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Abstract. In the following paper, we set out to figure out how finite Nevanlinna-Pick
Interpolation works through mapping points on the unit disk to itself. We find that such
a mapping exists if and only if the Pick matrix is positive semi-definite, and then derive
some corollaries and extensions to the original problem, including to Hardy spaces and
symmetrized bidisks. Thanks to Simon Rubinstein-Salzedo for his Spring 2021 complex
analysis course, without which this paper would not come to be.

1. Nevanlinna-Pick Interpolation

The Nevanlinna-Pick problem asks, if we have an input sequence {zn} ⊂ D and an output
sequence {wn} ⊂ C, then does there exist an analytic function f : D → D that maps {zn}
to {wn}? If there is, we may then further ask: how many functions are there, and what
properties they satisfy?

This problem can also be considered in the reals, and we quickly see that although it’s easy
to find a family of functions that work, it is difficult to find all solutions. Using Gaussian
elimination we can find an nth degree polynomial f(x) that interpolates {zn}, and then we
can just use

f(x) + g(x)
∏
i

(x− zi).

In this paper, we will restrict ourselves to the complex plane, as the real axis is weirder. We
begin with Mobius functions:

Definition 1.1. Mobius transformations are given by f(z) = az+b
cz+d

where ad− bc = 1.

Because ad − bc = 1 then there exists a homormorphism between Mobius functions and
SL2(R); we denote (

a b
c d

)
z =

az + b

cz + d

for convenience.

Proposition 1.2. Mobius functions map H→ H.

Proof. Let z ∈ H, so =(z) > 0. Then we have(
a b
c d

)
z =

az + b

cz + d
· cz + d

cz + d

=
ac|z|2 + bd+ (ad− bc)z

|cz + d|2

=
ac|z|2 + bd+ <(z)

|cz + d|2
+
=(z)

|cz + d|2
i

1
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which lies in H as desired. �

In fact, Mobius functions are the automorphism group on H. Blaschke factors are cousins
of Mobius functions, mapping from D→ D.

Definition 1.3. We denote the Blaschke factor at a ∈ D as b0(z) = z and

ba(z) =
z − a
1− az

.

Note that the Blaschke factor has a zero at a, so we can define a Blaschke product B(z)
as the product of several (maybe infinite) Blaschke factors along with the coefficient eiα, and
thus get an analytic function (extra condition below) from D→ D with those zeroes.

Proposition 1.4. Given an analytic function f : D → D where f(a) = 0 then f(z) =
ba(z)f1(z) for some other analytic function f1 : D→ D.

This is not hard to see because b′a(z) must be nonzero as long as a 6= 1. Then f(z)/ba(z)
is analytic, and since ba(z) is an automorphism of D this function is from D→ D as desired.

Proposition 1.5. An infinite Blaschke product converges on all compact subsets of D if and
only if the sum of coefficients

∑
n(1− |an|) converges.

The above proposition is proved as Theorem 1.5 in Chapter 9 of the book. For convenience,
we state it here:

Proof. Since for a Blaschke factor ba(z) we have |a|, |z| < 1, then

|1− ba(z)| =
∣∣∣∣(a+ |a|z)(1− |a|)

a(1− az)

∣∣∣∣
≤ |a|(1 + |z|)
|a|(1− |a||z|

(1− |a|)

≤ 2

1− |z|
(1− |a|).

Then the product of these ban(z) terms converges uniformly as long as the sum of 1 − |an|
terms converges.

Now suppose that the product converges, so
∞∑
n=1

1− ban(z)

also converges, and by reversing the steps shown above we prove that
∑

n(1 − |a|) must
converge. �

Now let’s construct the analytic function given by the Nevanlinna-Pick theorem. We define
a series of functions Bn(z) inductively as B0(z) = 1 and

Bn(z) = (bwn)−1 ◦ (zBn−1) ◦ bzn(z).

For convenience, we define An(z) = bzn(z) and Cn(z) = bwn(z). I claim that this function
works as long as the Pick matrix M , defined by

Mi,j =
1− wiwj
1− zizj
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is positive semi-definite. We use the following lemma:

Lemma 1.6. Suppose the Pick matrix is positive semi-definite. Then the matrix N defined
by

Ni,j =
1− Cn(wi)Cn(wj

An(zi)An(zj)

1− An(zi)An(zj)

for 1 ≤ i, j < n is positive semi-definite.

Proof. Rearranging and simplifying, we have

Ni,j =
1

An(zi)An(zj)

(
1− Cn(wi)Cn(wj)

1− An(zi)An(zj)
− 1

)

=
1

An(zi)An(zj)

(
(1− zizn)(1− znzj)(1− |wn|2)(1− wiwj)
(1− wiwn)(1− wnwj)(1− |zn|2)(1− zizj)

− 1

)
.

Now we define a n by n diagonal matrix D1 with the ith diagonal element as(
1− zizn
1− wiwn

)√
1− |wn|2
1− |zn|2

.

This matrix is nice because conjugating it with M gives us that nasty fraction in the indices
of N :

(D1MD∗1)i,j =
(1− zizn)(1− znzj)(1− |wn|2)(1− wiwj)
(1− wiwn)(1− wnwj)(1− |zn|2)(1− zizj)

.

When i = n or j = n, then this fraction immediately collapses down to 1. Now define
another n by n matrix I1 as

(I1)i,j =


1 i = j

−1 i 6= n, j = n

0 otherwise

.

In other words, I1 is the n− 1 by n− 1 identity matrix plus a column of −1s and a row of
0s. Conjugating this, we get that

(I1D1MD∗1I
∗
1 )i,j =

{
(1−zizn)(1−znzj)(1−|wn|2)(1−wiwj)

(1−wiwn)(1−wnwj)(1−|zn|2)(1−zizj) − 1 (i, j) 6= (n, n)

1 i = j = n
.

We are getting closer and closer to what we want in N . Lastly, define D2 as the n by n
diagonal matrix with entries 1/An(zi) for 1 ≤ i < n and (D2)n,n = 1. Conjugating this as
well, we get that

(D2I1D1MD∗1I
∗
1D
∗
2)i,j =


Ni,j i, j < n

1 i = j = n

0 otherwise

.

�

Because |wn| < 1, we see that the matrix D2I1D1 is actually invertible, so this actually
proves the stronger statement that N ≥ 0 if and only if M ≥ 0. With this, we can prove
one side of the theorem:
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Theorem 1.7. If the Pick matrix is positive semi-definite, then there exists an analytic
function f : D→ D that maps {zn} to {wn}.

Proof. I claim that the aforementioned construction works, and that for all positive integral
n there exists a function Bn−1(z) : D→ D satisfying

Bn−1(An(zi)) =
Cn(wi)

An(zi)

for all 1 ≤ i ≤ n− 1. One can quickly check that if such a function exists, then by induction
we have found a function that interpolates {zn} and {wn}. This is because taking i = n
quickly yields equality as well.

Clearly when n = 1 then B0(z) = 1 exists. Now using strong induction, suppose for
1 ≤ i ≤ n− 1 that Bi−1 exists. It now suffices to show that when M is positive semi-definite
that Bn−1(z) exists, but this is analogous to showing that the matrix

M ′
i,j =

1− Cn(wi)Cn(wj

An(zi)An(zj)

1− An(zi)An(zj)

is also positive semi-definite. This is exactly N from Lemma 1.6, so we’re done. �

We now go over an example to showcase Nevanlinna-Pick interpolation. Let’s first consider
the sequences

{zn} =
ζn

2
{wn} =

1

n+ 1

where ζ is a primitive 3rd root of unity for 1 ≤ n ≤ 3. Clearly both sequences lie in D. Then

bw1 ◦B1(z) =
B1(z)− 1

2

1− 1
2
B1(z)

= bz1(z) =
z − ζ

1− ζ2z
= −ζ,

which implies B1(z) = 1−2ζ
2−ζ . We can then continue the inductive process to find B3(z), our

answer.

On the next page is a figure on a Nevanlinna-Pick algorithm in progress:

Extensions

Corollary 1.8. If the Pick matrix has determinant zero, then the function guaranteed by
the Nevanlinna-Pick Theorem is unique.

This corollary will be left as an exercise to the reader, though due to Lemma 1.6 we know
that the rank of N is only one less than that of M .

Many others have taken Nevanlinna-Pick Interpolation and tried to find an analytic func-
tion on the Euclidean sphere, Riemann surfaces, or subalgebras of H∞. It also has appli-
cations in operator theory. If we let JEH

2 be the ideal of the functions that disappear on
E = {z1, . . . , zn} and M(E) = H2\JE, then

f + JE → PM(e) +MfPM(E)
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Figure 1

means that being isometric is equivalent to the existence of an analytic function interpolating
these values.

If we constrain our work to f ′(0) = 0, then we can find a function interpolating our values
for the Hardy space

H∞1 = {f ∈ H∞(D) : f ′(0) = 0}.
In this case, the Pick matrix would be of the form

Mi,j = (1− wiwj)〈PLkSzj , k
S
zi
〉.

Interestingly, it turns out that the condition for having a Nevanlinna-Pick function is not
strict in this case as well. If H is an reproducing kernel Hilbert space, then any weak-
multiplication-closed algebra that obeys the strong factorization property will admit a Nevanlinna-
Pick family of functions.

We can also study Nevanlinna-Pick interpolation in other interesting subsets of C, such as
the symmetrized bidisk G = {(z + w, zw) | z, w ∈ D}. Given a solvable Pick problem (that
the inputs and outputs satisfy the Pick matrix), we define the uniqueness set:

Definition 1.9. The uniqueness set is the largest subset contained in all possible functions.

Interestingly, all solutions to a solvable Pick problem on G are rational functions. The
proof is dependent on a representative formula for Hilbert spaces; a function f : D→ B(E,F )
is contractive analytic (analytic and obeys dilation property) if and only if there exists an
auxiliary Hilbert space H and unitary operator[

A B
C D

]
:

[
E
H

]
→
[
F
H

]
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such that
f = A+ zB(I − zD)−1C.

Here, I denotes the identity matrix. For example, given the inputs {(0, 0), (1, 1
4
)} and the

outputs {0, 1
2
}, there clearly is a solution: f(z, w) = z

2
. Now given any other solution g, we

can construct
g′(z, w) = (z + w, zw)

which solve another problem in G, namely the inputs {(0, 0), (1
2
, 1
2
)} and outputs {0, 1

2
}. By

Schwarz’s lemma, we have

g′(z, z) = g(2z, z2) = z ∀z ∈ D,
which implies that the suprenum norm of g over G is actually one. But since we also have

g′(z, w) = g(z + w, zw) =
z + w

2
∀z, w ∈ D

as a solution, it must be unique.
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