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ABSTRACT. In the following paper, we set out to figure out how finite Nevanlinna-Pick
Interpolation works through mapping points on the unit disk to itself. We find that such
a mapping exists if and only if the Pick matrix is positive semi-definite, and then derive
some corollaries and extensions to the original problem, including to Hardy spaces and
symmetrized bidisks. Thanks to Simon Rubinstein-Salzedo for his Spring 2021 complex
analysis course, without which this paper would not come to be.

1. NEVANLINNA-PICK INTERPOLATION

The Nevanlinna-Pick problem asks, if we have an input sequence {z,} C I and an output
sequence {w,} C C, then does there exist an analytic function f: D — D that maps {z,}
to {w,}? If there is, we may then further ask: how many functions are there, and what
properties they satisfy?

This problem can also be considered in the reals, and we quickly see that although it’s easy
to find a family of functions that work, it is difficult to find all solutions. Using Gaussian
elimination we can find an nth degree polynomial f(x) that interpolates {z,}, and then we
can just use

f(@) +g(x) [ [ (= = 2).
In this paper, we will restrict ourselves to the complex plane, as the real axis is weirder. We
begin with Mobius functions:

az+b
cz+d

Definition 1.1. Mobius transformations are given by f(z) = where ad — bc = 1.

Because ad — bc = 1 then there exists a homormorphism between Mobius functions and

SLy(R); we denote
a b\ _ _az+b
c d)*~ cz+d

Proposition 1.2. Mobius functions map H — H.

Proof. Let z € H, so J(z) > 0. Then we have
(a b) az+b cz+d
Y —

for convenience.

c d _cz—i—d.cfﬂ—d
_ac|z* 4+ bd + (ad — be)z
B lcz 4+ dJ?

ac|z|* + bd + R(2) 3(2)
lcz + d|? lcz + d|?
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which lies in H as desired. O

In fact, Mobius functions are the automorphism group on H. Blaschke factors are cousins
of Mobius functions, mapping from D — D.

Definition 1.3. We denote the Blaschke factor at a € D as by(z) = z and

ba(z) =

C1-—az

zZ—a

Note that the Blaschke factor has a zero at a, so we can define a Blaschke product B(z)
as the product of several (maybe infinite) Blaschke factors along with the coefficient ¢, and
thus get an analytic function (extra condition below) from D — D with those zeroes.

Proposition 1.4. Given an analytic function f: D — D where f(a) = 0 then f(z) =
ba(2) f1(2) for some other analytic function f;: D — D.

This is not hard to see because b/,(z) must be nonzero as long as a # 1. Then f(z)/b,(2)
is analytic, and since b,(z) is an automorphism of D this function is from D — D as desired.

Proposition 1.5. An infinite Blaschke product converges on all compact subsets of D if and
only if the sum of coefficients ) (1 —|ay|) converges.

The above proposition is proved as Theorem 1.5 in Chapter 9 of the book. For convenience,
we state it here:

Proof. Since for a Blaschke factor b,(z) we have |al,|z| < 1, then
a+lalz)(l—la
1 ey = (@ )0~
a(l —az)
lal(1 + |2])
< (= lal)
|al(1 = lal|2|

2
< —(1— .
< Ty lab

Then the product of these b,,(z) terms converges uniformly as long as the sum of 1 — |a,|
terms converges.

Now suppose that the product converges, so

Z 1—b,,(2)

also converges, and by reversing the steps shown above we prove that ) (1 — |a|) must
converge. 0

Now let’s construct the analytic function given by the Nevanlinna-Pick theorem. We define
a series of functions B, (z) inductively as By(z) = 1 and
B, (z) = (bwn)_l o (2Bp-1) 0b,,(2).
For convenience, we define A, (z) = b, (z) and C,(2) = by, (z). I claim that this function
works as long as the Pick matrix M, defined by

M;; =

1—ZZ'Z_j
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is positive semi-definite. We use the following lemma:

Lemma 1.6. Suppose the Pick matriz is positive semi-definite. Then the matrix N defined
by

Ni,j - '
L= Au(z)An(z)
for 1 <1i,7 < n is positive semi-definite.

Proof. Rearranging and simplifying, we have

! (1 — Cu(w)Calw;) _ 1)

Ni,j -
An(2:) An(z;) An(2:) An(z))
_ 1 (1= 2%)(1 = 2z,75) (1 = [wa*) (1 —wiwy)
N An(2i>An(zj) <( — w;wy,)(1 — wuwy)(1 — |2n]2) (1 — ZzZ) 1) '

Now we define a n by n diagonal matrix D; with the ¢th diagonal element as

1— 27, 1 — |wy,|?
1—wzw_n 1—|Zn|2'

This matrix is nice because conjugating it with M gives us that nasty fraction in the indices
of N:

DDy, — L= 50 = 551~ ) = wag)
(1 — wity) (1 — wpt5) (1 = [2n]?) (1 — 2i%5)
When ¢ = n or j = n, then this fraction immediately collapses down to 1. Now define
another n by n matrix I; as
1 i=j
(l)ij=4¢—-1 i#n, j=n.
0 otherwise

In other words, [; is the n — 1 by n — 1 identity matrix plus a column of —1s and a row of
0s. Conjugating this, we get that

(A—2iZn) (A—2nZ)) A~ |wn|*) A —wiw;) .
(LDMDLL),, = { (o impii=zy L (63) 7 (mn)
’ 1 i=7=n
We are getting closer and closer to what we want in N. Lastly, define D, as the n by n
diagonal matrix with entries 1/A,(z;) for 1 < i < n and (Ds),, = 1. Conjugating this as
well, we get that

Ni,j Z,j <n
0 otherwise

O

Because |w,| < 1, we see that the matrix Dyly Dy is actually invertible, so this actually
proves the stronger statement that N > 0 if and only if M > 0. With this, we can prove
one side of the theorem:
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Theorem 1.7. If the Pick matriz is positive semi-definite, then there exists an analytic
function f: D — D that maps {z,} to {w,}.

Proof. T claim that the aforementioned construction works, and that for all positive integral
n there exists a function B,_1(2): D — D satisfying

for all 1 <7 < mn—1. One can quickly check that if such a function exists, then by induction

we have found a function that interpolates {z,} and {w,}. This is because taking i = n
quickly yields equality as well.

B 1(An(2)) =

Clearly when n = 1 then By(z) = 1 exists. Now using strong induction, suppose for
1 <i<n-—1that B;_; exists. It now suffices to show that when M is positive semi-definite
that B,_1(z) exists, but this is analogous to showing that the matrix

_ Culw)Caluy
= A
Yo1- An(2:)An(z5)
is also positive semi-definite. This is exactly N from Lemma [1.6] so we’re done. O

We now go over an example to showcase Nevanlinna-Pick interpolation. Let’s first consider
the sequences
¢" 1
Z. = — w. = —

where ( is a primitive 3rd root of unity for 1 < n < 3. Clearly both sequences lie in . Then

Bi(z) -5 z2—C

bu, © Bi(2) = =160 b, (2) = T -G,
2

1=2¢

which implies By(z) = 2_2<<. We can then continue the inductive process to find Bs(z), our

answer.

On the next page is a figure on a Nevanlinna-Pick algorithm in progress:

EXTENSIONS

Corollary 1.8. If the Pick matriz has determinant zero, then the function guaranteed by
the Nevanlinna-Pick Theorem is unique.

This corollary will be left as an exercise to the reader, though due to Lemma [1.6[ we know
that the rank of NV is only one less than that of M.

Many others have taken Nevanlinna-Pick Interpolation and tried to find an analytic func-
tion on the Euclidean sphere, Riemann surfaces, or subalgebras of H*. It also has appli-
cations in operator theory. If we let JzH? be the ideal of the functions that disappear on
E=1{z,...,2,} and M(E) = H*\Jg, then

[+ 3e — Pule) + My Py
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MEG/TS: BADE/@intra/iCon(0.5HZ,7 Swin):

Figure 1

means that being isometric is equivalent to the existence of an analytic function interpolating
these values.

If we constrain our work to f’(0) = 0, then we can find a function interpolating our values
for the Hardy space
Hy* ={f € H*(D): f'(0) = 0}.
In this case, the Pick matrix would be of the form
Mi,j = (1 — ’U.)ZU)_J)<PL]€S k’S>

257z
Interestingly, it turns out that the condition for having a Nevanlinna-Pick function is not
strict in this case as well. If H is an reproducing kernel Hilbert space, then any weak-

multiplication-closed algebra that obeys the strong factorization property will admit a Nevanlinna-
Pick family of functions.

We can also study Nevanlinna-Pick interpolation in other interesting subsets of C, such as
the symmetrized bidisk G = {(z + w, zw) | z,w € D}. Given a solvable Pick problem (that
the inputs and outputs satisfy the Pick matrix), we define the uniqueness set:

Definition 1.9. The uniqueness set is the largest subset contained in all possible functions.

Interestingly, all solutions to a solvable Pick problem on G are rational functions. The
proof is dependent on a representative formula for Hilbert spaces; a function f: D — B(E, F)
is contractive analytic (analytic and obeys dilation property) if and only if there exists an
auxiliary Hilbert space H and unitary operator

L3I
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such that
f=A+zB(I—-:D)'C.
Here, I denotes the identity matrix. For example, given the inputs {(0,0),(1,1)} and the
outputs {0, 3}, there clearly is a solution: f(z,w) = %. Now given any other solution g, we
can construct
g (z,w) = (2 + w, zw)
which solve another problem in G, namely the inputs {(0,0), (,1)} and outputs {0,1}. By
Schwarz’s lemma, we have
J(z,2) =922,z =2 VzeD,

which implies that the suprenum norm of g over G is actually one. But since we also have

zZ+tw
J(z,w) =gz +w,zw) = 5 Vz,weD
as a solution, it must be unique.
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