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Abstract. The Riemann-Roch theorem lets us compute the dimension of the space of meromorphic func-

tions with controlled zeros and poles. This paper will present a proof of the Riemann-Roch theorem using

sheaf cohomology. We will also introduce the basic theory of elliptic curves, including the uniformization

theorem and the group law. In particular, we will see that the Riemannn-Roch theorem provides more

enlightening proofs than elementary methods.
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Introduction

Motivating Question: Rational Points on Elliptic Curves. Consider an elliptic curve E defined over

C; for now, we’ll say this is the locus of the points (x, y) ∈ C2 such that y2 = 4x3 − g2x − g3 for some

fixed constants g2, g3 ∈ C where g3
2 − 27g2

3 6= 0. We are interested in the rational points of E, denoted

E(Q) = {(x, y) ∈ Q2 : y2 = 4x3 − g2x − g3}. Given a set of rational points, one way to generate more is

to take a rational point O, and define an operation as follows. Given two rational points A and B, let the

line ` through A and B intersect E at C. Then, draw the line `′ through O and C, and let it intersect E at

A+B. Then A+B is a rational point. One may ask:

• Is E(Q) finite or infinite?

• If E(Q) is finite, how do we compute its size?

• Can we generate E(Q) by the process defined above? Is the set of starting points needed to do this

finite?

• How many rational points do we expect a random elliptic curve E to have?

• Does E(Q) carry any structure?

The Riemann-Roch Theorem. Consider a compact Riemann surface X of genus g; the Riemann-Roch

theorem will aim to determine the dimension of the complex vector space of meromorphic functions on X

with controlled zeros and poles. In particular, let D be a formal sum of points
∑
niPi. Then OD gives the

complex vector space of meromorphic functions f such that at each point P , ordPi
(f) + ni ≥ 0 (see Section

2).

The Riemann-Roch theorem states that:

dimH0(X,OD)− dimH1(X,OD) = 1− g + degD.

Serre duality will allow us to interpret the first cohomology group of the sheaf OD as global sections of the

sheaf OK−D. We find

`(D)− `(K −D) = 1− g + degD,

where `(D) = dimH0(X,OD). The second form of the theorem allows us to more easily derive consequences

of Riemann-Roch, as the zeroth cohomology group simply gives us the global sections.

We see that Riemann-Roch theorem implies that any compact Riemann surface can be embedded into

PN for some N , and in particular, that elliptic curves can be embedded in P2. We will also see the theorems

of Abel and Jacobi imply that a compact Riemann surface can be embedded into its Jacobian, and that any

genus 1 Riemann surface is isomorphic to a complex torus.

Elliptic Curves. Using the theory we develop, we prove the uniformization theorem for elliptic curves that

says, roughly, that elliptic curves correspond to complex tori. More precisely, given a complex torus C/Λ,

we can embed it into P2 by

ϕ : z 7→

{
(℘(z) : ℘′(z) : 1) if z 6∈ Λ

O if z ∈ Λ
.

Since ℘′(z)2 = 4℘(z) − g2(Λ)℘(z) − g3, by y = ℘′(z) and x = ℘(z), this induces an elliptic curve EΛ,

and furthermore, ϕ is a group isomorphism. Conversely, one wonders if, given an elliptic curve E : y2 =

4x3 − g2x− g3, if there is a complex torus C/Λ such that EΛ
∼= E. We will see that this is the case.

We will also give a natural explanation of the group law for elliptic curves.

Assumed Background. We will assume the reader knows some basic concepts from complex analysis and

algebra. We freely use results from Section 5.1 before they are stated - in part, because they can be proven

with elementary complex analysis. Other than that, we have tried to keep the prerequisites to a minimum -

in particular, we have tried to avoid categorical constructions when possible.
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1. Sheaf Cohomology

1.1. Complexes.

Definition 1.1. A cochain complex C• is a sequence of abelian groups or modules along with homomor-

phisms such that the image of the previous homomorphism is contained in the kernel of the next homomor-

phism:

· · · Ci Ci+1 Ci+2 Ci+3 · · ·δi−1 δi δi+1 δi+2 δi+3

and Im δi ⊆ ker δi+1 for all i. Note that this is equivalent to δi+1 ◦ δi = 0. Each δi is called a boundary

operator. A complex is exact if Im δi = ker δi+1 for each i. Elements in the kernel of δ are called cocycles,

and elements in the image of δ are called coboundaries. Finally, the i-th cohomology Hi(C•) is defined as

ker δi+1/ Im δi.

Remark. There is also a notion of a chain complex, where the indices are decreasing rather than increasing,

but this won’t be important for our discussion.

Definition 1.2. An exact sequence of the form

0 L Mα

is called a monomorphism and an exact sequence of the form

M N 0
β

is called an epimorphism.

Proposition 1.3. Consider a complex

0 L M N 0α β

Then the complex is exact if and only if α is a monomorphism, β is an epimorphism, and Imα = kerβ.

Proof. Follows from the definitions. �

We call such a complex a short exact sequence.

Proposition 1.4. Let

0 U V W 0
δ0 δ1 δ2 δ3

be a short exact sequence of finite-dimensional vector spaces. Then dim(V ) = dim(U) + dim(W ).

Proof. By the first isomorphism theorem, we have Im δ2 ∼= V/ ker δ2 and Im δ1 ∼= U/ ker δ1. Since the

sequence is exact, we have 0 = Im δ0 = ker δ1 and Im δ1 = ker δ2. Then

W = ker δ3 = Im δ2 ∼= V/ ker δ2 = V/ Im δ1 ∼= V/U

so

dim(W ) = dim(V/U) = dim(V )− dim(U)

and

dim(V ) = dim(U) + dim(W )

as desired. �

Definition 1.5. Let the Euler characteristic of a complex C• be

χ(C•) =
∑
i

(−1)i dim(Hi(C•)).

Proposition 1.6. If C• is an exact sequence, then χ(C•) = 0.

Proof. [Alu09] p. 335. �
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Proposition 1.7 (The Snake Lemma). Consider the following diagram

0 0 0

0 kerλ kerµ ker ν

0 L0 M0 N0 0

0 L1 M1 N1 0

cokerλ cokerµ cokerν

0 0 0

δ

α0 β0

α1 β1

where

0 L0 M0 N0 0

0 L1 M1 N1

α0

λ

β0

µ ν

α1 β1

commutes. Then there is an exact sequence of the form

0 kerλ kerµ ker ν cokerλ cokerµ cokerνδ

Proof. Omitted. �

1.2. Sheaves.

Definition 1.8. A presheaf tells us the following data: to each open set U ⊆ X, we associate a set F (U)

called the sections of F over U ; we call F (X) the global sections. Typically, the sections are abelian groups.

We also need restriction maps resVU : F (V )→ F (U) for any open sets U ⊆ V ⊆ X satisfying:

• resUU = id

• resVU ◦ resWV = resWU for any U ⊆ V ⊆W ; i.e. the following diagram commutes:

F (W ) F (U)

F (V )

resWU

resWV resVU

Definition 1.9. A presheaf is a sheaf if it satisfies the following two properties:

• Identity: If {Ui}i∈I is an open cover of U , f, g ∈ F (U) and f
∣∣
Ui

= g
∣∣
Ui

for all i ∈ I, then f = g

(elements of F (U) are determined by their restriction to an open cover {Ui}i∈I)
• Gluability: Let fi ∈ F (Ui). If fi

∣∣
Ui∩Uj

= fj
∣∣
Ui∩Uj

for all i, j ∈ I, then ∃f ∈ F (U) such that

f
∣∣
Ui

= fi for all i ∈ I.

Identity means there is at most one way to join sections, and gluability means that there is at least one way

to join sections.

Our most important examples of sheaves will be the holomorphic and meromorphic functions.

Example 1.10.
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• Let O(U) be the set of holomorphic functions defined on U . The restriction maps are defined in the

natural way: if U ⊆ V and f ∈ F (V ), then let resVU (f) = f
∣∣
U
∈ F (U). Then, O can be seen to be

a sheaf.

• Let Ω be the sheaf of holomorphic 1-forms on a compact Riemann surface X, that is, symbols that

locally look like ω = f(z)dz for f holomorphic (recall that X locally looks like C as a Riemann

surface is a one dimensional complex manifold).

• Let M be the sheaf of meromorphic functions.

• Let M (1) be the sheaf of meromorphic 1-forms.

• On a connected topological space, we can define a constant sheaf which simply associates the same

set to each open set U . In particular, we are interested in the sets Z and C; these contain topological

information about X.

Example 1.11. An example of a presheaf that is not a sheaf is the set of bounded functions on C. For

example, if we cover C by Un = {z ∈ C : |z| < n} for n ∈ N, then the function f(z) = z is bounded on each

Un and agrees on intersections, but cannot be glued over all of C to give a bounded function.

1.3. Stalks and Germs. Say we have a presheaf F on a topological space X, and consider a point a ∈ X.

We define an equivalence relation on the disjoint union⊔
U3a

F (U)

over all open neighborhoods U of a as follows: for f ∈ F (U) and g ∈ F (V ), f ∼a g if and only if there is

an open set W with a ∈W ⊆ U ∩ V such that f
∣∣
W

= g
∣∣
W

.

Definition 1.12. The stalk of F at a is given by

Fa =

(⊔
U3a

F (U)

)/
∼a .

Definition 1.13. Let U be an open set, and let a ∈ U . Then consider the function ρa : F (U)→ Fa which

sends a section to its equivalence class modulo ∼a. We call ρa(f) the germ of f at a.

The idea is that we want to have more information than just the point a itself; we want to know the

behaviour around a. However, no open set is small enough to only contain information about a. Thus, a

germ can be thought of as a point with additional information. Similarly, we can think of the stalk at a

point as being the set of possible germs.

Example 1.14. Let X = R, and let F be the sheaf of real valued smooth functions on X. Then the germ

at a point tells us the derivatives at a point p ∈ R. This is not enough to tell us the sections. However, if

we consider the sheaf of holomorphic functions on C, then we can determine the sections!

1.4. Cohomology. Let X be a topological space, and let U = (Ui)i∈I be an open cover of X. Also, fix a

sheaf of abelian groups F on X. For each non-negative integer q, we define

Cq(U,F ) =
∏

i0<i1<...<iq

F (Ui0,i1,...,iq )

where Ui0,i1,...,iq = Ui0 ∩ Ui1 ∩ · · · ∩ Uiq An element α ∈ Cq(U,F ) is determined by taking an element

αi0,...,iq ∈ F (Ui0...,iq ) for each q + 1 tuple in I. We can also define the coboundary map δq : Cq(U,F ) →
Cq+1(U,F ) by

(δqα)i0,...,iq+1
=

q+1∑
k=0

(−1)kαi0,...,̂ik,...,iq+1

∣∣∣
Ui0,...,iq+1

Example 1.15. Say we have a sheaf of abelian groups on a topological space X, and consider the coboundary

map from C3(U,F )→ C4(U,F ). Then

(δα)i0,i1,i2,i3,i4 = αi1,i2,i3,i4 − αi0,i2,i3,i4 + αi0,i1,i3,i4 − αi0,i1,i2,i4 + αi0,i1,i2,i3 .
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We might hope that this actually gives a complex. Given α ∈ C2(U,F ), we can calculate (δ3 ◦ δ2)(α):

δ3(δ2α))i0,i1,i2,i3,i4 = (δ2α),i1,i2,i3,i4 − (δ2α)i0,i2,i3,i4 + (δ2α)i0,i1,i3,i4 − (δ2α)i0,i1,i2,i4 + (δ2α)i0,i1,i2,i3

and substituting, we find

δ3(δ2α))i0,i1,i2,i3,i4 = (αi2,i3,i4 − αi1,i3,i4 + αi1,i2,i4 − αi1,i2,i3)

− (αi2,i3,i4 − αi0,i3,i4 + αi0,i2,i4 − αi0,i2,i3)

+ (αi1,i3,i4 − αi0,i3,i4 + αi0,i1,i4 − αi0,i1,i3)

− (αi1,i2,i4 − αi0,i2,i4 + αi0,i1,i4 − αi0,i1,i2)

+ (αi1,i2,i3 − αi0,i2,i3 + αi0,i1,i3 − αi0,i1,i2)

= 0

Proposition 1.16. δq+1 ◦ δq = 0: in particular, C•(U,F ) is a cochain complex of abelian groups.

Proof. Consider the matrix of indices that are skipped in the α’s. Given a coordinate (n,m), if n < m, then

the sign is + if and only if n 6≡ m (mod 2), while if n > m, then the sign is + if and only if n ≡ m (mod 2).

Thus, the sum is 0. �

Definition 1.17. Call

Zq(U,F ) = ker(Cq(U,F )→ Cq+1(U,F ))

the q-cocycles and

Bq(U,F ) = Im(Cq−1(U,F )→ Cq(U,F ))

the q-coboundaries. Note that, in particular, each coboundary is a cocycle. Then we define

Hq(U,F ) = Zq(U,F )/Bq(U,F )

to be the q-th cohomlogy group with coefficients in F with respect to U.

Remark. We note that the cohomology groups defined above depend on the open covering U of X - thus,

we have constructed the Čech cohomology. However, once we have defined the Čech cohomology, sheaf

cohomology can be defined in a natural way. The construction is omitted but can be found in ([For81], §12).

Definition 1.18. Let

Hq(X,F ) = lim−→
U

Hq(U,F )

be the sheaf cohomology.

If we’re going to just take the direct limit of the Čech cohomology to obtain the sheaf cohomology, why

do we bother with Čech? The upshot is that it’s easier to compute with Čech cohomology.

Theorem 1.19 (Leray). Let F be a sheaf of abelian groups, and let U = {Ui}i∈I be an open covering of X

such that H1(Ui,F ) = 0 for each i ∈ I. Then

H1(X,F ) ∼= H1(U,F ).

U is then called a Leray covering for F .

Example 1.20 (The Exponential Sheaf Sequence). Let O∗ be the sheaf of nonvanishing holomorphic func-

tions. Then the exponential map exp : O → O∗ is a sheaf homomorphism, and in particular induces a short

exact sequence

0 2πiZ O O∗ 0

on stalks: given a nonvanishing function germ, we can locally compute its logarithm. However, it is not

necessarily globally exact: for example, in a nonsimply connected space, a function may not have a global

logarithm.

Let X be a compact Riemann surface, and let F be a sheaf of abelian groups on X. We construct a

complex like so:
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0 C0(X,F ) C1(X,F ) C2(X,F ) . . .
δ0 δ1

Similarly to above, let Z1(X,F ) = ker δ1 be the 1-cocycles, and B1(X,F ) = Im δ0 be the 1-coboundaries.

Then the first cohomology group H1(X,F ) is ker δ1/ Im δ0 = Z1(X,F )/B1(X,F ).

Proposition 1.21. Let F be a sheaf. Then the zeroth cohomology group H0(X,F ) simply gives the

sections F (X).

Proof. We consider H0(X,F ) by looking at the complex

0 C0(X,F ) C1(X,F ) · · ·δ0

so that H0(X,F ) = ker δ0. Note that (δ0α)i0,i1 = αi1 − αi0 , so an element α of the kernel is one where

αi = αj for each i, j ∈ I. Thus, by the definition of a sheaf, α is a constant on X. We conclude H0(X,F ) =

F (X). �

Proposition 1.22. For a compact Riemann surface X, H1(X,O) is a finite dimensional complex vector

space.

Proof. The proof uses some sophisticated tools from functional analysis and thus falls outside the scope of

this paper. Details can be found in [For81]. �

Definition 1.23. We call g = dimH1(X,O) the genus of X.

1.5. The Exact Cohomology Sequence.

Definition 1.24. Let F and G be sheaves on a topological space X. Then a sheaf homomorphism α : F →
G sends

αU : F (U)→ G (U)

for each open set U ⊆ X. For open sets U, V such that U ⊆ V ⊆ X, we require

F (V ) G (V )

F (U) G (U)

αV

resVU resVU

αU

to commute.

Definition 1.25. Let a sequence of sheaf homomorphisms on X be exact if the induced homomorphism on

stalks is exact for each x ∈ X.

Lemma 1.26. Let X be a topological space and let

0 F G Hα β

be an exact sequence of sheaves on X. Then for each open set U ⊆ X,

0 F (U) G (U) H (U)
αU βU

is exact.

Proof of Lemma 1.26.

• First, we prove that 0 F (U) G (U)
αU is exact. Let f ∈ F (U) be such that αU (f) = 0.

Note that each sequence of stalks

0 Fx Gx
αx

is exact, so for each x ∈ U , there is an open neighborhood Ux ⊆ U so that f
∣∣
Ux

= 0. By the

definition of a sheaf, f = 0. Thus, α is injective.
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• Now, we prove that ImαU ⊆ kerβU . Say that f ∈ F (U), and let g = α(f): note that g ∈ αU . Then

since the sequence is exact on stalks, we have g ∈ Imα = kerβ, so there is an open neighborhood

Ux such that β(g)
∣∣
Ux

= 0. By the same argument as above, we have β(g) = 0, so g ∈ kerβU .

• Finally, we prove that kerβU ⊆ ImαU . Say that g ∈ ker G (U) and β(g) = 0. Then, for each x, by

exactness on stalks, we have kerβx = Imαx, so g ∈ Imαx. In particular, there is a covering (Ui)i∈I
such that for each i, there exists fi ∈ F (Ui) such that α(fi) = g

∣∣
Ui

. Then, α(fi−fj) = 0 on Ui∩Uj ,
so fi = fj on Ui ∩Uj . Thus, there is an f ∈ F (U) such that f

∣∣
Ui

= fi for each i ∈ I, and α(f) = g.

�

Lemma 1.27. Let X be a compact Riemann surface and let

0 F G H 0α β

be a short exact sequence of sheaves on X. Then

0 H0(X,F ) H0(X,G ) H0(X,H )

H1(X,F ) H1(X,G ) H1(X,H )

α0 β0

δ∗

is exact.

Proof outline. Since a compact Riemann surface is paracompact and Hausdorff, the derived functor coho-

mology agrees with the Čech cohomology (see [Whi60]). Then we use the two short exact sequences given

in [Ara] on p. 28. and apply the Snake Lemma. �
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2. Riemann-Roch

Definition 2.1. Let X be a compact Riemann surface. A divisor on X is a formal sum of a finite number

of points, D =
∑k
i=1 niPi. The degree of D is

∑k
i=1 ni.

ord
x

(f) =


0 if f is holomorphic and nonzero at x

−k if f has a pole of order k at x

k if f has a zero of degree k at x

∞ if f is identically zero in a neighborhood of x

Example 2.2. Let f be a meromorphic function on an open subset Y of a Riemann surface X. For a point

x ∈ Y , we can define ordx(f) to be the order of f at x. Then the function x 7→ ordx(f) is a divisor on X.

Definition 2.3. A divisor D is called principal if there is a meromorphic function f ∈ M (X) such that

D = (f), and two divisors D and D′ are equivalent, written D ∼ D′, if there D − D′ = (f) for some

f ∈M (X). We say a divisor D is effective if D ≥ 0.

Let X be a compact Riemann surface. Then, we define deg : Div(X) → Z by degD =
∑
x∈X D(x).

Recall that meromorphic functions on a compact Riemann surface have the same number of zeros as poles,

so deg(f) = 0 for any f ∈M (X). In particular, if D and D′ ∈ Div(X) are equivalent, we have D−D′ = (f)

for some meromorphic f , so deg(D)− deg(D′) = deg(f) = 0 =⇒ deg(D) = deg(D′).

Definition 2.4. Let D be a divisor on a compact Riemann surface X. Then we construct the sheaf OD
along with the natural restriction map as follows: for any open set U ⊆ X,

OD(U) = {f ∈M (U) : ord
x

(f) ≥ −D(x) for all x ∈ U}.

We can think of OD as giving us the vector space of meromorphic functions with controlled zeros and

poles. If some point P has a zero of order n, then we require ordP (f) ≥ −D(P ) = −n, so f must have a

pole of order at most n. If P has a pole of order n, then f must have a zero of multiplicity at least n.

Definition 2.5. Let ω be a nontrivial meromorphic 1-form onX. Then the divisorK = (ω) =
∑
x∈X ordx(ω)

is the canonical divisor on X. This is well defined because for ω, ω′ ∈M (1)(X) \ {0}, we have

ω

ω′
=
f(z)dz

g(z)dz
= (f/g)(z) ∈M (X) \ {0},

so that (ω) = (ω′).

Definition 2.6. Let ΩD be the sheaf of meromorphic 1-forms ω such that ord(ω) ≥ −D. In particular, we

denote by Ω the sheaf of holomorphic 1-forms.

Lemma 2.7. There is an isomorphism between OD+K and ΩD defined by f 7→ fω, for ω a nontrivial

meromorphic 1-form.

Proposition 2.8. If D and D′ are equivalent as divisors on X, then OD and OD′ are isomorphic as sheaves.

Proof. Say that D −D′ = (f) for some meromorphic f . Then

OD = OD′+(f)
∼= OD′

as

(gf) +D′ = (g) + (f) +D′ = (g) +D.

�

Proposition 2.9. If D ≤ D′, then there is an inclusion OD → OD′ .
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Proof. If f ∈ OD, then ordx(f) ≥ −D(x) for all x ∈ X. However, as D(x) ≤ D′(x) for all x, we have

ordx(f) ≥ −D′(x), so f ∈ OD′ as desired. �

Definition 2.10. Let X be a Riemann surface, and let P be a point of X. Then we define the skyscraper

sheaf CP by

CP (U) =

{
C if P ∈ U,
0 if P 6∈ U.

Lemma 2.11. We have

(1) H0(X,CP ) ∼= C;

(2) H1(X,CP ) = 0.

Proof. Note that (1) follows as the zeroth cohomology group just gives us the global sections: H0(X,CP ) =

CP (X) = C. To prove (2), consider a Leray covering U = (Ui)i∈I of X, and say h ∈ H1(X,CP ). Then

Z1(U,CP ) = 0, so h = 0. �

Lemma 2.12. For any divisor D on X and point P ∈ X,

0 OD OD+P CP 0

is a short exact sequence.

Proof. First, we define β : OD+P → CP as follows: let f ∈ OD+P have a Laurent expansion around U 3 P

f(z) =

∞∑
n=−k−1

cnz
n,

and let β(f) = c−k. Then β is clearly surjective onto CP . To show that OD → OD+P is injective, it suffices

to check on stalks. If Q 6= P , then

(OD)Q = (OD+P )Q,

and if Q = P , then

(OD)P ⊕ C = (OD+P )P .

�

Theorem 2.13 (Riemann-Roch). Let X be a compact Riemann surface with genus g, and say D is a divisor

on X. Then H0(X,OD) and H1(X,OD) are finite dimensional vector spaces and

dimH0(X,OD)− dimH1(X,OD) = 1− g + degD(?)

Proof. First, consider the case when D = 0. Note that degD = 0. As g = dimH1(X,O), it suffices to show

that dimH0(X,O) = 1. Note that H0(X,O) = O(X), and as holomorphic functions on compact Riemann

surfaces are constant, we have [H0(X,O) : C] = [O(X) : C] = 1, as desired.

Now, say P ∈ X, and let D and D + P be divisors on X. We will show that (?) holds for divisor D if

and only if it holds for D + P . First, note that deg(D + P )− deg(D) = 1. By applying Lemma 1.27 to the

short exact sequence in Lemma 2.12, we obtain an exact sequence:

0 H0(X,OD) H0(X,OD+P ) H0(X,CP )

H1(X,OD) H1(X,OD+P ) H1(X,CP )

By Lemma 2.11, this is equivalent to:

0 H0(X,OD) H0(X,OD+P ) C H1(X,OD) H1(X,OD+P ) 0
ϕ φ
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Let V = Imϕ and W = C/V . Note in particular that dimW + dimV = 1. We can split this long exact

sequence into two short exact sequences:

0 H0(X,OD) H0(X,OD+P ) V 0

0 W H1(X,OD) H1(X,OD+P ) 0

where the first sequence is exact because

Im(H0(X,OD+P → V ) = Imϕ = V = ker(V → 0)

and the second sequence is exact because V = Imϕ = kerφ so

Im(W → H1(X,OD)) = Im(C/V → H1(X,OD)) = Imφ = ker(H1(X,OD)→ H1(X,OD+P )).

By Proposition 1.4, we have

dimH0(X,OD) + dimV = dimH0(X,OD+P )

and

dimW + dimH1(X,OD+P ) = dimH1(X,OD)

so subtracting gives us

dimH0(X,OD+P )− dimH1(X,OD+P )− dimW = dimH0(X,OD)− dimH1(X,OD) + dimV.

Now, we have

dimH0(X,OD+P )− dimH1(X,OD+P )− deg(D + P )− 1 + g

= dimH0(X,OD)− dimH1(X,OD)− deg(D)− 1 + g(†)

so in particular, (?) holds for D if and only if it holds for D + P .

Remark. We can also obtain (†) by applying Proposition 1.6 to the long exact sequence.

The general case follows by induction, as any arbitrary D ∈ Div(X) can be written as D = P1 + . . . +

Pm − Pm−1 − . . .− Pn. �

Remark. For D ∈ Div(X), i(D) = dimH1(X,OD) is called the index of speciality of D. It is typically

thought of as a correction term, as it disappears when the degree of D is sufficiently large.

2.1. Serre Duality. Let `(D) = dimH0(X,OD). The zeroth cohomology group is easy to interpret:

H0(X,OD) = OD. But what about H1(X,OD)? Serre duality tells us that H0(Ω−D) = H1(OD)∨, but

we won’t be able to prove this. We will instead prove a weaker form that says:

Proposition 2.14 (Weak Serre Duality). We have dimH1(X,OD) = dimH0(X,OK−D), and in particular,

`(K −D) = dimH1(X,OD).

First, we will need the following lemma:

Lemma 2.15. There is an injective map

iD : H0(X,ΩD)→ H1(X,O−D);

in particular, dimH0(X,ΩD) ≤ dimH1(X,O−D).

Proof. [McM], p. 89. �

Proof of Proposition 2.14. By Riemann-Roch, we have

dimH0(X,OK+D)− dimH1(X,OK+D) = 1− g + deg(K +D)

and

dimH0(X,O−D)− dimH1(X,O−D) = 1− g + deg(−D),
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so adding gives

dimH0(X,OK+D) + dimH0(X,O−D) = 2− 2g + degK + dimH1(X,OK+D) + dimH1(X,O−D)

and thus

dimH0(X,OK+D) + dimH0(X,O−D) = degK + dimH1(X,OK+D) + dimH1(X,O−D).

By Lemma 2.7, we have OK+D
∼= ΩD and O−D ∼= Ω−K−D, so along with Lemma 2.15, we have

dimH0(X,OK+D) = dimH0(X,ΩD) ≤ dimH1(X,O−D)

and

(∗) dimH0(X,O−D) = dimH0(X,Ω−K−D) ≤ dimH1(X,OK+D),

so we must have equality in both cases. Thus, by the substitution D 7→ D −K in (∗), we have

dimH0(X,OK−D) = dimH1(X,OD)

so `(K −D) = dimH1(X,OD). �

As `(D) = dimH0(X,OD) and `(K −D) = dimH1(X,OD), we have:

Theorem 2.16 (Riemann-Roch (Second Form)).

`(D)− `(K −D) = 1− g + degD

2.2. Consequences of Riemann-Roch.

Proposition 2.17. If degD < 0, then `(D) = 0.

Proof. If we had some f ∈ OD, then we would have ordx(f) ≥ −D(x) > 0 for all x ∈ X, so deg(f) > 0. This

is impossible, as f is meromorphic, and deg(f) = 0 for any meromorphic function on a compact Riemann

surface. �

Proposition 2.18. If degD ≥ 2g − 1, then `(K −D) = 0.

Proof. By `(D)− `(K −D) = 1− g + degD ≥ 1− g + 2g − 1 = g, so

`(K −D)− `(D) = 1− g + deg(K −D) ≤ −g
=⇒ deg(K −D) ≤ −1

=⇒ deg(K −D) < 0

and by Proposition 2.17, we have `(K −D) = 0, as desired.

�

Proposition 2.19. `(K) = g.

Proof. Note that by considering the divisor D = 0, we have

`(0)− `(K) = deg 0 + 1− g =⇒ 1− `(K) = 1− g =⇒ `(K) = g.

�

Thus, there are exactly g linearly independent holomorphic 1-forms on a compact Riemann surface of

genus g.

Proposition 2.20. degK = 2g − 2.

Proof. By considering the canonical divisor K, we have

`(K)− `(K −K) = degK + 1− g =⇒ g − 1 = degK + 1− g =⇒ degK = 2g − 2.

�

Proposition 2.21. For any lattice Λ, C/Λ has genus 1.
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Proof. For any holomorphic 1-form ω on C/Λ, we locally have ω = f(z)dz for f holomorphic. However, as

the only holomorphic elliptic functions are the constant functions, we have ω = dz. Thus, ω has no zeros or

poles, and 0 = deg(ω) = 2g − 2 =⇒ g = 1. �

2.3. Riemann Surfaces of Genus 0. Consider a compact Riemann surface X of genus 0. We will verify

the Rieman-Roch theorem for X explicitly.

Proposition 2.22. For any divisor D on X, we have

`(D)− `(K −D) = 1 + degD;

in particular,

(1) degK = −2

(2) `(K) = 0

(3) If degD ≥ 0, then `(D) = 1 + degD; otherwise, `(D) = 0.

Lemma 2.23. If degD ≥ 0, `(D + P ) = `(D) + 1 for any point P ∈ X.

Proof. First, we claim that `(D + P ) ≥ `(D) + 1: we do this by constructing a function f that is in OD+P

but not OD. If D = nP +
∑k
i=1 niPi, since D + P = (n+ 1)P +

∑k
i=1 niPi,

f(z) = (z − Pi)n+1
k∏
i=1

(z − Pi)ni

suffices. To show that `(D+P ) ≤ `(D) + 1, we note that if there are functions that attain a pole of maximal

order at P , then the dimension increases by 1; otherwise, it is equal to `(D). Thus, `(D + P ) = `(D) + 1,

as desired. �

Proof of Proposition 2.22.

(1) Consider a 1-form ω = dz; we claim it has as pole of order 2 at∞. By the change of variables z 7→ 1
y ,

we have dz = − 1
y2 dy, so that dz has a pole at of order 2 at y = 0; that is, a pole of order 2 at ∞. It

has no other poles, so K = −2 · ∞ and degK = −2.

(2) `(K) = dimH0(X,OK) = dim OK , and as there are no holomorphic 1-forms on X, we have `(K) = 0.

(3) First, say degD ≥ 0. Note that any divisor can be written as a finite sum of points, say D =
∑n
i=1 Pi

where by slight abuse of notation, we may include a point a negative number of times. Then,

repeatedly applying Lemma 2.23 gives

`(D) = `(P1 + . . .+ Pn) = `(P1 + . . .+ Pn−1) + 1

= `(P1 + . . .+ Pn−2) + 2

= `(0) + n

= 1 + degD

as desired. If degD < 0, then `(D) = 0: (f) + D ≥ 0, but for any meromorphic function f on X,

deg(f) = 0.

�

Example 2.24. Consider the divisor D = −nP , where n is an integer. Then the Riemann-Roch theorem

follows if we can show that

`(−2 · ∞+ nP ) = n− 1

for n < 0, which follows as {
1

(z − P )2
,

1

(z − P )3
, . . . ,

1

(z − P )n

}
is a C-basis of O(−2·∞−nP ).
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3. Embedding into Projective Space

Definition 3.1. Let An = {(a1, . . . , an) : ai ∈ C} be affine n-space over C.

Definition 3.2. Let Pn = {(a0, . . . , an) \ {(0, . . . , 0)} : ai ∈ C}/ ∼ be projective n-space over C , where

(a0, . . . , an) ∼ (a′0, . . . , a
′
n) if and only if there exists some c ∈ C× such that ai = ca′i for 1 ≤ i ≤ n. We write

an equivalence class of a point by (a0 : · · · : an).

Let Uj = {(z0 : · · · : zN ) ∈ PN : zj 6= 0}, and define a map ϕj : Uj → CN by

ϕj(z0 : · · · : zN ) =

(
z0

zj
, . . . ,

ẑj
zj
, . . . ,

zN
zj

)
.

Note that the Uj form an open cover of PN , and ϕj : Uj → CN is a homeomorphism. They are called the

standard affine charts. If we have a continuous function f : X → PN , then the sets Wj = f−1(Uj) are open.

Then we obtain maps

fj = ϕj ◦ f : Wj → CN .
Note that each fj gives N functions from Wj to C, as fj : Wj → CN . Let fj = (fj1, . . . , fjN ).

Definition 3.3. We call f holomorphic if each fjk is holomorphic, and an immersion if it is holomorphic,

and for each x ∈ X, there is some Fjk such that x ∈ Wj and
∂Fjk(x)
∂x 6= 0. Finally, f is an embedding if it is

an injective immersion.

Theorem 3.4. Let D be a divisor with degD ≥ 2g + 1, and let f0, . . . , fN be a basis of H0(X,OD). Then

f = (f0 : · · · : fN ) : X → PN

is an embedding.

Proof. Omitted; [For81] p. 144 or [Nar92] p. 56. �

Theorem 3.5. Any compact Riemann surface can be embedded in P3.

Proof. [Har77] p. 310.

�
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4. Abel-Jacobi

Definition 4.1. By a curve, we mean a continuous map c : [0, 1] → X. Then a 1-chain on X is a formal

sum

c =

m∑
j=1

njcj

where the cj are curves, and nj ∈ Z. We will denote the group of all 1-chains on X by C1(X). The integral

over c of a closed differential form ω is ∫
c

ω =

m∑
j=1

nj

∫
cj

ω.

We define a boundary operator ϕ : C1(X)→ Div(X). Let ∂c =
∑m
j=1 nj∂cj , where ∂ is defined on curves

as follows: if cj is a closed curve, i.e. cj(0) = cj(1), then let ∂cj = 0. Otherwise, let it be the divisor

cj(1) − cj(0). Note that, in particular, as deg(∂cj) = 0 for any curve, we also have deg(∂c) = 0 for any

1-chain.

Example 4.2.

c1(0)

c2(0) c3(0) = c3(1) c1(1)

c2(1)

Proposition 4.3. Given D ∈ Div0(X), there is a c ∈ C1(X) such that ∂c = D.

Proof. Say that D = P1 + . . .+ Pn −Q1 − . . .−Qn, where points may be repeated. Then let ci connect Qi
and Pi with ci(0) = Qi and ci(1) = Pi. With c =

∑n
i=1 ci, we have ∂c =

∑n
i=1(Pi−Qi) = D, as desired. �

Definition 4.4. Let Z1(X) = ker ∂ be the 1-chains.

Remark. Note that although every c ∈ C1(X) satisfies deg(∂c) = 0, we do not always have ∂c = 0.

Now, define an equivalence relation as follows: for two chains c1, c2 ∈ C1(X), let c1 ∼ c2 if for all closed

differential forms ω (recall a closed differential form satisfies dω = 0),
∫
c1
ω =

∫
c2
ω; in this case, we say c1

and c2 are homologous. Then H1(X,Z) = Z1(X,Z)/ ∼ is the first homology group of X. Note that for any

c ∈ H1(X,Z) and closed differential 1-form ω,
∫
c
ω is well defined.

Remark. This is similar to the fundamental group π1(X); in fact, H1(X,Z) is the abelianization of π1(X).

We say that D ∈ Div(X) has a solution if there is some meromorphic function f ∈ M (X) such that

(f) = D. Clearly, since X is a compact Riemann surface, it is necessary that degD = 0. Abel’s theorem

will give us sufficient conditions.

Theorem 4.5 (Abel). Let X be a compact Riemann surface, and let D be a divisor with degD = 0. Then

D has a solution if and only if there is some c ∈ C1(X) with ∂c = D and
∫
c
ω = 0 for each holomorphic

1-form ω.

Recall that dim Ω(X) = g; take a basis ω1, . . . , ωg. Then define the period lattice of the ωi as follows:

Γ = Per(ω1, . . . , ωg) =

{(∫
α

ω1, . . . ,

∫
α

ωg

)
: α ∈ H1(X)

}
Proposition 4.6. Γ is a lattice in Cg, i.e.

Γ = γ1Z + γ2Z + . . .+ γ2gZ

for some γ1, . . . , γ2g ∈ Z1(X,Z) linearly independent over R.



16 JET CHUNG

Corollary 4.7. In particular, H1(X,Z) ∼= Z2g.

Definition 4.8. Let the Jacobian of X be defined by

Jac(X) = Ω(X)∨
/{∫

c

∈ Ω(X)∨ : c ∈ H1(X,Z)

}
∼= Cg/Γ.

Proposition 4.9. If X = C/Λ for a lattice Λ, then it is isomorphic to its Jacobian Jac(X).

Figure 1. The red and blue cycles represent classes in H1(C/Λ,Z).

Proof. Let Λ = {1, τ} where τ ∈ H. Recall that by Proposition 2.21, C/Λ has genus 1. For 0 ≤ t ≤ 1, let

t 7→ t be the blue cycle c1, and let t 7→ tτ be the red cycle c2; these generate H1(C/Λ,Z) ∼= Z2. Then any

c ∈ H1(C/Λ,Z) can be written in the form c = ck11 c
k2
2 for integers k1 and k2. For any ω ∈ Ω(X), we have∫

c

ω = k1

∫
c1

ω + k2

∫
c2

ω.

Now, consider C 7→ C/Λ. This sends the 1-form dz to ω, so the integral
∫ 1

0
dz gets sent to

∫
c1
ω mod Λ and∫ τ

0
dz is sent to

∫
c2
ω. In particular,

∫
c1
ω = 1 and

∫
c2
ω = τ . Thus, Γ ∼= Λ, and

Jac(X) = Ω(X)∨/Γ ∼= C/Γ ∼= C/Λ = X.

�

Definition 4.10. Let Div(X), Div0(X), DivP (X) be the divisors, degree 0 divisors, and principal divisors,

respectively, and let Pic(X) = Div(X)/Div0(X) and Pic0(X) = Div0(X)/DivP (X) be the Picard group and

degree 0 Picard group respectively.

We define a map Φ : Div0(X)→ Jac(X) by

D 7→
(∫

c

ω1, . . . ,

∫
c

ωg

)
where c is a 1-chain with ∂c = D. Note that Φ is well defined because the integral over a boundary chain is

zero. Recall that by Abel’s theorem, ker Φ = DivP (X). Then modding out by DivP (X) gives an injective

map j : Pic0(X)→ Jac(X).

Theorem 4.11 (Jacobi). The map j is surjective (and thus defines an isomorphism between Pic0(X) and

Jac(X)).

Thus, the group of degree zero divisors modulo the principal divisors is isomorphic to a complex g-

dimensional torus.

Example 4.12. In the genus 0 case, Jac(X) is trivial, so Pic0(X) is as well.

Proposition 4.13. Any compact Riemann surface X of genus 1 can be written in the form C/Λ.

Proof. Note that as X has genus 1, it is isomorphic to its Jacobian Jac(X), and furthermore, Jac(X) ∼= C/Λ
for a lattice Λ. Thus, X ∼= Jac(X) ∼= C/Λ. �

Proposition 4.14. Any compact Riemann surface of genus g ≥ 1 embeds into its Jacobian.
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5. Elliptic Curves

5.1. Elliptic Functions.

Definition 5.1. Recall that, given two nonzero complex numbers ω1, ω2 such that ω1

ω2
6∈ R, we may define

the lattice Λ by Λ = [ω1, ω2] = {mω1 + nω2 : m,n ∈ Z}. Then an elliptic function with respect to Λ is a

meromorphic function f such that f(z + ω) = f(z) for all ω ∈ Λ.

We know some basic facts about the zeros and poles of elliptic functions, which can be derived using tools

from complex analysis. We will show alternate proofs using the theory we have developed. In what follows,

let P denote a fundamental parallelogram (a parallelogram with vertices at 0, ω1, ω2 and ω1 + ω2), and let

Γ be the boundary of P.

Theorem 5.2. An entire elliptic function f : X → C is constant.

Proof. Note that X is compact. Then f(X) is also compact, so in particular, it is bounded. Since f is an

elliptic function, it defines an entire function f : C→ C. Thus, by Liouville’s theorem, f is constant. �

Proof with Riemann-Roch. Consider the divisor D = 0: this gives us the holomorphic functions on X. Then,

we have `(D) − `(K −D) = 1 − g + degD =⇒ `(0) = degD + `(K) = 1. Thus, the only entire functions

on X are the constant functions. �

Theorem 5.3. There are no elliptic functions with a single simple pole in each fundamental parallelogram.

Proof. Say we have a simple pole at z0. By the residue theorem,∫
Γ

f(z)dz = 2πiRes(f ; z0).

However, by double periodicity, the integral is 0, so the residue at z0 is 0, which is a contradiction to z0

being a pole. Thus, there is no such f with a simple pole at z0. �

Proof with Riemann-Roch. Say we have a simple pole at P . Then, we consider the divisor D = P : this

controls the functions that have at most a pole of order 1 at P , and are holomorphic everywhere else. Then

as degP = 1 ≥ 2g − 1, `(K − P ) = 0, so `(P ) = degP = 1. However, the constant functions have no poles,

so there are no elliptic functions with a single simple pole in each fundamental parallelogram. �

Definition 5.4. Let f be a meromorphic function. Given a contour Γ, we let n0(f) and n∞(f) respectively

denote the number of zeros and poles of f in the interior of Γ, counted with multiplicity.

Theorem 5.5 (Argument Principle). Suppose that Γ ⊂ C is a contour, f is holomorphic on Γ and its

interior except for some isolated singularities. Then

1

2πi

∫
Γ

f ′(z)

f(z)
dz = n0(f)− n∞(f).

Proof. Say f(z) has a root zi with multiplicity ki; we have f(z) = (z − zi)
kig(z) for g(zi) 6= 0. Then

f ′(z) = (z − zi)kig′(z) + ki(z − zi)ki−1g(z) so

f ′(z)

f(z)
=
g′(z)

g(z)
+

ki
z − zi

and integrating over a small contour Γ gives

1

2πi

∫
Γ

f ′(z)

f(z)
dz =

1

2πi

∫
Γ

g′(z)

g(z)
dz + ki.

Now, let us see what happens if we have a pole zj with multiplicity kj : we can write f(z) = g(z)

(z−zj)kj
with

g(zj) 6= 0.

f ′(z) =
g′(z)

(z − zj)kj
− g(z) · kj

(z − zj)kj+1
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Then
f ′(z)

f(z)
=
g′(z)

g(z)
− kj
z − zj

and
1

2πi

∫
Γ

f ′(z)

f(z)
=

1

2πi

∫
Γ

g′(z)

g(z)
− kj .

Doing this for all poles and zeros gives the desired result. �

Theorem 5.6. If f is a nonzero elliptic function, then the number of poles is equal to the number of zeros.

Proof. This follows by the symmetry of the integral over Γ and the argument principle. �

So far, we’ve only proved results we already knew how to prove with more elementary methods. Using

the theory we have developed, we will be able to prove a converse to the following theorem:

Theorem 5.7. Let f be an elliptic function with respect to the lattice Λ, and suppose f has zeros and poles

a1, . . . , an with multiplicities mk. Then
∑n
k=1 akmk ∈ Λ.

Theorem 5.8. Fix a lattice Λ, and let a1, . . . , an be a sequence of complex numbers, and let m1, . . . ,mn be

a sequence of integers. Then there is a doubly periodic meromorphic function f with respect to Λ with zeros

and poles at each ak with multiplicity mk if and only if
∑n
k=1 akmk ∈ Λ and

∑n
i=1mk = 0.

Proof of Theorem 5.7. By the residue theorem, we have

1

2πi

∫
Γ

z
f ′(z)

f(z)
dz =

n∑
k=1

akmk.

Note that ∫ ω1+ω2

ω1

z
f ′(z)

f(z)
dz =

∫ ω2

0

(z + ω1)
f ′(z + ω1)

f(z + ω1)
dz =

∫ ω2

0

(z + ω1)
f ′(z)

f(z)
dz,

and similarly, ∫ ω2

ω1+ω2

z
f ′(z)

f(z)
dz =

∫ 0

ω1

(z + ω2)
f ′(z + ω2)

f(z + ω2)
dz =

∫ 0

ω1

(z + ω2)
f ′(z)

f(z)
dz.

Now, ∫ ω1

0

z
f ′(z)

f(z)
dz +

∫ ω2

ω1+ω2

z
f ′(z)

f(z)
dz =

∫ ω1

0

z
f ′(z)

f(z)
dz +

∫ 0

ω1

(z + ω2)
f ′(z)

f(z)
dz = ω2

∫ 0

ω1

f ′(z)

f(z)
dz,

and ∫ ω1+ω2

ω1

z
f ′(z)

f(z)
dz +

∫ 0

ω2

z
f ′(z)

f(z)
dz =

∫ ω2

0

(z + ω1)
f ′(z)

f(z)
dz +

∫ 0

ω2

z
f ′(z)

f(z)
dz = ω1

∫ ω2

0

f ′(z)

f(z)
dz.

Now, note that
∫ 0

ω1

f ′(z)
f(z) dz = log (0)− log (ω1) = 2πin2 and

∫ ω2

0
f ′(z)
f(z) dz = log (ω2)− log (0) = 2πin1. Thus,

n∑
k=1

akmk =
1

2πi

∫
Γ

z
f ′(z)

f(z)
dz =

1

2πi
(2πin1ω1 + 2πin2ω2) = n1ω1 + n2ω2 ∈ Λ.

�

Proof of Theorem 5.8. Let D be the divisor given by the ak and mk: note that degD = 0. Then, by Abel’s

theorem, D has a solution if and only if there is a chain c ∈ C1(X) such that ∂c = D and
∫
c
ω = 0 for each

ω ∈ Ω(X). Since the sum of the mi is 0, we can pair up the zeros and poles; it doesn’t matter how we do

this.

Let π : C→ C/Λ be the canonical projection, and let

c = π ◦ γ1 + . . .+ π ◦ γN ,
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where N is the total number of pairs. Then ∂c = D and for any holomorphic 1-form ω induced by a 1-form

dz on C, we have ∫
c

ω =

N∑
i=1

∫
ci

dz =

n∑
k=1

akmk = 0.

�

5.2. The Weierstrass ℘-function. Note that there are no elliptic functions with a simple pole in each

fundamental parallelogram. However, the Weierstrass ℘-function gives us the next best thing: an elliptic

function with a double pole in each fundamental parallelogram. We will also see that it is universal in a

sense: every elliptic function can be written as a rational function in ℘(z) and its derivative, ℘′(z).

Definition 5.9. Let the Weierstrass ℘-function with respect to a given lattice Λ be defined by

℘(z) =
1

z2
+
∑
ω∈Λ∗

(
1

(z + ω)2
− 1

ω2

)
.

Definition 5.10. Let

Ek =
∑

ω∈Λ\{0}

1

ωk

be the k-th Eisenstein series.

Remark. The Eisenstein series are an example of modular forms, which are important in number theory as

well as other branches of mathematics.

Proofs of the following propositions can be found in standard references such as [Cox97] or [SS03].

Proposition 5.11. ℘(z) is a meromorphic even function; furthermore, ℘(z) is doubly periodic with respect

to ω1 and ω2 and has a double pole at each lattice point ω ∈ Λ. It has no poles anywhere else.

Proposition 5.12. ℘′(z) is a meromorphic and odd function with a triple pole at each lattice at each lattice

point ω ∈ Λ. It has no poles anywhere else. Furthermore, it is doubly periodic with respect to ω1 and ω2.

Proposition 5.13. ℘(z) has a Laurent series expansion around z = 0 given by

℘(z) =
1

z2
+

∞∑
k=1

(2k + 1)E2k+2z
2k.

Let’s look at the basis of the space of meromorphic elliptic functions with a pole of order at most n at

each lattice point P : By the Riemann-Roch theorem, we expect there to be a linear dependence relation

n `(nP ) C-basis

0 1 {1}
1 1 {1}
2 2 {1, ℘}
3 3 {1, ℘, ℘′}
4 4 {1, ℘, ℘′, ℘2}
5 5 {1, ℘, ℘′, ℘2, ℘℘′}
6 6 {1, ℘, ℘′, ℘2, ℘℘′, ℘3}

℘′2 = a1 + a2℘+ a3℘
′ + a4℘

2 + a5℘℘
′ + a6℘

3

and indeed we have
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Proposition 5.14. Let

g2(Λ) = 60E4 = 60
∑

ω∈Λ\{0}

1

ω4

and

g3(Λ) = 140E6 = 140
∑

ω∈Λ\{0}

1

ω6

Then we have

℘′(z)2 = 4℘(z)3 − 60E4℘(z)− 140E6

= 4℘(z)3 − g2(Λ)℘(z)− g3(Λ).

Proposition 5.15. Every coefficient in the Laurent expansion of ℘(z) can be expressed as a polynomial in

E4 and E6.

5.3. Elliptic Curves. Consider a lattice Λ ⊂ C. Then note that X = C/Λ is a compact Riemann surface:

in particular, it is a complex torus. Studying the elliptic functions with respect to Λ corresponds to studying

meromorphic functions on X.

From the Weierstrass differential equation, it can be shown that the coordinate ring of X takes the form

C[X] = C[x, y]/(y2 − (4x3 − g2x− g3)).

Thus, every regular function on X is a polynomial in x and y, where y2 = 4x3 − g2x− g3.

Proposition 5.16. For a nonsingular projective plane curve C of degree d, the genus of C is given by

g =
(d− 1)(d− 2)

2
.

Definition 5.17. An elliptic curve is a nonsingular curve of genus 1 along with a specified base point.

Proposition 5.18. Let E be an elliptic curve with base point O. Then there are functions x, y ∈ C(E) such

that E → P2 by P 7→ (x(P ) : y(P ) : 1) for P 6= O and O 7→ (0 : 1 : 0) gives an isomorphism of E onto a

curve in nonsingular Weierstrass form,

C : Y 2Z = 4X3 − g2XZ
2 − g3Z

3,

where ∆ = g3
2 − 27g2

3 6= 0. Furthermore, every point in E \ {O} is sent to a point in affine space. We then

call x and y the Weierstrass coordinates for E.

Figure 2. An elliptic curve in P2; the y-axis corresponds to the point at infinity.
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Figure 3. If we work in affine coordinates x = X/Z, y = Y/Z, then we obtain the locus of

a cubic y2 = 4x3 − g2x− g3, along with a formal point at infinity.

Proof. Consider the vector spaces nO for n ≥ 1. By Riemann-Roch, we have `(OnO) = n.

• OO: a basis is {1}.
• O2O: since this vector space has dimension 2, a basis must be of the form {1, x}. In particular, x

has a pole of order exactly 2 at O.

• O3O: {1, x, y}, where x has a pole of order 2 at P , and y has a pole of order 3 at O.

• O4O: {1, x, y, x2}.
• O5O: {1, x, y, x2, xy}.
• O6O: this case is more interesting: note that 1, x, y, x2, xy, x3, y2 are all in O6O, but O6O has

dimension 6. This implies that there is a linear dependence relation:

(1) a1 + a2x+ a3y + a4x
2 + a5xy + a6y

2 + a7x
3 = 0

We want to write the above equation in a nicer form. First, we claim that a6, a7 6= 0: otherwise, each aj
term in Equation (1) would have a different order pole at O, so each aj would be 0. Now, consider the

substitution

(x, y) 7→ (−a6a7x, a6a
2
7y).

We have

a1 − a2a6a7x+ a3a6a
2
7y + a4a

2
6a

2
7x

2 − a5a
2
6a

3
7xy + a3

6a
4
7y

2 − a3
6a

4
7x

3 = 0

so dividing through by a3
6a

4
7 gives

a1

a3
6a

4
7

− a2

a2
6a

3
7

x+
a3

a2
6a

2
7

y +
a4

a6a2
7

x2 − a5

a6a7
xy + y2 − x3 = 0

or

y2 +
a4

a6a2
7

xy +
a3

a2
6a

3
7

y = x3 − a4

a6a2
7

x2 +
a2

a2
6a

3
7

x− a1

a3
6a

4
7

.

For ease of reading, replace the constants as appropriate:

y2 + b1xy + b3y = x3 + b2x
2 + b4x+ b6.

Then, the substitution

(x, y) 7→
(
y +

b1x+ b3
2

, x− b21/4 + b2
3

)
gives

y2 = x3 +Ax+B,

or in projective coordinates,

Y 2Z = x3 +AXZ2 +BZ3

where

A =
−b41
48
− b1b

2
2

6
+
b1b

3

4
− b22

3
+ b4



22 JET CHUNG

and

B =
b61

864
+
b41b2
72
− b31b3

48
+
b21b

2
2

18
− b21b4

12
− b1b2b3

12
+

2b32
27

+
b23
4
− b2b4

3
+ b6.

Finally, y 7→ y
2 gives the desired form:

(2) y2 = 4x3 − g2x+ g3

or

(3) C : Y 2Z = 4X3 − g2XZ
2 − g3Z

3,

Now we prove that C(E) = C(x, y). Consider the maps

P 7→ (x(P ) : y(P ) : 1) 7→ x(P )

and

P 7→ (x(P ) : y(P ) : 1) 7→ y(P )

from E \ {O} → C → C. We have [C(E) : C(x)] = 2 and [C(E) : C(y)] = 3 (see [Sil09]). Note that

[C(E) : C(x, y)] · [C(x, y) : C(x)] = [C(E) : C(x)] = 2

and

[C(E) : C(x, y)] · [C(x, y) : C(y)] = [C(E) : C(y)] = 3,

so [C(E) : C(x, y)] divides both 2 and 3. This implies that [C(E) : C(x, y)] = 1, so C(E) = C(x, y), as

desired. Furthermore, note that x has a pole of order 2 at O and y has a pole of order 3 at O. Thus, O is

mapped to the point at infinity. �

Proposition 5.19. A Weierstrass cubic y2 = 4x3 − g2x − g3 has three distinct roots if and only if ∆ =

g3
2 − 27g2

3 6= 0.

Proof. Let {e1, e2, e3} be the roots of 4x3 − g2x− g3 = 0. Then through tedious algebraic manipulation, it

can be shown that

∆ = 16(e1 − e2)2(e2 − e3)2(e3 − e1)2.

�

Remark. One may wonder what goes wrong if ∆ = 0. In this case, we obtain singular cubic curves, which

are not elliptic curves:

Figure 4. Singular cubic curves in A2.

However, analysis of singular cubic curves is still important; particular, it is often useful to consider a

Weierstrass cubic equation over Fp. Further discussion can be found in [Sil09], p. 55.
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Proposition 5.20. Consider the curve

C : Y 2Z = 4X3 − g2XZ
2 − g3

where ∆ 6= 0. Then C is an elliptic curve with base point (0 : 1 : 0).

Proof. Note that C is a nonsingular projective plane curve of degree 3 in P2. Thus, by Lemma 5.16, the

genus of C is 1
2 (3− 1)(3− 2) = 1. �

5.4. The Uniformization Theorem. Recall the Weierstrass differential equation

(4) ℘′(z)2 = 4℘(z)3 − g2(Λ)℘(z)− g3(Λ)

and consider the mapping (℘(z), ℘′(z)) 7→ (x, y). Then Equation (4) defines an elliptic curve

(5) EΛ : y2 = 4x3 − g2(Λ)x− g3(Λ).

Thus, every lattice in C corresponds to an elliptic curve. However, this leads one to wonder: given an elliptic

curve E, is there a lattice C such that E = EΛ? The answer is yes; this is the content of the uniformization

theorem for elliptic curves.

5.4.1. The discriminant of a lattice.

Definition 5.21. Recall that a lattice gives rise to a differential equation of the Weierstrass function: with

g2(Λ) = 60E4 = 60
∑
ω∈Λ\{0}

1
ω4 and g3(Λ) = 140E6 = 140

∑
ω∈Λ\{0}

1
ω6 , we have

℘′(z)2 = 4℘(z)3 − g2(Λ)℘(z)− g3(Λ).

Recall that a cubic of the form

E : y2 = 4x3 − g2x− g3

has discriminant g3
2 − 27g2

3 ; thus, we define the discriminant of Λ by ∆(Λ) = g2(Λ)3 − 27g3(Λ)2. Also, let

{e1, e2, e3} be the roots of 4℘(z)3− g2(Λ)℘(z)− g3(Λ) = 0. It is well known (without loss of generality) that

e1 = ℘
(
ω1

2

)
, e2 = ℘

(
ω2

2

)
, and e3 = ℘

(
ω1+ω2

2

)
.

Proposition 5.22. For any lattice Λ, ∆(Λ) 6= 0.

Proof. Note that ∆(Λ) = 16(e1−e2)2(e2−e3)2(e3−e1)2, where e1 = ℘
(
ω1

2

)
, e2 = ℘

(
ω2

2

)
, and e3 = ℘

(
ω1+ω2

2

)
.

As the ei are distinct, it follows that ∆(Λ) 6= 0. �

Corollary 5.23. The differential equation of the Weierstrass ℘ function gives rise to an elliptic curve.

5.4.2. The j-invariant of a lattice. Call two lattices Λ and Λ′ homothetic if there is some λ ∈ C such that

Λ = λΛ′.

Definition 5.24. Now, define the j-invariant of the lattice Λ by

j(Λ) = 1728
g2(Λ)3

∆(Λ)
.

Proposition 5.25. Two lattices Λ and Λ′ are homothetic if and only if j(Λ) = j(Λ′).

Proof. If Λ and Λ′ are homothetic, write Λ = λΛ′. Then

g2(Λ) = g2(λΛ′) =
1

λ4
g2(Λ′)

and

g3(Λ) = g3(λΛ′) =
1

λ6
g3(Λ′).

Then by the definition of the j-invariant, we have

j(Λ) = 1728
g2(Λ)3

g2(Λ)3 − 27g3(Λ)2
= 1728

g2(Λ′)3/λ12

(g2(Λ)3 − 27g3(Λ)2)/λ12
= 1728

g2(Λ′)3

g2(Λ′)3 − 27g3(Λ′)2
= j(Λ′).
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Conversely, say Λ and Λ′ satisfy j(Λ) = j(Λ′). Let λ ∈ C be such that

λ4 =
g2(Λ)

g2(Λ′)
.

Since

1728
g2(Λ)3

∆(Λ)
= j(Λ) = j(Λ′) = 1728

g2(Λ′)3

∆(Λ′)
,

we have

g2(Λ)3(g2(Λ′)3 − 27g3(Λ′)2) = g2(Λ′)3(g2(Λ)3 − 27g3(Λ)2)

so

g2(Λ)3g3(Λ′)2 = g2(Λ′)3g3(Λ)2

and

λ12 =

(
g2(Λ)

g2(Λ′)

)3

=

(
g3(Λ)

g3(Λ′)

)2

so that (
g3(Λ)

g3(Λ′)

)2

= ±λ6.

If the above is negative, then replace λ by iλ so that λ4 = (iλ)4 and λ6 = −(iλ)6. Then we have either

g2(Λ) = λ4g2(Λ′) and g3(Λ) = λ6g3(Λ′)

or

g2(Λ) = (iλ)4g2(Λ′) and g3(Λ) = (iλ)6g3(Λ′).

Now, by the definition of g2 and g3 (namely as Eisenstein series) we have g2(Λ′) = g2(λΛ) and g3(Λ′) =

g3(λΛ). By Lemma 5.15, we have ℘Λ(z) = ℘λΛ′(z). Since the lattice is the set of poles of the Weierstrass

function, we have Λ = λΛ′ as desired. �

We can also define the j-function j : H→ C by j(τ) = j([1, τ ]). This notion will be useful for existence.

Lemma 5.26. The j-function j : H→ C is surjective.

Proof. [Cox97] p. 204. �

5.4.3. The Uniformization Theorem.

Proposition 5.27. Let g2, g3 ∈ C be such that g3
2−27g2

3 6= 0. Then there is a lattice Λ such that g2(Λ) = g2

and g3(Λ) = g3.

Proof of Proposition 5.27 with the j-function. Take τ so that j(τ) = 1728g3
2/(g

3
2 − 27g2

3). Then the lattice

[1, τ ] suffices: we can find λ so that g2(Λ) = g2/λ
4 and g3(Λ) = g3/λ

6. �

We can also give a proof of this fact using the Riemann-Hurwitz formula.

Theorem 5.28 (Riemann-Hurtwitz onto Riemann Sphere). Let π : X → P1 where X is the Riemann surface

of
√
P (z) = c

√
(z − a1) · · · (z − ak) and the ai are distinct. Then the genus of X is given by g =

⌊
k−1

2

⌋
.

Proof of Proposition 5.27 with Riemann-Hurtwitz. Fix g2, g3 ∈ C and assume g3
2 − 27g2

3 6= 0. Let X → P1

be the Riemann surface of
√

4z3 − g2z − g3. Then since the roots of 4z3 − g2z − g3 are all distinct, we have

g = 1. In particular, X is isomorphic to its Jacobian Jac(X), which is isomorphic to C/Λ for some lattice

Λ. �

Theorem 5.29 (The Uniformization Theorem for Elliptic Curves). Given a lattice Λ ⊆ C, there is a

corresponding elliptic curve EΛ such that C/Λ ∼= EΛ, and given an elliptic curve E, there is a lattice (unique

up to homothety) Λ such that E ∼= C/Λ.

Let ϕ : C/Λ→ EΛ(C) be defined by z 7→ (℘(z), ℘′(z)) for z 6∈ Λ and z 7→ O for z ∈ Λ.

Lemma 5.30. ϕ is a bijection from C/Λ onto EΛ(C).
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Proof. Say that ϕ(z1) = ϕ(z2). Then we have ℘(z1) = ℘(z2), so z1 ≡ ±z2 mod Λ. Since we must also have

℘′(z1) = ℘′(z2), and ℘′ is an odd function, we must have z1 ≡ z2 mod Λ. Thus, ϕ is injective. To show that

ϕ is surjective, let (x0, y0) ∈ EΛ(C). Let z0 be a solution of ℘(z)− x0 = 0. Then ℘(z0) = x0 and

℘′(z)2 = 4℘(z0)2 − g2(Λ)℘(z0)− g3(Λ) = 4x3
0 − g2(Λ)x0 − g3(Λ) = y2

0 ,

so ℘′(z) = ±y0. It follows that ϕ(±z0) = (x0,±y0), so ϕ is surjective. Thus, ϕ is bijective. �

Lemma 5.31. ϕ is structure preserving; in particular, it induces an isomorphism of groups.

Proof. Let z1, z2 ∈ C/Λ. If z1 or z2 ∈ Λ, then ϕ(z1 + z2) = ϕ(z2) = O + ϕ(z2) = ϕ(z1) + ϕ(z2) or

ϕ(z1 + z2) = ϕ(z1) = ϕ(z1) + O = ϕ(z1) + ϕ(z2). If z1 + z2 ∈ Λ, then ϕ(z1) = ϕ(−z2) = −ϕ(z2), so

ϕ(z1) + ϕ(z2). Thus, we may assume z1, z2, z1 + z2 6∈ Λ. Let y = mx+ b be the line connecting P1 and P2;

m 6=∞ since P1 and P2 are not inverses, as z1+z2 6∈ Λ. Let z3 be the third zero of f(z) = −℘(z)+m℘′(z)+b.

Note that f(z) is an elliptic function with zeros z1, z2, z3. This implies that z1 + z2 + z3 ∈ Λ, so

ϕ(z1 + z2) = ϕ(−z3) = −ϕ(z3) = −P3 = P1 + P2 = ϕ(z1) + ϕ(z2).

�

Proof of Theorem 5.29. Consider an elliptic curve y2 = 4x3 − g2x − g3. By Proposition 5.27, we can find

a lattice Λ, unique up to homothety, such that g2(Λ) = g2 and g3(Λ) = g3. By Lemma 5.31, we have

C/Λ ∼= EΛ = E. Conversely, by z 7→ (℘(z), ℘′(z)) and Lemma 5.31, given a lattice Λ, there is an elliptic

curve EΛ such that C/Λ ∼= EΛ. �

Corollary 5.32. Any elliptic curve can be embedded into P2 by z 7→ (℘(z) : ℘′(z) : 1).

Proof. {1, ℘, ℘′} is a basis of H0(X,O3O). Then by Theorem 3.4, F = (℘ : ℘′ : 1) : X → P2 is an

embedding. �

5.5. The Group Law. Recall that for an elliptic curve E, there is a corresponding lattice Λ such that

C/Λ ∼= E. In particular, this is an isomorphism of groups. We describe the geometric group law on E below:

Given two points A and B on E, consider the line through both of them (if they are the same line, consider

the tangent line); let this line intersect E at C. Then let the line through O and C intersect E at A⊕B.

Figure 5. The group law on the elliptic curve y2 = x3 − x+ 1.

Theorem 5.33. This turns E into an abelian group with identity O. In particular:

(a) If A,B,C are collinear, then (A⊕B)⊕ C = O.

(b) A⊕O = A for all A ∈ E.

(c) A⊕B = B ⊕A for all A,B ∈ E.

(d) Given A, there exists B such that A⊕B = O.

(e) For all A,B,C, we have (A⊕B)⊕ C = A⊕ (B ⊕ C).
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Proof of Theorem 5.33.

(a) This follows by the construction of A+B and as C and A⊕B have opposite y coordinate.

(b) Let the line through A and O intersect E again at B. Then the constructed line intersects E at O,

B, A⊕O, which implies A⊕O = A.

(c) This is clear by the construction of A⊕B.

(d) Let the line through A and O intersect E at B. Then A⊕B = (A⊕O)⊕B = O.

(e) Associativity is the only hard part. One can prove this explicitly using algebra, but we will use the

theory we have developed to give a more enlightening proof.

Since X = C/Λ is a compact Riemann surface of genus 1, it is isomorphic to its Jacobian. Also, by the

Abel-Jacobi theorem, Jac(X) ∼= Pic0(X), so X ∼= Pic0(X).

Proposition 5.34. For an elliptic curve E, there is a bijection between E and Pic0(E). In particular,

P 7→ P −O

suffices (where P −O is to be considered as a divisor).

Proof. We wish to show that if D is a divisor of degree 0, then there is a unique P such that D ∼ P − O.

By the Riemann-Roch theorem, we have

`(D +O)− `(K −D −O) = 1− g + deg(D +O) = 1.

By Proposition 2.17, since deg(K −D−O) = deg(K)−deg(D)−deg(O) = (2 · 1− 2)− 0− 1 = −1, we have

`(K −D−O) = 0, so `(D+O) = 1. Thus, there is a unique rational function f (up to multiplication by an

element of C×) such that (f) +D+O ≥ 0. This implies that (f) +D+O takes the form P , i.e. D+O ∼ P
or D ∼ P −O. �

Since Pic0(E) is an abelian group, it induces an group action ⊕ on E. Let us demonstrate how it works:

(P ⊕Q)⊕R = P +Q+R = P ⊕ (Q⊕R).

P ⊕ (−P ) = O

P ⊕Q = P +Q = Q+ P = Q⊕ P

P ⊕O = (P −O) + (O −O) = P

thus the induced group action is compatible with the group law defined above.

Proposition 5.35. For an elliptic curve E, P ⊕Q = R if and only if P +Q ∼ R+O.

Proof. Since P 7→ P − O and Q 7→ Q − O, and the operation on Pic0(E) is addition of divisors, we

want R = P ⊕ Q 7→ P + Q − 2O. However, we already know that P ⊕ Q 7→ P ⊕ Q − O, so we have

P ⊕Q−O ∼ P +Q− 2O, and in particular, P ⊕Q+O = R+O ∼ P +Q.

Conversely, if P +Q ∼ R+O, then P +Q−R ∼ O and the isomorphism defined above sends P +Q−R 7→
P +Q−R−O. Thus, P +Q = R as desired. �

�

Let us now work out explicitly the group law on an elliptic curve with affine coordinates. Consider an

elliptic curve E : y2 = 4x3 − g2x− g3. For any two points p1, p2 ∈ E(C), if p1,2 is not the point at infinity,

let p1,2 = (x1,2, y1,2).

• If p1 or p2 is O, then let p1 + p2 = p2 = O or p1 + p2 = p1 = O respectively.

• If x1 = x2, the Weierstrass equation implies that y1 = ±y2. This gives two subcases:

– If x1 = x2 and y1 = −y2 or y1 = y2 = 0, then let p1 + p2 = O.
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– If x1 = x2 and y1 = y2 6= 0, let p1 + p2 = 2p1 = (x3, y3) where

x3 = −2x1 +
1

16

(
12x2

1 − g2

y1

)2

and

y3 = −y1 − (x3 − x1)

(
12x1 − g2

2y1

)
.

Otherwise we have:

• If x1 6= x2, let p1 + p2 = (x3, y3), where

x3 = −x1 − x2 +
1

4

(
y1 − y2

x1 − x2

)2

and

y3 = −y1 − (x3 − x1)

(
y1 − y2

x1 − x2

)
.

This comes by intersecting y = mx+ b with y2 = 4x3 − g2x− g3 and noting this implies

x1 + x2 + x3 =
m2

4
=

1

4

(
y1 − y2

x1 − x2

)2

and

y3 = m(x3 − x1) + y1 =

(
y1 − y2

x1 − x2

)
(x1 − x3) + y1

Corollary 5.36. By z 7→ (℘(z), ℘′(z)), we have the addition law for the Weierstrass ℘ function:

℘(w + z) + ℘(w) + ℘(z) =
1

4

(
℘′(w)− ℘′(z)
℘(w)− ℘(z)

)2

,

and the duplication formula:

℘(2z) = −2℘(z) +
1

16

(
12℘(z)2 − g2

2℘′(z)

)2

.
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6. Applications to Number Theory

We will state some celebrated results in arithmetic geometry; we have no hope of proving them here.

Theorem 6.1 (Mordell-Weil). If K is a number field (i.e. [K : Q] <∞, then E(K) is finitely generated.

Theorem 6.2 (Faltings). Any curve of genus g > 1 over Q has only finitely many rational points.

Definition 6.3. Define the Fermat curve in affine coordinates by xn + yn = 1, or in projective coordinates

by Xn + Y n = Zn.

Figure 6. The affine Fermat curves x4 + y4 = 1 and x5 + y5 = 1

We claim the curve fn : Xn+Y n−Zn is nonsingular over C; if a singular point P existed, we would have:(
∂f

∂X

)
P

= nXn−1 = 0(
∂f

∂Y

)
P

= nY n−1 = 0(
∂f

∂Z

)
P

= nZn−1 = 0

which would imply that P = (0 : 0 : 0). However, (0 : 0 : 0) does not lie in projective space, so it follows

that fn is nonsingular. By Lemma 5.16, the genus of the n-th Fermat curve is 1
2 (n− 1)(n− 2), so for n ≥ 4,

Faltings’s theorem implies that there are only finitely many rational points on each Fermat curve. This is a

weak form of the famous:

Theorem 6.4 (Fermat’s Last Theorem). There are no nontrivial integer solutions to the Diophantine equa-

tion an + bn = cn.
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https://mathoverflow.net/q/4229 (visited on 2021-05-27).

[For81] Otto Forster. Lectures on Riemann Surfaces. Springer New York, 1981.

[Har77] Robin Hartshorne. Algebraic Geometry. Springer New York, 1977.

[Hur22] Adolf Hurwitz. Vorlesungen über allgemeine Funktionentheorie und elliptische Funktionen. Springer Berlin Heidelberg,

1922.

[IR90] Kenneth Ireland and Michael Rosen. A Classical Introduction to Modern Number Theory. Springer New York, 1990.

[Kob93] Neal Koblitz. Introduction to Elliptic Curves and Modular Forms. Springer New York, 1993.

[McM] Curtis T. McMullen. Math 213b: Complex Analysis on Riemann Surfaces. http://people.math.harvard.edu/~ctm/

papers/home/text/class/harvard/213b/course/course.pdf.

[Mil06] J.S. Milne. Elliptic Curves. BookSurge Publishers, 2006.

[Mir95] Rick Miranda. Algebraic Curves and Riemann Surfaces. American Mathematical Society, April 1995.

[Nar92] Raghavan Narasimhan. Compact Riemann Surfaces. Birkhäuser Basel, 1992.
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