) = {w ∈ Cn : |z − w| < r},
and the closed ball of radius r centered at z to be the set

Bn(z, r) = {w ∈ Cn : |z − w| ≤ r}.

Definition 1.2. Let E ⊆ Cn. We say that E is open if, for every z ∈ E, there is rz ∈ R
such that Bn(z, rz) ⊆ E. We say that E is closed if Cn \ E is open.

Just as in the case of C, Bn(z, r) is open. The proof is identical, so we skip it.

Definition 1.3. Let E ⊆ Cn. We define the interior of E to be
◦
E = {z ∈ E : ∃δ > 0, Bn(z, δ) ⊆ E},

the boundary of E to be

Bd(E) = {z ∈ Cn : ∀δ > 0, Bn(z, δ) ∩ E 6= ∅, Bn(z, δ) ∩ Ec 6= ∅},
and the closure of E to be

E = {z ∈ Cn : ∀δ > 0, Bn(z, δ) ∩ E 6= ∅}.

Proposition 1.4. Let E ⊆ Cn. The interior of E is the largest open set contained in E,
and the closure of E is the smallest closed set containing E.
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Proof. Suppose that z ∈
◦
E, say with Bn(z, r) ⊆ E. Let w ∈ Bn(z, r). Then, for x ∈

Bn(w, r − |z − w|), we have that |x − z| ≤ |x − w| + |w − z| < r − |z − w| + |w − z| = r.

Thus, x ∈ Bn(z, r) ⊆ E, so w ∈
◦
E. Hence,

◦
E is open. Now, for any open set A ⊆ E,

we have that, for each z ∈ A, there is r with Bn(z, r) ⊆ A ⊆ E. Thus, z ∈
◦
E, so

A ⊆
◦
E. Now, let x ∈ Ec

. Then, by definition, there is some δ > 0 with Bn(z, δ) ∩ E = ∅.
Now suppose that w ∈ Bn(z, δ) ∩ E. Then, there is x ∈ Bn(w, δ − |z − w|) ∩ E. Then,
|x− z| ≤ |z − w|+ |x− w| < |z − w|+ δ − |z − w| = δ, which is a contradiction, as x ∈ E.
Thus, Bn(z, δ) ∩E = ∅, so E is closed. Notice also that E ⊆ E. Now, suppose that A ⊇ E
is closed, and that z ∈ E \ E is not in A. Then, for any δ > 0, Bn(z, δ) ∩ E 6= ∅, so
Bn(z, δ) ∩ A 6= ∅. Thus, Ac is not open, a contradiction. �

Notice that E =
◦
E ∪ Bd(E).

Generalizing the notion of open balls, we have the following.

Definition 1.5. Let z ∈ Cn and r ∈ (Z+)n. The open polydisc of radius r centered at z is
the set

Dn(z, r) = {w ∈ Cn : |wj − zj| < rj, 1 ≤ j ≤ n}
and the closed polydisc of radius r is the set

Dn(z, r) = {w ∈ Cn : |wj − zj| ≤ rj, 1 ≤ j ≤ n}.

The boundary of the polydisc is the set Bd(Dn(z, r)), consisting of all points in the closed
polydisc satisfying |zj − aj| = rj for some j. We define the distinguished boundary T n(z, r)
of the polydisc to be the set {w : wj = zj + rje

iθj , 0 ≤ θj < 2π, 1 ≤ j ≤ n}. These are not
the same set, except when n = 1. For example, when n = 2, Bd(Dn(z, r)) has R-dimension
3 (identifying Cn with R2n), while T n(z, r) has R-dimension 2.

Definition 1.6. Let f : Cn → C, and fix w ∈ Cn. Suppose that there exists an L such that,
for any ε > 0, there exists δ > 0 so that

z ∈ Bn(w, δ) =⇒ f(z) ∈ B1(L, ε).

Then we say that L is the limit of f approaching w, and write L = limz→w f(z).

Notice that such an L must be unique. If L and L′ 6= L both satisfy our conditions, we
may choose ε = |L − L′|/2. If δL and δL′ are the corresponding values from the definition,
and δ = min{δL, δL′}, then we have that

z ∈ Bn(w, δ) =⇒ f(z) ∈ B1(L, ε), B1(L′, ε) =⇒ f(z) ∈ B1(L, ε) ∩B1(L′, ε).

However, if such a value f(z) = y exists, then

|L− L′| ≤ |L− y|+ |L′ − y| < 2ε = |L− L′|.

Definition 1.7. Let f : Cn → C and w ∈ Cn. We say that f is continuous at w if limz→w f(z)
exists and is equal to f(w). More generally, for E ⊆ X, we say that f is continuous on E if
f is continuous at every w ∈ E. If f is continuous on X, we say f is continuous.

It is easy to check that, if f, g : Cn → C are continuous, so are fg : Cn → C and
f + g : Cn → C.
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Definition 1.8. A bounded subsetD ⊆ Cn is called circular if z ∈ D means that (eiθz1, . . . , e
iθzn) ∈

D for all θ ∈ R. More generally, we say D is multicircular if (eiθ1z1, . . . , e
iθnzn) ∈ D for all

θ1, . . . , θn ∈ R.

This easy generalization from C to Cn is a special case of what are called metric spaces,
see [Cop88].

2. Power Series

2.1. Ambiguity in Ordering. When we first consider infinite sums, we consider infinite
sums of the form

lim
k→∞

k∑
a=1

ba.

This sum implicitly uses the natural ordering on N. When considering a sum over Nn, we
have many different ways of summing, none of which are canonical. For instance, we have

lim
k→∞

k∑
α1=0

· · ·
k∑

αn=0

bα,

and

lim
k→∞

k∑
j=0

∑
|α|=j

bα,

and these need not be equal. Because of this, we restrict ourselves to sums converging
absolutely, so we may reorder the terms arbitrarily. We write

∑
α≥0 bα for this value.

2.2. Domain of Convergence.

Definition 2.1. The domain of convergence of the power series is the interior of the set of
points at which the series converges absolutely.

For example, consider the power series
∑∞

n=1 z
n
1 z

n!
2 . This converges when

(z1, z2) ∈ {(z1, z2) : |z2| < 1} ∪ {(z1, z2) : z1 = 0} ∪ {(z1, z2) : |z1| < 1, |z2| = 1}.

The latter two sets have no interior points, and the first set is open, so the domain of
convergence of this series is {(z1, z2) : |z2| < 1}.

Suppose that (z1, . . . , zn) is in the domain of the convergence D of some power series.
Because we define this by absolute convergence, we have that (λ1z1, . . . , λnzn) ∈ D when
1 = |λ1| = · · · = |λn|. Thus, D is multicircular. Further, using the comparison test for
absolute convergence of series (λ1z1, . . . , λnzn) ∈ D when |λj| ≤ 1 for each j. In particular,
writing r = (|z1|, . . . , |zn|), we have that

D =
⋃
z∈D

T n(0, r).

We have deduced that every convergence domain is a union of polydiscs centered at the
origin. To continue this discussion, we need the following lemma.
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Lemma 2.2 (Hölder’s Inequality). For any two sequences (xk)k and (yk)k in Cn,

∞∑
k=1

|xkyk| ≤

(
∞∑
k=1

|xk|p
)1/p( ∞∑

k=1

|yk|q
)1/q

,

where 1/p+ 1/q = 1 and all series converge.

Now suppose that both
∑

α |cαzα| and
∑

α |cαwα| converge. As we require absolute con-
vergence, we can use an enumeration of (Z+)n, and write

∑∞
k=1 |cαk

zαk | and
∑∞

k=1 |cαk
wαk |

for these series respectively. Now, for 0 ≤ t ≤ 1, we have that∑
α

|cα||zα|t|wα|1−t =
∞∑
k=1

|cαk
zαk |t|cαk

wαk |1−t ≤

(
∞∑
k=1

(
|cαk

zαk |t
)1/t)t( ∞∑

k=1

(
|cαk

wαk |1−t
)1/(1−t))1−t

,

using Hölder’s Inequality on p = 1/t and q = 1/(1− t). Thus, if z, w ∈ D, then ztw1−t ∈ D
when 0 ≤ t ≤ 1. It turns out that these conditions are sufficient for a set to be the domain
of convergence of a power series. For a proof, see [Boa12].

We will not use this discussion further in this paper, but will rather use power series to
motivate holomorphicity.

3. Holomorphic Functions

3.1. Motivation and Definition. In C, convergent power series are local models for holo-
morphic functions. In Cn, power series converge uniformly on compact sets, so they represent
continuous functions. Further, these power series can be viewed as power series in one vari-
able, which makes the function of one variable holomorphic. This motivates the following
definition.

Definition 3.1. Let D ⊆ Cn be an open set. We say f : D → C is holomorphic on D if it
is continuous, and it is holomorphic in each of its variables.

Definition 3.2. Let K ⊆ Cn. A function f : K → C is called holomorphic on K if, for each
a ∈ K, there is an open neighborhood D such that D ∩K is closed and there is a function
fD which is holomorphic on D, and (fD)|D∩K = (f)|D∩K .

It turns out that we do not need to require f to be continuous.

Proposition 3.3. If f, g are holomorphic on D, then f +g, f −g, and f ·g are holomorphic
on D. If g(z) 6= 0 for all z ∈ D, then f/g is holomorphic on D.

Proof. This all follows from the one-dimensional analogue. �

3.2. Partial Derivatives. Suppose that we have a holomorphic function f : C→ C. Write
f = u+ iv, where u, v : R2 → R. We then have that

df

dz
=
∂u

∂x
+ i

∂v

∂x
.

Applying the Cauchy-Riemann Equations, we get that

df

dz
= −i

(
∂u

∂y
+ i

∂v

∂y

)
.
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Thus,
df

dz
=

1

2

[(
∂u

∂x
+ i

∂v

∂x

)
− i
(
∂u

∂y
+ i

∂v

∂y

)]
=

1

2

(
∂f

∂x
− i∂f

∂y

)
.

This value can be computed more generally when f is holomorphic. Further, if f is holomor-
phic, it coincides with the derivative of f . Suppose that g : Cn → C. Write (z1, . . . , zn) =
(x1 + iy1, . . . , xn + iyn), so that we can view g : R2n → C. We define

∂f

∂zj
=

1

2

(
∂

∂xj
− i ∂

∂yj

)
f.

When f is holomorphic on some open set D, this agrees with what we would expect the
partial derivative of f to be.

For m ∈ (Z+)n and z ∈ Cn, we write

∂mf

(∂z)m
=

(
∂m1

(∂z1)m1
· · · ∂mn

(∂zn)mn
f

)
(z).

4. Integration

4.1. Definition. In R, our integrals are of the form∫ b

a

f(x)dx.

In other words, we integrate over the interval [a, b]. Now, in Rn, our integrals are of the form∫ b1

a1

· · ·
∫ bn

an

f(x1, . . . , xn)dxn · · · dx1.

Here, we integrate over the set

[a1, b1]× · · · × [an, bn].

Since we integrate over curves in C, it makes sense that we integrate over the product of
curves in Cn. Given curves γ1, . . . , γn and f : Cn → C, we define∫

γ1×···×γn
f(z)dz =

∫
γ1

· · ·
∫
γn

f(z1, . . . , zn)dzn · · · dz1.

For example, we are able to integrate over T n(a, r), as it is the product of curves, but we
cannot integrate over Bd(Bn(a, r)).

4.2. A General Cauchy Integral Formula.

Theorem 4.1. Let f be holomorphic on Dn(a, r). Then, for all z ∈ Dn(a, r),

f(z) =
1

(2πi)n

∫
Tn(a,r)

f(w)

(w − z)1
dw.

Proof. We induct on n, with n = 1 being the usual Cauchy Integral Formula. Suppose that
this formula is proven n−1 dimensions. Define g(z) = f(z, z2, . . . , zn), which is holomorphic

on D1(a1, r1). Applying the Cauchy Integral Formula, we have that

f(z1, z2, . . . , zn) =
1

2πi

∫
T 1(a1,r1)

f(w1, z2, . . . , zn)

w1 − z1
dw1.
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If we fix w1, then (z2, . . . , zn) 7→ f(w1, z2, . . . , zn) is holomorphic onDn−1((a2, . . . , an), (r2, . . . , rn)).
Thus,

f(w1, z2, . . . , zn) =
1

(2πi)n−1

∫
Tn−1((a2,...,an),(r2,...,rn))

f(w1, z2, . . . , zn)

(w2 − z2) · · · (wn − zn)
dw2 · · · dwn.

Plugging this into the right hand side of our first equation, we get our result. �

We once again have a derivative version of the Cauchy Integral Formula

∂kf

(∂z)k
=

k!

(2πi)n

∫
Tn(a,r)

f(w)

(w − z)k+1
dw.

The proof of this is analogous to the proof of the ordinary Cauchy Integral Formula using
induction on n. This in particular implies that all partial derivatives of f exist.

We write f (k)(z) for ∂kf
(∂z)k

.

4.3. Consequences of the Cauchy Integral Formula.

Corollary 4.2. Suppose that f is holomorphic on Dn(a, r) and that |f(z)| ≤ M for all

z ∈ Dn(a, r). Then, for w ∈ Dn(a, r), we have

|f (k)(w)| ≤ Mk!

rk
.

Proof. We have that

|f (k)(w)| =
∣∣∣∣ k!

(2πi)n

∫
Tn(a,r)

f(z)

(z − w)k+1
dz

∣∣∣∣ ≤ k!

(2π)n

∫
Tn(a,r)

∣∣∣∣ f(z)

(z − w)k+1

∣∣∣∣ dz.
By repeated applications of the ML-Inequality, this is bounded above by Mk!

rk
. �

Corollary 4.3. If f is holomorphic on the open polydisc Dn(a,R), then

f(z) =
∑
k≥0

1

k!
f (k)(a)(z − a)k.

Proof. Firstly, notice that we still have

1

(1− z)1
=

∑
0≤k≤N−1

zk +
zN

1− z
.

Pick z1 ∈ Bn(a, r), and suppose that ((z1)i) = ri < Ri. Write r = (r1, . . . , rn). Pick
ri < r′i < Ri, and write r0 = (r′1, . . . , r

′
n). We therefore have that

f(z1) =
1

(2πi)n

∫
Tn(a,r)

f(z)

(z − z1)1
dz.

Now, by our geometric sum, we have that

1

(z − z1)1
=

∑
0≤k≤N−1

(z1 − a)k

(z − a)k+1
+

(z1 − a)N

(z − z1)1(z − a)N
.

Multiplying both sides by f(z) and integrating over T n(a, r0), we get∫
Tn(a,r0)

f(z)

z − z1
dz =

∑
0≤k≤N−1

∫
Tn(a,r0)

f(z)

(z − a)k+1
dz(z1−a)k+(z1−a)N

∫
Tn(a,r0)

f(z)

(z − z1)1(z − a)N
.
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Dividing both sides by (2πi)n and simplifying, we get

f(z1) =
∑

0≤k≤N−1

f (k)(a)

k!
(z1 − a)k +

(z1 − a)N

(2πi)n

∫
Tn(a,r0)

f(z)

(z − z1)1(z − a)N
dz.

It suffices to show that the left integral tends to 0 as N tends to ∞. If M is the maximum
of |f(z)| over T n(a, r0), then repeated use of the ML-Inequality gives that this integral is at
most

rN

(2π)n
· M

(r0 − r)1rN0
· (2π)nr10 =

rN

rN0

Mr10
(r0 − r)1

.

By construction of r0, this tends to zero as N tends to infinity. �

Corollary 4.4. Suppose that f is holomorphic on an open connected subset of Cn. If f
vanishes on an open subset of D, then f = 0 on D.

Proof. Consider the set E = {z ∈ D : ∀n ∈ (Z+)n, f (n)(z) = 0}. This is the intersection
of En = {z ∈ D : f (n)(z) = 0}. Now, each the En are closed, as the f (n) are continuous.
Thus, E is closed. Now, if z ∈ E, and U is a neighborhood of z in which the Taylor Series
Expansion holds, then f(z) = 0 in U , so E is open. Thus, E is clopen so E = D or E = ∅.
Now, if f vanishes on an open subset of D, then E 6= ∅, so E = D and f = 0 on D. �

5. A Difference From C

5.1. Statement. Recall the Riemann Mapping Theorem in C, which states that every
nonempty simply connected open set that is not all of C is conformally equivalent to the
unit disc. We show that (an analog of) this is not true in higher dimensions.

Definition 5.1. Given D ⊆ Cn, f = (f1, . . . , fm) : D → Cm is called holomorphic if each
of the coordinate functions fk : D → C is holomorphic. A map f : D1 → D2 is called
biholomorphic if it is holomorphic and has an inverse which is holomorphic. We say that D1

is biholomorphic to D2.

We prove the following theorem.

Theorem 5.2 (Poincaré). The ball Bn(0, 1) is not biholomorphic to the polydisc Dn(0,11)
for n ≥ 2.

We write Bn and Dn for these sets.

5.2. Basic Group Theory.

Definition 5.3. A group is a set G with a binary operation · : G × G → G such that the
following are true.

• (g1 · g2) · g3 = g1 · (g2 · g3) for all g1, g2, g3 ∈ G.
• There is e ∈ G such that e · g = g · e = g for all g ∈ G.
• For each g ∈ G, there is g−1 ∈ G such that g · g−1 = g−1 · g = e.

Example. The integers Z are a group under a · b = a+ b.

We write gh for g · h.

Proposition 5.4. The identity element e ∈ G is unique. Further, for g ∈ G, the inverse
g−1 is unique.
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Proof. Suppose that e and e′ are identity elements. Then,

e = ee′ = e′.

Now, suppose that h and k are both inverses of g. We then have

h = he = h(gk) = (hg)k = ek = k.

�

Definition 5.5. A group G is said to be abelian if gh = hg for all g, h ∈ G.

Definition 5.6. Let G be a group. A subset ∅ 6= H ⊆ G is called a subgroup of G if, for
all g, h ∈ H, gh ∈ H and g−1 ∈ H.

Subgroups are essentially smaller groups that are contained in the larger one.
Aside from groups as objects, we also study certain maps between these groups.

Definition 5.7. Let G and H be groups. A homomorphism from G to H is a map φ : G→ H
such that

φ(gh) = φ(g)φ(h)

for all g, h ∈ G. A bijective homomorphism is called an isomorphism. If there exists an
isomorphism between G and H, we say that G and H are isomorphic.

For example, for any groups G and H, there is the trivial homomorphism φ(g) = eH . An
important result we will use is the following.

Proposition 5.8. Suppose that G and H are isomorphic groups, and that G is abelian.
Then H is abelian.

Proof. Let φ : G → H be an isomorphism, and let h1, h2 ∈ H. Write h1 = φ(g1) and
h2 = φ(g2). Then,

h1h2 = φ(g1)φ(g2) = φ(g1g2) = φ(g2g1) = φ(g2)φ(g1) = h2h1.

�

We will also need the notion of a topological group. However, delving into this takes too
much time, so we leave the reader to get acquainted with the subject on their own.

5.3. Proof. We denote the group of biholomorphic maps from D to D by Aut(D), and the
subgroup of maps fixing a ∈ D by Auta(D). When D is bounded, we make Aut(D) into a
topological group by defining d(σ1, σ2) = supz∈D |σ1(z)− σ2(z)|. We write AutId(D) for the
group of automorphisms connected to the identity.

Lemma 5.9. If D1 is biholomorphic to D2, then the groups Aut(D1) and Aut(D2) are
isomorphic. Given a1 ∈ D1 and a2 ∈ D2 for which there is a biholomorphic map f : D1 → D2

with f(a1) = a2, then Auta1(D1) and Auta2(D2) are isomorphic. Further, AutId(D1) and
AutId(D2) are isomorphic, as well as AutIda1(D1) and AutIda2(D2).

Proof. Let f : D1 → D2 be biholomorphic. Then,

σ 7→ f ◦ σ ◦ f−1

is a group homomorphism from Aut(D1) to Aut(D2). Because it is invertible, it is an
isomorphism. It is also clearly an isomorphism between Auta1(D1) and Auta2(D2). This
also serves as an isomorphism between AutId(D1) and AutId(D2), along with AutIda1(D1) and

AutIda2(D2). �
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Given an n× n matrix, we write A∗ for the conjugate transpose of A. We say a matrix is
unitary if AA∗ = I. We write SU(n) for the group of unitary n×n matrices with determinant
1. We leave it as an exercise to verify that SU(n) is not abelian.

Proposition 5.10. AutId0 (Bn) is not abelian.

Proof. We have that SU(n) is a subgroup of AutId0 (Bn), as A ∈ SU(n) defines a biholomorphic
map given by z 7→ Az. This map leaves 0 invariant. �

The following proposition establishes our theorem.

Proposition 5.11. For every a ∈ Dn, the group AutIda (Dn) is abelian.

However, proving this requires a bit more work.

Definition 5.12. A function f(z) =
∑
|k|=N akz

k is called a homogeneous polynomial of
degree N .

Proposition 5.13. Let D ⊆ Cn be bounded, and let a ∈ D. If f ∈ Auta(D) satisfies
f ′(a) = 1, then f(z) = z for all z ∈ D.

Proof. Assume without loss of generality that a = 0. We have that D ⊆ Dn(0, R) for some
R > 0. For all f ∈ Aut0(D), if we write f(z) =

∑
n anz

n, we have that |an| ≤Mr−n, where
r is so that Dn(0, r) ⊆ D. Now, write f ’s Taylor Expansion as

f(z) = z + fN(z) + · · · ,
where fk denotes an n-tuple of homogeneous polynomials of degree k, and N is chosen to be
the smallest possible k. We then have that fk has Taylor Expansion

fk(z) = z + k · fN(z) + · · · .
However, for large k, this contradicts our bound. We thus have that fN = 0. As we chose
N to be minimal, f(z) = z in Dn(0, r). By our analog of analytic continuation, f(z) = z on
D. �

We write kθ(z) = (eiθz1, . . . , e
iθzn). If {0} ⊆ D ⊆ Cn is circular, then kθ is an element of

Aut0(D).

Corollary 5.14. Let D ⊆ Cn be bounded and circular, and suppose 0 ∈ D and f ∈ Aut0(D).
Then f is linear.

Proof. Let
g = k−θ ◦ f−1 ◦ kθ ◦ f.

Then,
g′(0) = k′−θ(0) · (f−1)′(0) · k′θ(0) · f ′(0) = 1,

so that g(z) = z. Thus,
kθ ◦ f = f ◦ kθ.

Write f = (f1, . . . , fn), so that fj(e
iθz) = eiθfj(z). Let fj(z) =

∑
k≥0 akz

k. Then,

eiθak = ei|k|θak,

meaning that ak = 0 for all |k| > 1. �

Now, our result follows from this next corollary.
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Corollary 5.15. Every f = (f1, . . . , fn) ∈ Aut(Dn) has the form

fj(z) = eiθj
zp(j) − aj

1− aj
zp(j),

where θj ∈ R, a ∈ Dn, and p is a permutation of the multi-index j = (j1, . . . , jn).

Proof. Clearly this map is an automorphism. Write σa for the map given by

fj =
z − aj
1− ajz

.

Then the inverse of σa is given by σ−a. If f ∈ Aut(Dn), then σf(0) ◦ f leaves 0 invariant. We
show that all elements of Aut0(D

n) permute the variables and multiply by some number with
norm 1. Suppose that f ∈ Aut0(D

n). As Dn is circular, f is linear, say fk =
∑n

j=1Ak,jzj.

We therefore have that
∑n

k=1 |Ak,j| ≤ 1, as f(Dn) ⊆ Dn. Now, consider the sequence
z(n) = (0, . . . , 0, 1 − 1/n, 0, . . . , 0), converging to the boundary of Dn. We then have that
f(z(n)) =

(
(1 − 1/n)A1,j, . . . , (1 − 1/n)An,j)

)
converges to the boundary of Dn. Thus,

|Ak,j| = 1 for some k. Write q(j) for this value. As
∑n

k=1 |Ak,j| ≤ 1, q is a permutation. If p
is the inverse permutation of q, then fk(z) = Ak,p(k)zp(k), and |Ak,p(k)| = 1. �
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