
COMPLEX BROWNIAN MOTION

JOSH ZEITLIN

Abstract. We discuss the way we can interpret Complex Analysis through the lens of sto-
chastic processes. First we will develop the language fundamental to stochastic processes,
showing some basic ideas from measure theory and statistics. Then we will go into the con-
cept of filtration and talk about martingales. We’ll then move on to talking about stochastic
calculus and we will finish our discussion there with Itô’s formula and Itô Calculus. We
will have a solid foundation with stochastic processes and then we will move on to Complex
Analysis. Using our background, we’ll prove three important and quite profound theorems in
Complex Analysis: The Fundamental Theorem of Algebra, Liouville’s Theorem and Picard’s
Little Theorem. The following document is an outline of the paper and each section is split
up into subsections according to the definitions and theorems we’ll use.

1. Necessary Preliminaries

In this section we will lay out some important background for our discussion of Brownian
Motion and its applications to complex analysis.

1.1. Measure and Probability Theory.

Definition 1.1. Metric Space A metric space is a pair (X, d) where X is a collection of sets
and d is a metric which satisfies the traditional metric properties:

(1) d(x, y) = 0 if and only if x = y.
(2) d(x, y) ≥ 0 for all x, y ∈ X.
(3) d(x, y) = d(y, x) for all x, y ∈ X.
(4) d(x, z) ≤ d(x, y) + d(y, z) for any x, y, z ∈ X.

On the other hand a measure space is a more general notion of a metric space. However,
to define that we have to define the concept of measures and σ-algebras.

Definition 1.2. A σ-algebra on X is a collection of subsets of X which includes X and the
empty set and is closed under the complement operation and is closed under countable unions
and countable intersections.

One special type of σ-algebra which we will use later is called the Borel σ-algebra, which
we define as follows.

Definition 1.3. The Borel σ-algebra, denoted B is the σ-algebra generated by the open sets
of X where X is the set of all points in the space.

Definition 1.4. A measure on a set X (with the associated σ-algebra A) is a function from

µ : A → R+.

A measure satisfied the following properties:

(1) For all sets S ∈ A, we have µ(S) ≥ 0.
(2) µ(∅) = 0.

1
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(3) For all countable collections ({Sk}∞k=1) of pairwise disjoint sets in S,

µ

(
∞⋃
k=1

Sk

)
=
∞∑
k=1

µ(Sk).

Definition 1.5. A measurable space is a tuple (X,A, ) where X is a set, A is a σ-algebra.

Definition 1.6. A measure space is a triple (X,A, µ) where X is a set, A is a σ-algebra and
µ is a measure.

Definition 1.7. A probability space is a triple (X,A, µ) where X is a set, A is a σ-algebra
and µ is a measure and it satisfies the additional condition that µ(X) = 1.

Now that we know the basics of measure spaces, we are next going to state some proper-
ties about measure and probability spaces. After that, we will introduce the concept of the
Lebesgue measure and the Lebesgue integral.

Proposition 1.8. Assume (Ω,F ,P) is a probability space.

(1) Suppose A ⊆ Ω and A ∈ F . Then, P(Ac) = 1− P(A).
(2) Let A ⊆ B ⊆ Ω and A,B ∈ F , then, P(A) ≤ P(B).
(3) If (Ak)

n
k=1 are a finite number of disjoint events, then

P

(
n⋃
k=1

Ak

)
=

n∑
k=1

P(Ak).

(4) For any A,B ∈ F , we have that

P(A ∪B) = P(A) + P(B)− P(A ∩B)

(5) In general, for any family of events {Si}ni=1 ∈ F we get that

P

(
n⋃
i=1

Si

)
=

n∑
i=1

P(Si)−
∑
i<j

P(Si ∩ Sj) +
∑
i<j<k

P(Si ∩ Sj ∩ Sk) + · · ·+ (−1)n+1

(6) If {Ai}i≥1 ∈ F then

P

(
∞⋃
i=1

Ai

)
= lim

n→∞
P

(
∞⋃
i=1

Ai

)
(this is called the continuity of probability measures).

(7) If {Ai}i≥1 is a sequence of decreasing nested events (Ai+1 ⊆ Ai for all i ≥ 1) then

P

(
∞⋂
i=1

Ai

)
= lim

n→∞
P(An).

(8) If {Ai}i≥1 is a sequence of events then

P

(
∞⋃
i=1

Ai

)
≤

∞∑
i=1

P(Ai).

Now we’ll talk about the Lebesgue measure and the Lebesgue integral.
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Definition 1.9. With respect to an open set S = ∪k(ak, bk), the Lebesgue measure is defined
as

µL(S) =
∑
k

(bk − ak).

And given a closed set S ′ = [a, b]− ∪k(ak, bk) then

µL(S ′) = (b− a)−
∑
k

(bk − ak).

Now, to define the Lebesgue integral we get that it is defined as follows.

Definition 1.10. The Lebesgue integral is defined in terms of the Lebesgue sum which is
given as

Sn =
∑
i

ηiµ(Ei),

where Ei ⊆ X and ηi is the value of the function f in the sub-interval i and µ(Ei) is the
Lebesgue measure of Ei and the integral is written as∫

X

f or

∫
X

f dµ.

We next need to define filtrations and Lp spaces.

Definition 1.11. For an index set I, a filtration on the probability space (Ω,F ,P) is a family
(F(i) : i ∈ I) of σ-algebras such that F(s) ⊂ F(t) ⊂ F for s < t.

Definition 1.12. A filtered probability space is a probability space with a filtration.

Definition 1.13. A stochastic process {X(t)}t≥0 from a probability space (Ω,F ,P) equipped
with a filtration F(t) is adapted if each X(t) is measurable with respect to F(t).

Definition 1.14. A right-continuous filtration is a family (F+
i )i∈I where I is the index set

such that F+
i . = ∩z>iFz.

Now, we will lastly define an Lp space.

Definition 1.15. An Lp space is a functional space which is the vector space of all lp mea-
surable functions, or in other words the Lebesgue integral over some set S is finite, written
formally as (∫

S

|f |p dµ

)1/p

<∞.

Lp spaces are very important because we are interested in the L2 space which is the space of
all square-integrable measureable functions which can also be thought of as random variables
with E[X2] <∞ or with finite second moment.

1.2. Basic Statistics.

Definition 1.16. A vector of random variables X = (X1, . . . , Xn)T is called a multivariate
d-dimensional standard Gaussian distribution if

(1) X1, . . . , Xd N(0, 1), where N(µ, σ) is the normal distribution of mean µ and standard
deviation σ.

(2) X1, . . . , Xd are independent and identically distributed (iid) random variables (rv).
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The expected value and covariance of the distribution of this would be the zero vector and
the identity matrix, respectively.

Proposition 1.17. If X is a d-dimensional standard Gaussian random vector and A is an
orthogonal d× d matrix, then AX is also standard Gaussian.

Definition 1.18. A random vector Y is d-dimensional Gaussian if we can express it in the
form AX + µ given X ∈ Rm, A ∈ Rd×m, µ ∈ Rd.

For the distribution Y = AX + µ we have E[Y] = µ and Cov(Y) = AAT and the Gaussian
property is preserved under Affine transformations.

1.3. Stochastic Processes. Now we have defined the basics of measure theory and proba-
bility theory and have some of the necessary materials we will need moving forward. Next we
need to introduce some basic concepts in stochastic processes.

Definition 1.19. Given a probability space (Ω,Σ,P) equipped with a filtration F , an S-
valued stochastic Process is a collection of S-valued random variables on Ω, indexed by a
totally ordered time set T. That is, a stochastic process B is a collection {Bt : t ∈ T} where
each Bi is an S-valued random variable on Ω. The space S is then called the state space of
the process.

Now we define a special random variable with respect to a stochastic process called a
stopping time.

Definition 1.20. A random variable T : Ω → R+ defined on a filtered probability space is
called a stopping time with respect to the filtration F if the set x ∈ Ω : T (x) ≤ t ∈ Ft for all
t.

Stopping times are very important in the study of stochastic processes. Now we’ll introduce
a special stopping time called the hitting time.

Definition 1.21. The hitting time of a stochastic process is the first time in which a stochastic
process hits a specific value. To define this more formally, let T be an ordered index set.
Given a probability space (Ω,Σ,P) and a measurable state space S, let X : Ω × T → S be
a stochastic process, and let A be a measurable subset of the state space. Then the first hit
time τA : Ω→ R+ is the random variable defined by

τA(ω) = inf t ∈ T : Xt(ω) ∈ A.

One type of very important stochastic process is a martingale.

Definition 1.22. A discrete time martingale is a sequence of random variables {Xn}n∈N such
that for all n we get that E[|Xn|] <∞ and E[Xn+1|X1, . . . , Xn] = Xn

Martingales are meant to model a fair game as given by the second condition in the defini-
tion. More rigorously, a martingale can be defined for the continuous case as follows.

Definition 1.23. A stochastic process Xt : Ω → R is a martingale with respect to a fixed
filtration F(t) if

(1) X(t) is adapted to F(t).
(2) E[|X(t)|] <∞ (integrability).
(3) For any pair of times it is almost surely the case that (with probability 1) 0 ≤ s ≤

t,E[X(t)|F(s)] ≤ X(s),
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Another special type of stochastic process is a nonanticipating process.

Definition 1.24. A nonanticipating process is a stochastic process {X(t)}t≥0 defined by the
filtration (Ft)t≥0 if X(t) is measureable for any F(t) for t ≥ 0.

Here are a few more important theorems about stochastic processes.

Theorem 1.25. Suppose X(t) is a continuous martingale with 0 ≤ S ≤ T being stopping
times. If the induced stochastic process of X(min{t, T}) is dominated by an integrable random
variable Y, then

E[X(T )|F(S)] = X(S)

with probability 1.

This is the continuous optional stopping theorem and the discrete time analogue is defined
as follows.

Theorem 1.26. Let Xn be a discrete martingale which is uniformly integrable. Then for all
stopping times 0 ≤ S ≤ T, we have that

E[Xn(T )|F(s)] = Xn(S)

with probability 1.

Now, one last characterization we need is the idea of a local martingale.

Definition 1.27. A local martingale is an adapted stochastic process {X(t)}0≤t≤T which
contains a sequence of stopping times Tn such that {X(min{t, Tn})}t≥0 is a martingale for
each n.

2. Brownian Motion

Now we will introduce the idea of Brownian Motion in a rigorous manner.

2.1. Basic Concepts.

Definition 2.1. A d-dimensional Brownian motion is a stochastic process Bt : Ω → R from
the probability space (Ω,F ,P) to Rd such that the following holds true:

(1) For any finite sequence of times t0 < t1 < · · · < tn, the distributions Bti+1
− Bti are

independent.
(2) For all ω ∈ Ω, the parametrization function t→ Bt(ω) is continuous.
(3) For any pair s, t ≥ 0, let Bs+t −Bs ∈ A we get that

P(Bs+t −Bs) =

∫
A

1

(sπt)d/2
e−|x|

2/2t dx.

A standard Brownian motion is a Brownian motion where B0(ω) = 0.

Definition 2.2. A standard Brownian motion in one dimension (Bt)t≥0 is a real-valued sto-
chastic process defined on a probability space (Ω,F ,P) which satisfies the following conditions:

(1) B0 = 0.
(2) For any finite sequence of times t0 < t1 < · · · < tn, the distributions Bti+1−Bti are

independent for each i ∈ {1, . . . , n}.
(3) For all ω ∈ Ω, t→ Bt(ω) is continuous.
(4) For all s, t ≥ 0, Bs+t −Bs is independent of (Bu)0≤u≤s and has distribution N(0, t).
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Proposition 2.3. A Brownian motion in Rd is a d-dimensional vector whose components are
independent scalar Brownian motions.

Now, we present some more theorems and properties about Brownian motion.

2.2. Properties and Theorems.

Definition 2.4. Let (Ω,F ,P) be a probability space with the filtration (Fs, s ∈ I) for a
totally ordered index set I; and let (S,S) be a measureable space. A (S,S)-valued stochastic
process X = {Xt : Ω→ S}t∈I adapted to the filtration is said to possess the Markov property
if, for each A ∈ S and each s, t ∈ I with s < t,

P(Xt ∈ A|F) = P(Xt ∈ A|Xs).

In the case where S is a discrete set with a discrete σ-algebra and I = N, this can be
reformulated as

P(Xn = xn|Xn−1 = xn−1, . . . , X0 = x0) = P(Xn = xn|Xn−1 = xn−1).

In other words, the stochastic process of the Brownian motion is ”memoryless” and doesn’t
take into consideration what comes before it.

Theorem 2.5. Let {Bt}t≥0 is a Brownian motion started at x ∈ Rd. Fix t > 0, then the process
{Bt+s−Bt}s≥0 is a Brownian motion starting at the origin and independent of {Bt}0≤t≤s. In
other words, Brownian motion satisfies the Markov property.

Proof. From the definition of Brownian motion, we know that Brownian motion satisfies the
independent increments property. That is, for any finite sequence of times t0 < t1 < · · · < Tn,
the distributions Bti+1

−Bti , for i = 1, . . . , n are independent. Since the process

Bt+s −Bt =
s∑
j=1

(Bt+j −Bt+j−1)

(for s > 0), where each term Bt+j − Bt+j−1 is independent, the given process is hence inde-
pendent. �

A nice way to interpret Brownian motion is as the limiting behavior of random walks and
we can thus use the ideas of Recurrence and Transience from Random Walks and generalize
them to a Brownian motion.

Definition 2.6. A Brownian motion {Bt}t≥0 is:

(1) Transient if limt→∞ |Bt| =∞.
(2) Point recurrent if for every x ∈ Rd, there is an increasing sequence tn such that Btn = x

for all n ∈ N.
(3) Neighborhood recurrent if for every x ∈ Rd and ε > 0, there exists an increasing

sequence tn such that Btn is in a ball of radius epsilon centered around x for all n ∈ N
(or more for all Btn ∈ Bε(x)).

This gives us some interesting insight onto the shape of Brownian motion in higher dimen-
sions.

Theorem 2.7. A Brownian motion {Bt}t≥0 is:

(1) Point recurrent in dimension d = 1.
(2) Neighborhood recurrent, but not point recurrent in dimension d = 2. Brownian motion

in dimension d = 2 is called planar Brownian motion.
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(3) Transient in dimension when d ≥ 3.

For those who are aware of Poincare’s recurrence theorem, this generalizes it to Brownian
motion in Rd as opposed to random walks in Zn. Now let’s prove it. However, to do so
we will have to use some techniques from Multivariable Differential Calculus and Ordinary
Differential Equations. The proofs of d = 1 and d ≥ 3 are not very useful for our discussion
of Complex Analysis, so we’ll just prove the case where D. However to do this, we need some
more machinery.

2.2.1. Dirichlet Problem. The recurrence of Brownian motion is very closely linked with Har-
monic functions and the Dirichlet Problem.

Definition 2.8. Let U be a connected open set U ⊂ Rd and ∂U be its boundary. A function
u : U → R is harmonic if u is twice differentiable (u ∈ C2) and for any x ∈ U

∆u(x) :=
d∑
i=1

∂u

∂x2j
(x) = 0.

Theorem 2.9. Let U ∈ Rd be a connected open set and u : U → R be measurable and locally
bounded. Then the following are equivalent:

(1) u is harmonic.
(2) For any ball Br(x) ⊂ U,

u(x) =
1

µ(Br(x))

∫
Br(x)

u(y) dµ

where µ is the Lebesgue measure on Rd.
(3) For any ball Br(x) ⊂ U,

u(x) =
1

σx,r(∂Br(x))

∫
∂Br(x)

u(y) dσx,r

where σx,r is the surface measure.

Theorem 2.10. Suppose u : U → R is a harmonic function on a connected open set U ⊂ Rd.

(1) If u attains a maximum on U, then it is a constant function.
(2) If u is continuous on U and U is a bounded set, then supx∈U u(x) = supx∈∂U u(x).

Theorem 2.11. Let u1, u2 : U → R be harmonic functions on a bounded connected open set
U ⊂ Rd and continuous on the closure U, then suppose that u1 = u2 on ∂U, then u1 = u2 over
U.

These can be seen as equivalent to the basic results on complex analysis. Now we have an
interesting link between harmonic functions and hitting times.

Theorem 2.12. Suppose U is a connected open set and {B(t)}t≥0 is a Brownian motion that
starts in U. Then, define τ = τ∂U = min{t ≥ 0 : B(t) ∈ ∂U} be the hitting time of the
Brownian motion on the boundary. Then, let φ : ∂U → R be a measurable function. Suppose
that a function u : U → R satisfies the property that for every x ∈ U,

u(x) = Ex[φ(B(τ))1τ<∞]

is locally bounded, then u is harmonic.
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Proof. Fix any ball Bδ(x) ⊂ U. Define τ̃ = inf{t > 0 : B(t) 6∈ Bδ(x)} to be the first exit time.
Since φ is a measurable function, by a stronger version of the Markov property (which says
that {B(t + s) − B(s)} is a standard Brownian motion independent of F+(s) where s is a
stopping time) then

Ex[Ex[φ(B(τ))1τ<∞|F+]] = Ex[u(B(τ̃))].

The first expression is simply just u(x) by laws of conditional expectation. The second ex-
pression can be represented as the expected value taken over the boundary of the ball and
hence

u(x) =

∫
∂Bδ(x)

u(y) dσx,δ.

and thus from an above theorem we can see that since u is also locally bounded u is harmonic.
�

Definition 2.13. Let U ⊂ Rd be a connected open set. We say that U satisfies the Poincare
cone condition at x ∈ ∂U if there exists a cone V with base at x and opening angle α > 0
and h > 0 such that V ∩Bh(x) ⊂ U c.

Now we’ll show the Dirichlet problem.

Theorem 2.14. Let U ⊂ Rd be a bounded connected open set such that every boundary point
satisfies the Poincare cone condition, and suppose that φ is a continuous function on ∂U.
Define τ(∂U) = inf{t > 0 : B(t) ∈ ∂U} be the first hitting time, which is a surely finite
stopping time. Then the function u : U → R given by

u(x) = Ex[φ(B(τ(∂U)))]

is the unique continuous function that is a harmonic extension of φ, that is, u(x) = φ(x) for
all x ∈ ∂U.

Before we prove this we have to show one more lemma.

Lemma 2.15. Let 0 < α < 2π and C0(α) ⊂ Rd be a cone based at the origin with opening
angle α. Let α = supx∈B1/2(0)

Px{τ(∂B1(0)) < τ(C0(α))}. Then a < 1 and for any pair of

positive integers k, h,

Px{τ(∂Bh(z)) < τ(Cz(α))} ≤ ak

for all x, z such that |x− z| < s−kh.

Proof. Suppose that x ∈ B2−k(0). Then clearly, there is a nontrivial probability for Brownian
motion to reach the boundary of the ball before hitting the cone, so a < 1. Then by the strong
Markov property,

Px{τ(∂B0(1)) < τ(C0(α))} ≤
k−1∏
i=0

sup
x∈B

2−k+i

Px{τ(∂B2−k+i+1(0)) < τ(C0(α))}.

For any positive integer k and j, by scaling, we get

Px{τ(∂Bh(z)) < τ(Cz(α))} ≤ ak

for all x where |x− z| < 2−kh. �

Now, we will prove Dirichlet’s theorem.
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Proof. First off, the uniqueness follows obviously from harmonic continuation. Moreover, since
the stopping time is finite, u is locally bounded and hence harmonic on U. Now, fix z ∈ ∂U.
Then there is a cone at z with angle α such that Cz(α) ∩ Bh(z) ⊂ U c. Now, by the previous
lemma, for positive integers k, h we get

Px{τ(Bh(z)) < τ(Cz(α))} ≤ ak

with |x − z| < 2−kh. In particular, given ε > 0 and δ < h we get |y − z| < δ and then
|φ(y)− φ(z)| < ε. Thus for all x ∈ U such that |z − x| < 2−kδ < 2−kh,

|u(x)− u(z)| = |Ex[φ(B(τ(∂U)))]− φ(z)| ≤ Ex[|φ(B(τ(∂U)))− φ(z)|].

Thus, if the Brownian motion hits the cone before ∂Bδ(z), then |z − B(τ(∂U))| < δ and
φ(B(τ(∂U))) is close to φ(z) which implies that

2 ‖φ‖∞ Px{τ(∂Bδ(z)) < τ(Cz(α))}+ εPx{τ(∂U) < τ(∂Bδ(z))} ≤ 2 ‖φ‖∞ a
k + ε.

Because the bound can be made arbitrarily small, we have thus proved continuity on the
boundary. �

Now, we can go back and prove that planar Brownian motion is recurrent (well... neigh-
borhood recurrent but not point recurrent.)

2.3. Proof of Planar Brownian Motion. So far we have developed the machinery to solve
the Dirichlet problem and prove the theorem. Now, we can show that planar Brownian motion
is recurrent but only with the help of a few more lemmas. For the following lemmas we will
let A denote an annulus of A = {x ∈ Rd|r < |x| < R} and to prove recurrent we will look at
the exit probabilities from the annulus. Here, we will let r = (r, 0, . . . , 0) and

Tr = τ(∂Br(0)) = inf{t > 0||B(t)| = r}

for r > 0, which are the first time the Brownian motion hits the ball of radius r. Then the
first exit time from the annulus A is min{Tr, TR} where TR is defined in the same way as Tr
was defined as, above and we’ll use the same u as defined in the Dirichlet theorem.

Lemma 2.16.

Px{Tr < TR} =
u(R)− u(x)

u(R)− u(r)
.

Lemma 2.17. Let u(r), u(R) be the fixed and constant on the boundary of the annulus. Then
the Dirichlet solution to this boundary is given by

u(x) =


|x| : d = 1

2 log |x| : d = 2

|x|2−d : d ≥ 3

Lemma 2.18. Suppose that {B(t)}t≥0 is Brownian motion started at some x in the annulus
A and then

Px{Tr < RR} =


R−|x|
R−r : d = 1
logR−log |x|
logR−log r : d = 2
R2−d−|x|2−d
R2−d−r2−d : d ≥ 3
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Lemma 2.19. For any x ∈ Br(0), we have

Px{Tr <∞} =

{
1 : d = 1, 2
rd−2

|x|d−2 : d ≥ 3
.

Now, here is the proof that Brownian motion is recurrent in R2 :

Proof. Fix ε > 0 and x ∈ R2. Then by the shift invariance property of Brownian motion, we
get the first stopping time

t1 = inf{t > 0 : B(t) ∈ Bε(x)}.
By the just above lemma and because d = 2 this is finite with probability 1. Now consider
the time

t2 = {t > t1 + 1|B(t) ∈ Bε(x)},
which is again finite. Repeating this process we get an increasing sequence of stopping times
such that B(tn) ∈ Bε(x). �

Corollary 2.20. Neighborhood recurrence implies the path of planar Brownian motion is
dense in the plane.

3. stochastic Calculus

3.1. The stochastic Integral. stochastic calculus is a very important tool for dealing with
stochastic processes. This is a form of calculus which helps with models of random systems.
Here we will introduce some concepts in stochastic calculus which will help us with our proofs
in complex analysis later on. We will introduce the integral for stochastic process called Itô’s
formula.

One thing we know from Brownian motion is that it behaves in a random manner so we
cannot use traditional methods for integration and differentiation. We will have to integrate
based on the following differential equation which takes in some randomness:

dB

dt
= v(t,Xt) + w(t,Xt)Wt.

The last variable Wt is the randomness and it is a variable that has the following properties:

(1) For unique t, s we get that Wt,Ws are independent of each other.
(2) The set {Wt}t≥0 is stationary.
(3) E[Wt] = 0 for every t.

The solution to this is the stochastic integral which is defined as follows.

Definition 3.1. The stochastic integral with respect to Brownian motion (Bt)t∈R+ of any
measurable function f ∈ L2(R+) is defined as∫ ∞

0

f(t) dBt = N(0,

∫ ∞
0

|f(t)|2 dt).

The independent increments property of Brownian motion helps ensure that ever little
increment in dBt is an independent process and furthermore, from the stationary property,
each of these independent processes have the normal distribution. Thus if X1, . . . , Xn are
independent Gaussian random variables then the sum is a random variable normal distribution
of mean (summed from the individual means) and standard deviation (summed from the
individual standard deviations).
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3.2. Itô Process and Itô’s Formula. Now we will talk about the most important result in
stochastic calculus called Itô’s formula. It is analogously like the chain rule.

Definition 3.2. An Itô process is a stochastic process It on the probability space (Ω,F ,P)
such that

IT = I0 +

∫ t

0

u(s, w) ds+

∫ t

0

v(s, w) dBs

where

P

(∫ t

0

v2(s, w) ds <∞∀t ≥ 0

)
= 1

and with u being adapted to F(t) and

P

(∫ t

0

|u(s, w)| ds <∞∀t ≥ 0

)
= 1.

Here, v satisfies the following properties:

(1) The function mapping (t, ω) → v(t, ω) is measurable with respect to B[0,∞] × F+

measurable with B[0,∞] being the Borel σ-algebra on [0,∞]

More succinctly, we can write the first equation in the definition as

dIt = u dt+ v dBt.

Now we will move on to show Itô’s formula which we will prove in one dimension and then
state in d dimensions (but won’t prove because we don’t use any new techniques out of the
proof in d dimensions.)

Theorem 3.3. Let It be an Itô process, let g(t, I) ∈ C2(R+ × R) (twice differentiable over
R+ × R). Then Jt = g(t, It) will be another Itô process with

dJt =
∂g

dt
(t, It) dt+

∂g

dx
(t, It) dIt +

1

2

∂2g

dx2
(t, It)( dIt)

2.

(Here, (dIt)
2 = dIt · dIt is computed by dt dt = 0, dt dBt = dBt dt = 0 and dBt dBt = dt.)

Proof. First we have to show that Jt is an Itô process. Expanding (dIt)
2 we get

(dIt)
2 = (u dt+ v dBt)

2 = v2 dt

by the above identities. Then through substitution we get

dJt =
∂g

dt
(t, It) dt+

∂g

dx
(t, It) dIt +

1

2

∂2g

dx2
(t, It)( dIt)

2

=
∂g

dt
(t, It) dt+

∂g

dx
(t, It)(u dt+ v dBt) +

1

2

∂2g

dx2
(t, It)v

2 dt

=

(
∂g

dt
(t, It) +

∂g

dx
(t, It)u+

1

2

∂2g

dx2
(t, It)v

2

)
dt+

∂g

dx
(t, It)v dBt.

Now writing out the shorthand, we get

g(t, It) = g(0, I0) +

∫ t

0

(
∂g

ds
(s, Is) +

∂g

dx
(s, Is)u+

1

2

∂2g

∂x2
(s, Is)v

2

)
ds+

∫ t

0

∂g

dx
v dBs

This is the expression of the form required by Itô’s formula; however, we still have to show
that the first expression was correct. We do this by approximation and assuming that g and
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both its first partials and second partial and mixed partials are bounded. Then we can use
Taylor’s theorem on multivariable functions to see

g(t, It) = g(0, I0) +
∑
j

∆g(tj, Ij) = g(0, I0) +
∑
j

∂g

∂t
∆tj

+
∑
j

∂g

∂x
∆Ij +

1

2

∑
j

∂2g

∂t2
(∆tj)

2 +
1

2

∑
j

∂2

∂t∂x
(∆tj)(∆Ij) +

1

2

∑
j

∂2g

∂x2
(∆Ij)

2 +
∑
j

Rj.

Here, Rj is the remainder term and Rj = o(|∆tj|2 + |∆Ij|2). Now we take the limit of ∆tj as
it goes to 0. Now, the first sum goes to:∑

j

∂g

∂t
(tj, Ij)∆tj →

∫ t

0

∂g

∂t
(s, Is) ds =

∂g

∂t
dt.

The second sum becomes:∑
j

∂g

∂x
(tj, I,)∆Ij →

∫ t

0

∂g

∂x
(x, Is) dIs =

∂g

∂x
dIt.

The third sum becomes:∑
j

∂2g

∂t2
(tj, Ij)(∆tj)

2 → ∆tj

∫ t

0

∂2g

∂t2
(s, Is) ds→ 0.

The fourth sum becomes:∑
j

∂2g

∂t∂x
(tj, Ij)(∆tj)(∆Ij)→ ∆tj

∫ t

0

∂2g

∂t∂x
(s, Is) dIs → 0.

It remains for us to show that the fifth sum converges to

1

2

∑
j

∂2g

∂x2
(∆Ij)

2 → 1

2

∫ t

0

∂2g

∂x2
(s, Is)( dIs)

2

because it is easy to see from above that

1

2

∫ t

0

∂2g

∂x2
(s, Is)( dIs)

2 =
1

2

∂2g

dx2
(s, Is)v

2 ds.

Now when we expand the sum we get that

1

2

∑
j

∂2g

∂x2
(∆Ij)

2 =
1

2

(∑
j

∂2g

∂x2
u2j(∆tj)

2 +
∑
j

∂2g

∂x2
ujvj(∆tj)(∆Bj) +

∑
j

∂2g

∂x2
v2j (∆Bj)

2

)
.

From the previous sums converging we see that the first two sums converge to 0 so all we have
to do is show ∑

j

∂2g

∂x2
v2j (∆Bj)

2 →
∫ t

0

∂2g

∂x2
v2 dBs.

and then it is obvious that the remainder term goes to 0 as ∆tj → 0 and then we’re done.
The proof of ∑

j

∂2g

∂x2
v2j (∆Bj)

2 →
∫ t

0

∂2g

∂x2
v2 dBs

is a bit tedious so we leave that up to the reader which can be found in [1]. �
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Now, we will state the theorem for the multidimensional Itô formula.

Definition 3.4. A d-dimensional Itô process It is a d-dimensional stochastic process given by
dIt(ω) = u(t, ω) dt + v(t, ω) dBt, (which is the analogous shorthand from the 1 dimensional
case). Here, we let u be a d dimensional vector and Bt be a d dimensional Brownian motion
and v is a d × d matrix where each ui, vj satisfies the requirements of a 1-dimensional Itô
process. Writing it out in long form we get that a d-dimensional Itô process takes the form:

d


I1
I2
...
Id

 =


u1
u2
...
ud

 dt+


v1,1 . . . . . . v1,d

...
. . .

...
...

. . .
...

vd,1 . . . . . . vd,d

 d

B1(t)
B2(t)
...Bd(t)


Now we can discuss the Multidimensional Itô formula.

Theorem 3.5. Let dIt = u dt + v dBt be a d-dimensional Itô process. Let f(t, ω) : [0,∞] ×
RD → Rp be C2 (twice differentiable) such that f(t, x) = (f1(t, x), . . . , fp(t, x)). Then J(t, ω) =
f(t, I(t, ω)) is a p-dimensional Itô process where for 1 ≤ k ≤ p, the kth component of J(t, ω)
will be given by

dJk =
∂fk
∂t

dt+
d∑
i=1

∂fk
∂xi

dXi +
1

2

d∑
i,j=1

∂2fk
∂xj∂xj

dXi dXj

and again dt dBi = dBj dt = 0 and dBi dBj = dt.

3.3. Some more background. In this section we’ll introduce some more theorems relating
to stochastic calculus which will be useful later on.

Proposition 3.6. For every continuous local martingale, there exists a unique continuous
adapted nondecreasing process, denoted [M ]t and called the quadratic variation (M)t≥0, for
which (M2 − [M ]t)t≥0 is a continuous local martingale.

Proposition 3.7. The quadratic variation of a Brownian motion (Bt)t≥0 is t.

Proposition 3.8. Let 0 < a < b, let B be a Brownian motion started at a, and let τr =
inf{t ≥ 0 : Bt = r}. Then

P(τ0 > τb) =
a

b
.

Lemma 3.9. Let f : [0,∞)×Rd → R be continuously differentiable in the first coordinate and
twice continuously differentiable in the second coordinate. Suppose that there exists K > 0 for
which

|f(t, x)|+
∣∣∣∣∂f∂t (t, x)

∣∣∣∣+
d∑
i=1

∣∣∣∣ ∂f∂xi (t, x)

∣∣∣∣+
d∑

i,j=1

∣∣∣∣ ∂2f

∂xi∂xj
(t, x)

∣∣∣∣ ≤ KeK(t+|x|),

for all (t, x) ∈ R+ × Rd. Then

Ct = f(t, Bt)− f(0, B0) =

∫ t

0

(
∂

∂t
+

1

2
∆

)
f(s, Bs) ds

is a martingale and ∆ is the Laplacian operator and if f is harmonic then f(t, Bt) will be a
martingale.
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Lemma 3.10. (Dubins Schwarz) Let M be a continuous local martingale for M0 = 0 almost
surely and limt→∞[M ]t = ∞ almost surely. Let σ(t) = inf{s : [M ]s > t}. Then for all
t ≥ 0, σ(t) is an (Fs)s≥0 stopping time, (Fσ(t))t≥0 is a filtration and Mσ(t) is a Brownian
motion adapted to (Fσ(t))t≥0.

3.4. Transition. Hooray! We’ve officially established and proved the main ideas in stochastic
calculus and Brownian motion. Brownian motion is quite amazing and can be thought of and
applied in so many different ways. Now one of the most amazing ways in which Brownian
motion can be applied is to complex analysis. Now, we’re going to use Brownian motion to
prove some interesting results in complex analysis which most people have seen in a complex
analysis class.

4. Brownian Motion in Complex Analysis

Here are a couple rules in complex analysis we want to recall.

4.1. Conformal Invariance of Brownian motion.

Theorem 4.1. (Conformal invariance of Brownian motion) Let D be a domain and let (Bt)t≥0
be a Brownian motion started at z ∈ D. If f : D → C is analytic, then there exists a Brownian
motion B̃t in f(D) started at f(z) for which f(Bt) = B̃∫ t

0 |f ′(Bs)|2 ds
.

Proof. Let z = xiy and f(z) = u(x, y) + iv(x, y) and Bt = Xt + iYt where Xt and Yt are
independent scalar Brownian motions. Recall the Cauchy-Riemann equations state that with
respect to f,

ux = vy, uy = −vx.

We know also that u and v are also harmonic functions and therefor we can use Itô’s formula
to show

du(Xt, Yt) =
∂u

∂x
(Xt, Yt) dXt +

∂u

∂y
(Xt, Yt) dYt

+
1

2

(∂2u
∂x2

+
∂2u

∂y2

)
+

1

2

∂2u

∂x∂y
(Xt, Yt) d[X, Y ]t

=
∂u

∂x
(Xt, Yt) dXt +

∂u

∂y
(Xt, Yt) dYt.

Similarly,

dv(Xt, Yt) =
∂v

∂x
(Xt, Yt) dXt +

∂v

∂y
(Xt, Yt) dYt.

From these expressions we get that we can compute the quadratic variation to get

[u(B)]t = [v(B)]t =

∫ t

0

|f ′(Bt)|2 ds

and the covariation is 0 between u(B) and v(B). Letting σ(t) = inf{s ≥ 0 :
∫ s
0
|f ′(Bu)|2 du > t}

and define B̃t = f(Bσ(t)) = u(Bσ(t)) + iv(Bσ(t)). Then by Dubins Schwarz B̃t is a Brownian
motion with respect to the filtration Fσ(t). �
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4.2. Maximum Modulus Principle.

Theorem 4.2. (Maximum Modulus Principle) If U ⊂ C is a domain and f : U → C is a
nonconstant analytic function, then |f | has no local maxima in U.

Lemma 4.3. If h is harmonic on D, that is hxx +hyy = 0, where D = {w ∈ C : |w− z| < R}
then for all r < R, we have that

h(z0) =

∫ 2π

0

h(z + reiθ) dθ.

Proof. Let τ be the exit time of a planar Brownian motion starting at z0 from the disk of
radius r centered at z0. Then, by Lemma 3.3.1, (h(Bt))t≥0 is a martingale. Thus applying the
optional stopping theorem

h(z0) = P(h(Bτ )) =

∫ 2π

0

h(z + reiθ) dθ

which is what we sought out to show. �

Now it’s just a basic complex analysis technique to show that the Maximum Modulus
Principle holds.

Proof. (Proof of the Maximum Modulus Principle) Suppose for the sake of contradiction that
there exists z0 ∈ U and ε > 0 for which |f(z0)| ≥ |f(z0 + reiθ)| for all 0 < r < ε. By adding a
suitable constant to f, we may assume that the image of {z : |z−z0| ≤ ε} under f is contained
in the right half-plane. Therefore, log f is analytic on {z : |z − z0| < ε}, from which it follows
that the real part of log |f | is harmonic. By the previous lemma, for any 0 < r < ε we have
that log |f(z0)| is an average of the values of log |f(z0 + reiθ)|. Therefore, log |f | is constant on
∆ = {z : |z− z0| < ε}. This implies that |f | is constant on ∆ which implies that f is constant
on ∆ by the Cauchy-Riemann equations. Since U is connected, f is constant on U. �

4.3. Fundamental Theorem of Algebra.

Theorem 4.4. (Fundamental Theorem of Algebra) If p is nonconstant polynomial, then there
exists z ∈ C for which p(z) = 0.

Proof. Suppose that p(z) 6= 0 for all z ∈ C. Then f = 1
p

is an analytic function on C,
and since p → ∞ as z → ∞, f is bounded. Let Bt be a Brownian motion started at the
origin. By Lemma 3.3.1 we get that <f(Bt) is a martingale. Since <f is bounded, the
martingale convergence theorem implies that <f(Bt) converges almost surely as t → ∞. On
the other hand, <f(C) contains more than one element, since f is nonconstant. Choose
α < β so that inf <f(C) < α < β < sup<f(C). The sets U1 = {z : <f(z) < α} and
U2 = {z : <f(z) < β}, are nonempty, disjoint open sets in C. By the recurrence of of
Brownian motion, the Brownian motion visits each of the sets U1 and U2 at arbitrarily large
times, so lim inf <f(Bt) < α < β < lim sup<f(Bt), almost surely. This thus contradicts the
convergence of <f(Bt) thus showing that the fundamental theorem of algebra is true. �

4.4. Schwarz’s Lemma.

Theorem 4.5. (Schwarz’s Lemma) Let D = {z : |z| < 1} denote the unit disk. If f : D→ D
is an analytic function with f(0) = 0, then |f(z)| ≤ |z| for all z. Moreover, if there exists
z 6= 0 for which |f(z)| = |z|, then there exists θ ∈ R for which f(z) = eiθz for all z ∈ D.
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Proof. Let z0 ∈ D and choose 0 < r < 1 so that z0 is contained in the open disk centered at
the origin with radius f. Let S denote the hitting time of the circles of radius r. The function

g(z) = f(z)
z

is continuous at the origin since limz→0 g(z) = f ′(z). Thus g(z) is analytic in D.
Now, let Bt be a Brownian motion started at z0, and then applying the optional stopping
theorem to g(Bt) to find

g(z0) = E[g(Bs)].

Then, since |f(z)| ≤ 1 for all z ∈ D, we have |g(Bs)| = |f(Bs)|
|Bs| ≤

1
r
. Letting r → 1 gives

|g(z0)| ≤ 1. Moreover, if |g(z0)| = 1, then z0 is a local maximum for g. By the above theorem,
this implies that g is constant and |g| = 1. Therefore, there exists θ ∈ R for which g(z) = eiθ,
so f(z) = zeiθ. �

4.5. Liouville’s Theorem. Now we will show Liouville’s theorem where we will use the
conformal invariance of Brownian motion.

Theorem 4.6. If f : C→ C is a bounded analytic function, then f is constant.

Proof. Let Bt be a Brownian motion in C started at the origin. By the previous theorem,
f(Bt) is a time change of Brownian motion (which is a change of variable). Since Brownian
motion visits every neighborhood of ∞, the boundedness of f requires that the time change
does not go to ∞. That is almost surely∫ ∞

0

|f ′(Bs)|2 ds <∞.

We claim that this holds only if f is constant. For if f is nonconstant, then we may choose a
disk D ∈ C such that D (it’s closure) contains no zeros of f. By the open mapping theorem
(holomorphic functions maps open sets to open sets), there exists δ > 0 so that f(z) ≥ δ for
all z ∈ D. Define Sn and Tn to be the nth entrance and exit times, respectively, of D. Then
Sn and Tb are almost surely finite for all n. By the Markov Property of Brownian Motion, the
variables Tn−Sn are independent and identically distributed. Also, each has finite expectation
and the strong law of large numbers show that almost surely∫ ∞

0

|f ′(Bs)|2 ds ≥
∞∑
n=1

δ2(Tn − Sn) =∞.

�

5. Conclusion

This paper discussed a large variety of topics and showed the way in which we could interpret
Complex Analysis through the lens of stochastic processes. We first went and showed some
fundamental measure theory. We then went and explored some ideas in probability theory
and stochastic processes with the idea of Martingales and Brownian Motion. After developing
that theory, we went on to discuss stochastic Calculus and wound up discussing Itô’s formula
and Itô Calculus which was imperative for our discussion of Complex Analysis with Brownian
Motion. Overall, using our background, we proved three profound theorems in Complex
Analysis.
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