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Abstract. Elliptic partial differential equations are a specific group of partial differential
equations which have applications in various fields of physics. This paper will explore
properties of specific elliptic partial differential equations such as the Laplace equation.

1. Introduction to Partial Differential Equations

Partial differential equations (commonly abbreviated as PDE) are equations that show the
relationship between some unknown function with several variables and its partial derivatives.
Let k ≥ 1 be some integer and let U be an open subset of Rn. Then, we say that PDEs are
equations of the form

(1) F (Dku(x), Dk−1u(x), . . . , Du(x), u(x), x) = 0 (x ∈ U)

where F : Rnk × Rnk−1 × Rn × R × U → R is given, u : U → R is the unknown function,
and Dku(x) is the set of all partial derivatives of order k. This equation is called a kth-order
PDE. In order to solve this PDE, we must find all u such that equation 1 is satisfied and
the goal is to obtain simple, explicit solutions or to prove that such solutions exist and their
properties are known. Sometimes, there are also additional conditions which must be met.
In addition, a PDE can be classified as linear, semilinear, quasilinear, or fully nonlinear
depending on its form for given functions aα(|α| ≤ k) and f as follows:

Definition 1.1. The PDE 1 is linear if it has the form∑
|α|≤k

aα(x)Dαu = f(x).

If f ≡ 0, then this linear PDE is homogeneous.

Definition 1.2. The PDE 1 is semilinear if it has the form∑
|α|≤k

aα(x)Dαu+ a0(Dk−1u, . . . , Du, u, x) = 0.

Definition 1.3. The PDE 1 is quasilinear if it has the form∑
|α|≤k

aα(Dk−1u, . . . , Du, u, x) + a0(Dk−1u, . . . , Du, u, x) = 0.

Definition 1.4. The PDE 1 is called fully nonlinear if it depends nonlinearly upon the
highest order derivatives.

A system of PDEs is defined as follows:
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Definition 1.5. Given F : Rmnk ×Rmnk−1 ×Rmn×Rm×U → Rm, an equation of the form

(2) F (Dku(x), Dk−1u(x), . . . , Du(x), u(x), x) = 0 (x ∈ U)

is a kth-order system of partial differential equations where

u : U → Rm, u = (u1, . . . , um)

is unknown.

Usually, the system comprises the same number m of scalar equations as unknowns
(u1, . . . , um) which is shown in our definition. However, it is possible for a system to have a
different number of equations compared to unknowns[Olv14]. Lastly, when we explore the
Laplace equation, a specific PDE, we will need harmonic functions as defined below.

Definition 1.6. A function u : U → R is harmonic on U if u ∈ C2(U) and ∆u = 0 in U .
A function whose first and second derivatives both exist and are continuous is said to be of
class C2. The set of all harmonic functions in U is denoted as H(U).

Harmonic functions hold many properties related to the Laplace equation including the
mean-value formulas and its consequential results: the maximum principle, and uniqueness.
We will only prove these three but there are many others such as smoothness.

2. Elliptic Partial Differential Equations

We will specifically be looking at elliptic PDEs which are a type of second-order PDE.
Second-order PDEs are widely used in mechanics with parabolic and hyperbolic PDEs in
addition to elliptic PDEs which are defined as follows.

Definition 2.1. Suppose we have a second-order PDE of the form

a(x, y)
∂2u

∂x2
+ b(x, y)

∂2u

∂x∂y
+ c(x, y)

∂2u

∂y2
+ d(x, y)

∂u

∂x
+ e(x, y)

∂u

∂y
+ f(x, y)u = g(x, y)

where x and y are independent variables. Then, this PDE is elliptic if b2−4ac < 0, hyperbolic
if b2 − 4ac > 0, and parabolic if b2 − 4ac = 0.

An important area of study with elliptic PDEs is the boundary value problem [Med18]

(3)

{
Lu = f in U

u = 0 on ∂U,

where U is an open, bounded subset of Rn and U : U → R is the unknown u = u(x). Here
f : U → R is given, and L is a second-order partial differential operator with one of the
following forms:

(4) Lu = −
n∑

i,j=1

(aij(x)uxi)xj +
∑

i = 1nbi(x)uxi + c(x)u

(5) Lu = −
n∑

i,j=1

aij(x)uxixj +
∑

i = 1nbi(x)uxi + c(x)u
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for given coefficient functions aij, bi, and c for i, j = 1, . . . , n. Here, we write uxi for ∂u
∂xi

and

similarly, uxixi for ∂2u
∂x2i

.

Definition 2.2. We say that the PDE Lu = f is in divergence form if L is given by 4 and
in nondivergence form when L is given by 5.

There are three theorems that outline the existence of weak solutions of the boundary
value problem.

Theorem 2.1. (First Existence theorem for weak solutions) There is a number γ ≥ 0 such
that for each

µ ≥ γ

and each function

f ∈ L2(U),

there exists a unique weak solution u ∈ H1
0 (U) of the boundary value problem.

Examples of elliptic PDEs include the Poisson equation and its special case, the Laplace
equation which we will explore in the next section. For now, let’s look at the properties of
second-order elliptic PDEs. One of the most important theorems is the maximum principle
which we will first present a weak form of [PR05].

Theorem 2.2. The weak maximum principle Let D be a bounded domain, and let u(x, y) ∈
C2(D) ∩ C(D) be a harmonic function in D. Then the maximum of u in D is achieved on
the boundary ∂D.

Proof. Consider a function v(x, y) ∈ C2(D) ∩ C(D) satisfying ∆v > 0 in D. We claim
that v cannot have a local maximum point in D. To see why, recall from calculus that if
(x0, y0) ∈ D is a local maximum point of v, then ∆v ≤ 0, which contradicts our assumption.
Since u is harmonic, the function v(x, y) = u(x, y) + ε(x2 + y2) satisfies v > 0 for any ε > 0.
Set M = max∂Du, and L = max∂D(x2 + y2). From our argument about v it follows that
v ≤M + εL in D. Since u = v − ε(x2 + y2), it now follows that u ≤M + εL in D. Because
ε can be made arbitrarily small, we obtain u ≤M in D. �

The weak maximum principle does not exclude the possibility of the maximum (or mini-
mum) of u being attained at an internal point. The stronger version that we will soon prove
takes care of this by asserting that if u is not constant, then the maximum (and minimum)
cannot be obtained at an interior point. To prove this, we need an important property of
harmonic functions [PR05].

Theorem 2.3. (The mean value principle) Let D be a planar domain, let u be a harmonic
function there, and (x0, y0) be a point int D. Suppose BR is a disk of radius R centered at
(x0, y0), fully contained in D. For any r > 0, set Cr = ∂Br. Then the value of u at (x0, y0)
is the average of the values of u on the circle CR:

u(x0, y0) =
2πR∮

CR

u(x(s), y(s))ds

=
1

2π

∫ 2π

0

u(x0 +R cos θ, y0 +R sin θ)dθ.



4 GRACE CAI

Proof. Let 0 ≤ r ≤ R and define v(r, θ) = u(x0 + r cos θ, y0 + r sin θ). We also define the
integral of v with respect to θ:

V (r) =
1

2πr

∮
Cr

vds =
1

2π

∫ 2π

0

v(r, θ)dθ.

Differentiating with respect to r, we have

Vr(r) =
1

2π

∫ 2π

0

vr(r, θ)dθ

=
1

2π

∫ 2π

0

∂

∂r
u(x0 + r cos θ, y0 + r sin θ)dθ

=
1

2πr

∮
Cr

∂nuds = 0,

where the last equality is from the following property of harmonic functions (solutions of the
Laplace equation) ∫

Γ

∂nuds = 0

for any closed curve Γ fully contained in D. We will not prove this now. Therefore V (r)
does not depend on r, and thus

u(x0, y0) = V (0) = lim
p→0

V (p) = V (r) =
2πR∮

CR

u(x(s), y(s))ds

for all 0 ≤ r ≤ R �

We also note that the converse is true which we can prove by contradiction.

Theorem 2.4. Let u be a function in C2(D) satisfying the mean value property at every
point in D. Then u is harmonic in D.

Proof. Assume by contradiction that there is a point (x0, y0) in D where ∆u(x0, y0) 6= 0.
Without loss of generatily assum ∆u(x0, y0) > 0. Since ∆u(x0, y0) is a continuous function,
then for a sufficiently small R > 0, there exists in D a disk BR of radius R, centered at
(x0, y0) such that ∆u > 0 at each point in BR. Denote the boundary of this disk by CR. It
follows that

0 <
1

2π

∫
BR

∆udxdy =
1

2π

∮
CR

∂nuds

=
R

2π

∫ 2π

0

∂

∂R
u(x0 +R cos θ, y0 +R sin θ)dθ

=
R

2π

∂

∂R

∫ 2π

0

u(x0 +R cos θ, y0 +R sin θ)dθ

= R
∂

∂R
[u(x0, y0)] = 0.

The last inequality comes from the assumption that u satisfies the mean value property and
thus we have a contradiction. �

With the mean value property, we can prove the strong version of the maximum principle
[PR05].
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Theorem 2.5. (The strong maximum principle) Let u be a harmonic function in a domain
D (here we also allow for unbounded D). If u attains it maximum (minimum) at an interior
point of D, then u is constant.

Figure 1. A construction for the proof of the strong maximum principle.

Proof. Assume by contradiction that u obtains its maximum at some interior point q0. Let
q 6= q0 be an arbitrary point in D. Let l be a smooth orbit in D connecting q0 and q as
shown in Figure 1. In addition, let dl be the distance between l and ∂D.

Consider a disk B0 of radius dl/2 around q0. From the definition of dl and from the mean
value theorem, we infer that u is constant in B0 (since the average of a set cannot be greater
than all the objects of the set). Select now a point q1 in l∩B0, and denote by B1 the disk of
radius dl/2 centered at q1. From our construction it follows that u also reaches its maximal
value at q1. Thus we obtain that u is constant also in B1. We continue in this way until we
reach a disk that includes the point q. We conclude u(q) = u(q0), and since q is arbitrary, it
follows that u is constant in D. Notice that we may choose the points q0, q1, . . . , such that
the process involves a finite number of disks B0, B1, . . . , Bnl

because the length of l is finite,
and because all the disks have equal radius. �

3. The Laplace Equation

The Laplace equation is a linear elliptic PDE that is a special case of the Poisson equation.
Laplace’s equation is written as

∆u = 0

where ∆ is the Laplace operator (a special case of the elliptic operator) which is defined as
the sum of all the second partial derivatives of u

∆f =
n∑
i=1

∂2f

∂x2
i

.

Here, we can also write uxi for ∂u
∂xi

and similarly, uxixi for ∂2u
∂x2i

. Poisson’s equation is

∆u = f

where f is given and u is solved for but we will only be exploring Laplace’s equation. One
property of the Laplacian is the it is invariant under rotation. This means that if ∆u = 0
and v = U(Rx) where Rx is a rotation of x, then ∆v = 0 as well. Therefore, we should find
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solutions that are also invariant under rotation, namely radial functions. This idea brings
us the fundamental solution of the Laplace equation which are of the form

u(x) = v(|x|)
where v : R→ R is to be found and only depends on the absolute value of x since it is radial.

3.1. The Fundamental Solution. When solving partial differential equations, it is helpful
to first find explicit solutions, especially ones with special properties such as symmetry, and
then expand them to more complicated solutions. The following method [Eva10] finds a
solution u of the Laplace equation in U = Rn of the form

u(x) = v(r)

where r = |x| = (x2
1 + . . . + x2

n)1/2 and v should be chosen to satisfy ∆u = 0. Note that for
i = 1, . . . , n:

∂r

∂xi
=

1

2

(
x2

1 + . . .+ x2
n

)−1/2
2xi =

xi
r

(x 6= 0).

Therefore,

uxi = v′(r)
xi
r
, uxixi = v′′(r)

x2
i

r2
+

(
1

r
− x2

i

r3

)
for i = 1, . . . , n. We thus have

∆u = v′′(r) +
n− 1

r
v′(r)

so ∆ = 0 if and only if

v′′ +
n− 1

r
v′ = 0.

If v′ 6= 0, we have

log(v′)′ =
v′′

v′
=

1− n
r

so v′(r) = a
rn−1 for some constant a. Then if r > 0, we have

v(r) =

{
b log r + c (n = 2)
b

rn−2 + c (n ≥ 3),

where b and c are constants.
Thus, we have the following for the fundamental solution:

Definition 3.1. The function

(6) Φ(x) :=

{
− 1

2π
log |x| n = 2
1

n(n−2)α(n)
1

|x|n−2 n ≥ 3

(where α(n) denotes the volume of the unit ball in Rn) is the fundamental solution of the
Laplace equation as defined for x ∈ R \ {0} in [Eva10].

Now, let’s consider an open set U ⊂ Rn and suppose u is a harmonic function within U .
Let’s start with deriving the mean-value formula for the Laplace equation (similar to the

mean value principle we proved in the previous section) which state that u(x) equals both
the average of u over the sphere ∂B(x, r) and the average of u over the entire ball B(x, r),
given B(x, r) ⊂ U [Eva10].
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Theorem 3.1. (Mean-value formula for the Laplace equation) If u ∈ C2(U) is harmonic,
then

(7) u(x) = −
∫
∂B(x,r)

udS = −
∫
B(x,r)

udy

for each ball B(x, r) ⊂ U .

The symbol −
∫

is defined as the average of a function f over a ball or sphere with the
following equations, respectively.

−
∫
B(x,r)

fdy =
1

α(n)rn

∫
B(x, r)fdy

−
∫
∂B(x,r)

fdS =
1

nα(n)rn−1

∫
∂B(x, r)fdS.

To prove the mean-value formulas, we need to use Green’s formulas which we will state but
not prove.

Theorem 3.2. (Green’s formulas) Let u, v ∈ C2(U) where U is the closure of U . Then

(1)
∫
U

∆udx =
∫
∂U

∂u
∂v
dS,

(2)
∫
U
Dv ·Dudx = −

∫
U
u∆vdx+

∫
∂U

∂u
∂v
udS,

(3)
∫
U
u∆v − v∆udx =

∫
∂U
u∂u
∂v
− y ∂u

∂v
dS.

Now we can continue to prove the mean-value formula.

Proof. Let

φ(r) := −
∫
∂B(x,r)

u(y)dS(y) = −
∫
∂B(0,1)

u(x+ rz)dS(z).

Then

φ′(r) = −
∫
∂B(0,1)

Du(x+ rz) · zdS(z),

and by Green’s formulas, we compute

φ′(r) = −
∫
∂B(x,r)

Du(y) · y − x
r

dS(y)

= −
∫
∂B(x,r)

∂u

∂v
dS(y)

=
r

n
−
∫
∂B(x,r)

∆u(y)dy = 0

Therefore φ is constant so

φ(r) = lim
t→0

φ(t) = lim
t→0
−
∫
∂B(x,r)

u(y)dS(y) = u(x).

�

An interesting result of the theorem we have just proven is that its converse is also true.
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Theorem 3.3. (Converse to mean-value formula) If u ∈ C2(U) satisfies

u(x) = −
∫
∂B(x,r)

udS

for each Ball B(x, r) ⊂ U , then u is harmonic.

Proof. If ∆u 6≡ 0, there exists some ball B(x, r) ⊂ U such that say ∆u > 0 within B(x, r).
But for φ as defined above,

0 = φ′(r) =
r

n
−
∫
∂B(x,r)

∆u(y)dy > 0

which results in a contradiction. �

4. Applications

In general, PDEs have numerous applications in physics and engineering where there are
more than two variables involved. Non-linear PDEs are mostly used for physics and mechan-
ics. Examples of elliptic, hyperbolic, and parabolic include elasticity, wave propagation, and
heat conduction, respectively. The harmonic functions are important in branches of physics
such as electrostatics, gravitation, and fluid dynamics. Additionally, the Laplace equation
describes the steady-state heat equation which does not depend on time.
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