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Abstract. In this paper, we explore the j-invariant and discuss some of its properties which
we use later as we explore other related topics such as modular functions and elliptic curves.
We also discuss how the j-invariant is connected to other results related to Weierstrass
function and Eisenstein series.

Introduction

The Klein’s j-invariant, named after Felix Klien, is responsible for many seemingly myste-
rious results in Number Theory and other fields. Though we will not discuss many of them
in this paper, we will see many properties of the function and why it works very nicely in
many related areas.

1. Modular Forms

We begin by defining by defining a modular group:

Definition 1.1. The modular group Γ is the group of linear fractional transformations of
the upper half of the complex plane, which have the form

z → az + b

cz + d

where a, b, c, d are integers and ad− bc = 1.

The modular group can be shown to be generated by the two transformations

S : z → −1/z,

T : z → z + 1.

so that every element in the modular group can be represented (in a non-unique way) by
the composition of powers of S and T.

A modular form is an analytic function on H satisfying a functional equation with respect
to the group action of the modular group. More generally, we give the following definition:

Definition 1.2. Let γ =

(
a b
c d

)
∈ SL2(Z). Given a subgroup Γ ∈ SL(2, Z) of finite index,

we define a modular form of level Γ and weight k is a holomorphic function f : H→ C such
that:

1. (automorphy condition) For any γ ∈ Γ there is the equality f(γ(z)) = (cz + d)kf(z)
2. (growth condition) For any γ ∈ SL2(Z) the function (cz + d)−kf(γ(z)) is bounded for

im(z)→∞.
Additionally, we say it is in cusp form if for any γ in SL2(Z), the function (cz+d)−kf(γ(z))→

0 as im(z)→∞.
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For modular forms for the modular group SL(2,Z), we have the following definition:

Definition 1.3. A modular form of weight k for the modular group SL(2,Z) is a complex
valued function f on H satisfying:

1. f is holomorphic on H.
2. For any z ∈ H, and any matrix SL(2,Z), f

(
az+b
cz+d

)
= (cz + d)kf(z)

3. f is holomorphic as z → i∞.

Equivalently, we may define a modular form in terms of lattices:

Definition 1.4. A modular form is a function F from the set of lattices of C to C which
satisfies:

1. Let Λ = Zω1 + Zω2. Then F (Λ) is an analytic function of z.
2. Let α be a non-zero complex number. Then F (αΛ) = α−kF (Λ).
3. The absolute value of F (Λ) remains bounded above as long as the absolute value of the

smallest non-zero element in Λ is bounded away from 0.

If we specify the weight of a modular form k = 0, then by Liouville Theorem, the only
modular forms are constant functions.

2. Elliptic Curves and the j-function

Definition 2.1. An elliptic curve E is an equation of the form y2 = x3 + ax2 + bx+ c.

These elliptic curves may be put in Weierstrass Form y = x3+ax+b through substitutions
preserving rational points.

Lemma 2.2. E does not have any self intersections or cusps.

Sketch of proof. We may see this by defining F (x, y) = x3 + ax2 + bx+ c− y2 and checking

if ∆F = ~0 when F (P ) = 0 at every point P . �

We call the property of the above lemma as nonsingularity.

Definition 2.3. Consider an elliptic curve E over Q and let y2 = x3+ax+b be its Weierstass
form. Then its j -invariant is given by j(E) = 4a3

4a3+27b2
.

However, the above definition of the j-invariant does not tell us much about its use or
importance. To motivate the purpose of the function, we first need to reinterpret elliptic
curves, for which, we need to define elliptic functions.

Let Λ be a lattice and let

℘Λ(z) =
1

z2
+

∑
ω∈Λ\{0}

1

(z − ω)2
− 1

ω2
.

Also define the Eisenstein series of weight 2k as

G2k(τ) =
∑

(m,n)∈Z\(0,0)

1

(m+ nτ)2k
.

It can be shown that we have the following differential equation:

℘′(z)2 = 4℘(z)3 − 60G4℘(z)− 140G6
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where G4 and G6 are the Eisenstein series with weight 4 and 6, respectively. Thus, we find
that (℘(z), ℘′(z)) lies on the curve defined by the equation

E : y2 = 4x3 − g2 − g3

where g2 = 60G4 and g3 = 140G6. With this, define EΛ : y2 = 4x3 − g2(Λ)x− g3(Λ). Then
there is an isomorphism between C/Λ and EΛ(C) as groups.

Now we want to look at homothetic lattices. We present the following definition.

Definition 2.4. We say that two lattices Λ and Λ′ are homothetic if Λ = ωΛ′ for ω ∈ C\{0}.
Then we have the following lemma.

Lemma 2.5. The Complex Tori C/Λ ∼= EΛ and C/Λ′ ∼= E ′Λ are isomorphic if and only if
the two lattices Λ and Λ′ are homothetic.

We will see a proof of this later.
Now we define the j-function, which turns out to be very useful for such things.
The j− function is a modular function of weight zero for SL(2, Z) defined on H. It is

the unique such function which is holomorphic away from a simple pole at the cusp which
satisfies

j(e2πi/3) = 0 and j(i) = 1728 = 123.

We give the formal definition as follows:

Definition 2.6. The j− function is function defined on H,

j(τ) =
1728g2(τ)3

g2(τ)3 − 27g3(τ)2
,

where
g2(τ) = 60

∑
(m,n)6=(0,0)

(m+ nτ)−4,

g3(τ) = 140
∑

(m,n)6=(0,0)

(m+ nτ)−6.

The modular discriminant is ∆ = g2(τ)3 − 27g3(τ)2. The discriminant of an elliptic curve
y2 = x3 + Ax+B is ∆ = −16(4A3 + 27B2) We also have the following lemma.

Theorem 2.7. For any lattice Λ, the modular discriminant ∆(τ) is always non-zero.

Two prove this theorem, we first need two other lemmas, the first of which we state without
proof.

Lemma 2.8. Let f(z) be an elliptic function for a lattice Λ. When counted with multiplicity,
the number of zeros of f(z) in any fundamental parallelogram Fα for Λ is equal to the number
of poles of f(z) in Fα.

Lemma 2.9. A point z /∈ L is a zero of ℘′(z;L) if and only if 2z ∈ L.
Proof. Suppose 2z ∈ L for some z /∈ L. Then

℘′(z) = ℘′(z − 2z) = ℘′(−z) = −℘′(z) = 0

where we have used the fact that ℘′(z) is both periodic with respect to L and an odd function.
If L = [ω1, ω2], then

ω1

2
,

ω2

2
,

ω1 + ω2

2
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are the only points z ∈ F0 that are not in L and also satisfy 2z ∈ L. Since ℘′(z) is an elliptic
function of order 3 , it has only these three zeros in F0, by Lemma 2.9. Thus for any z /∈ L
we have ℘′(z) = 0 if only if 2z ∈ L. �

Now we prove Theorem 2.8.

Proof of Theorem 2.8. Let Λ = [ω1, ω2] and put

r1 =
ω1

2
, r2 =

ω2

2
, r3 =

ω1 + ω2

2
.

Then ri /∈ Λ and 2ri ∈ Λ for i = 1, 2, 3. So ℘′ (ri) = 0 by Lemma 2.10. The differential
equation for ℘(z) corresponds to the curve y2 = 4x3− g2(Λ)− g3(Λ). From this, we see that
℘ (r1) , ℘ (r2), and ℘ (r3) are the zeros of the cubic f(x) = 4x3 − g2(Λ)x − g3(Λ). Now the
discriminant ∆(f) of f(x) is equal to 16∆(Λ), thus

∆(L) =
1

16

∏
i<j

(℘ (ri)− ℘ (rj))
2

and it suffices to show that the ℘ (ri) are distinct. Let gi(z) = ℘(z) − ℘ (ri). Then gi(z) is
an elliptic function of order 2 (its poles are the poles of ℘(z)), so it has exactly 2 zeros, by
Lemma 2.9. Now ri is a double zero because g′i(z) = ℘′ (ri) = 0, by Lemma 2.10. Thus gi(z)
has no other zeros, and therefore ℘ (rj) 6= ℘ (ri) for i 6= j. �

This modular discriminant is a modular form of weight 12 and g2 is a modular form of
weight 4. Cubing g2, we get a modular form of weight 12. Thus j is a function of weight 0.

We also have the following lemma.

Theorem 2.10. The j-invariant is holomorphic on H.

To prove this theorem, we need the following lemma.

Lemma 2.11. For any lattice Λ, the sum
∑

ω∈Λ\{0}
1
ωk converges absolutely for all k > 2.

Proof. Let δ be the minimum distance between points in Λ. Consider an annulus A of inner
radius r and width δ

2
.

Any two distinct lattice points in A must be separated by an arc of length at least δ/2
when measured along the inner rim of A. It follows that A contains at most 4πr/δ lattice
points. The number of lattice points in the annulus {ω : n ≤ |ω| < n + 1} is therefore
bounded by cn, where c ≤ (2/δ)(4πr/δ) = 8π/δ2. We then have∑

ω∈Λ,|ω|≥1

1

|ω|k
≤

∞∑
n=1

cn

nk
= c

∞∑
n=1

1

nk−1
<∞,

since k > 2. The finite sum ∑
ω∈Λ,0|ω|<1

1

|ω|k

is bounded, thus ∑
ω∈Λ\{0}

1

|ω|k
=

∑
ω∈Λ,0<|ω|<1

1

|ω|k
+

∑
ω∈Λ,|ω|≥1

1

|ω|k
<∞,

so the sum converges absolutely as claimed.
Note that this implies that g2 and g3 converge absolutely.
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�

Now we will prove Theorem 2.11.

Proof of Theorem 2.11. By Lemma 2.12, g2 and g3 converge absolutely for any fixed τ ∈ H
and uniformly over τ in any compact subset of H. The proof of the last fact is slightly
technical. It follows that g2(τ) and g3(τ) are both holomorphic on H, and therefore the
modular discriminant ∆(τ) = g2(τ)3 − 27g3(τ)2 is also holomorphic on H. We know that
∆(τ) is nonzero for all τ ∈ H. Thus the j-invariant j(τ) is holomorphic on H as well. �

We also have the following property of the j-invariant:

Theorem 2.12. Let L and L′ be two lattices in C. Then j(L) = j(L′) if and only if L and
L′ are homothetic.

Proof. �

Proof. First we prove the ⇐ direction. Suppose L and L′ are homothetic; that is, L′ = λL
for some λ ∈ C. We know

g2 (L′) = g2(λL) = 60
∑

ω∈L\{0}

1

(λω)4
=

1

λ4
60

∑
ω∈L\{0}

1

ω4
= λ−4g2(L)

Similarly,

g3 (L′) = g3(λL) = 140
∑

ω∈L\{0}

1

(λω)6
=

1

λ6
140

∑
ω∈L\{0}

1

ω6
= λ−6g3(L).

So then

j (L′) = 1728 · g2(L′)3

g2(L′)3−27g3(L′)2
= 1728 · λ−12g2(L)3

λ−12g2(L)3−27λ−12g3(L)2

= 1728 · g2(L)3

g2(L)3−27g3(L)2
= j(L).

Now we prove the reverse implication. Let j(L) = j (L′). Suppose we can find a λ ∈ C such
that g2 (L′) = λ−4g2(L) and g3 (L′) = λ−6g3(L). Then g2 (L′) = g2(λL) and g3(L) = g3(λL),
and by Lemma 2.2.6, we have that the Laurent expansion for ℘ (z;L′) is

℘ (z;L′) =
1

z2
+
∞∑
n=1

p (g2 (L′) , g3 (L′)) z2n =
1

z2
+
∞∑
n=1

p (g2(λL), g3(λL)) z2n = ℘(z;λL)

Thus ℘ (z;L′) and ℘(z;λL) have the same Laurent expansion about 0. So then these two
functions agree on a neighborhood U about the origin. But we have that ℘ (z;L′) and
℘(z;λL) are analytic on the region Ω := C\ (λL ∪ L′), and the set

{z ∈ Ω : ℘ (z;L′) = ℘(z;λL)}
certainly has a limit point in U ∩ Ω, and hence

℘ (z;L′) = ℘(z;λL)

on all of Ω, so ℘ (z;L′) and ℘(z;λL) must have the same poles. Since, by Lemma 2.2.5, the
lattice L′ is precisely the set of poles of ℘ (z;L′), then L′ = λL. Thus, to complete this proof,
we need only find a λ ∈ C such that g2 (L′) = λ−4g2(L) and g3 (L′) = λ−6g3(L). Note that

g2(L)3 − 27g3(L)2 = ∆(L)

can never be 0. Thus, we have the following three cases:
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- Case 1: g2 (L′) = 0 and g3 (L′) 6= 0. Then choose λ so that λ6 = g3(L)
q3(L′)

.

- Case 2: g3 (L′) = 0 and g2 (L′) 6= 0. Then choose λ so that λ4 = g2(L)
g2(L′)

.

- Case 3: g2 (L′) 6= 0 and g3 (L′) 6= 0. Then choose λ such that λ4 = g2(L)
g2(L′)

. Since we have

that j(L) = j (L′), then

1728 · g2(L)3

g2(L)3 − 27g3(L)2
= 1728 · g2 (L′)3

g2 (L′)3 − 27g3 (L′)2

By substituting λ4g2 (L′) for g2(L), we get that

(λ4g2 (L′))
3

(λ4g2 (L′))3 − 27g3(L)2
=

g2 (L′)3

g2 (L′)3 − 27g3 (L′)2

Cross-multiplying and solving for λ12 yields that

λ12 =
−27g3(L)2

−27g3 (L′)2 =
g3(L)2

g3 (L′)2

So then

λ6 = ± g3(L)

g3 (L′)
Assume the sign on the right is +, since if not, we can replace λ by iλ. Thus we have that
g3 (L′) = λ−6g3(L) Hence, in any of the cases, we can find a λ ∈ C such that g2 (L′) =
λ−4g2(L) and g3 (L′) = λ−6g3(L) �

With this, we see that Lemma 2.6 follows.

Corollary 2.13. j(τ + 1) = j(τ).

Proof. The lattices [1, τ ] and [1, τ+1] are equal. Thus by Theorem 2.13, j(τ) = j(τ+1). �

3. Properties of the j-invariant

We know that Γ = SL2(Z) acts on H via the linear fractal transformations(
a b
c d

)
τ =

aτ + b

cτ + d
,

which implies that the j−invariant is invariant under the action of the modular group. In
fact, we also have the following:

Lemma 3.1. We have j(τ) = j(τ ′) if and only if τ ′ = γτ for some gamma ∈ Γ.

Proof. We have j(Sτ) = j(−1/τ) = j(τ) and j(Tτ) = j(τ + 1) = j(τ), by Theorem 2.13, It
follows that if τ ′ = γτ then j (τ ′) = j(τ), since S and T generate Γ.

To prove the converse, let us suppose that j(τ) = j (τ ′). Then by Corollary 2.14, the
lattices [1, τ ] and [1, τ ′] are homothetic So [1, τ ′] = λ[1, τ ], for some λ ∈ C×. There thus exist
integers a, b, c, and d such that

τ ′ = aλτ + bλ

1 = cλτ + dλ

From the second equation, we see that λ = 1
cτ+d

. Substituting this into the first, we have

τ ′ =
aτ + b

cτ + d
= γτ, where γ =

(
a b
c d

)
∈ Z2×2.
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Similarly, using [1, τ ] = λ−1 [1, τ ′], we can write τ = γ′τ ′ for some integer matrix γ′. The
fact that τ ′ = γγ′τ ′ implies that det γ = ±1 (since γ and γ′ are integer matrices). But τ and
τ ′ both lie in H, so we must have det γ = 1; therefore γ ∈ Γ as desired. �

Lemma 3.2. We have that
lim

im(τ)→∞
j(τ) =∞.

Proof. To start, consider

(3.1) g2(τ) = 60
∑
m,n

1

(m+ nτ)4
= 60

(
2
∞∑
m=1

1

m4
+

∑
m,n;n6=0

1

(m+ nτ)4

)
Let τ = a+ bi. But if we consider a single term in the right-hand sum, we find that

lim
Im(τ)→∞

1

(m+ nτ)4
= lim

Im(τ)→∞

1

m4 + 4m3(nτ) + 6m2(nτ)2 + 4m(nτ)3 + (nτ)4

Because n 6= 0, then the b4 term in (nτ)4 = n2 (a4 + 4a3(bi)− 6a2b2 + 4a(bi)3 − b4) domi-
nates the denominator as b becomes arbitrarily large. Hence,

lim
Im(τ)→∞

1

(m+ nτ)4
= 0

Since g2(τ) is uniformly convergent by Lemma 2.8, then, in taking the limit, equation (3.1)
becomes

lim
Im(τ)→∞

g2(τ) = 120
∞∑
m=1

1

m4

But this is a known infinite sum, with
∑∞

m=1
1
m4 = π4

90
. Hence.

lim
Im(τ)→∞

g2(τ) =
4

3
π4

The limit behavior of g3(τ) is shown similarly, with the sum
∑∞

m=1
1
m6 = π6

945
giving us that

lim
Im(τ)→∞

g3(τ) =
8

27
π6

Combining these two results, we get the limit of the denominator of the j -function:

(3.2) lim
Im(τ)→∞

[
g2(τ)3 − 27g3(τ)2

]
=

(
4

3
π4

)3

− 27

(
8

27
π6

)2

= 0

Thus, it follows that
lim
∞→∞

j(τ) =∞.

�

Theorem 3.3. The j-invariant is surjective.

Proof. We know that j(τ) is nonconstant on H, since there are values for τ that are distinct
under the action of SL2(Z) (each point in the fundamental region F is SL2(Z) -distinct from
every other point in F ). Also, by Lemma 2.9, j(τ) is holomorphic on H. Hence, by the
open mapping theorem, the image of j(τ) must be an open set in C. Since the only set that
is both open and closed in C is itself, it is sufficient to prove that j(H) is closed.
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Let j (τk) be a sequence in j(H) converging to some w ∈ C (where τk ∈ H). Since j(τ) is
invariant under SL2(Z), then by only considering τ in our fundamental domain F , we may
assume that each τk is such that

|Re (τk)| ≤
1

2
and |Im (τk)| ≥

√
3

2
.

Suppose the imaginary parts of the τk ’s are unbounded. But then, by Lemma 3.2, j (τk)
contains a subsequence converging to ∞. Since j (τk) converges to w, this cannot happen.
So the imaginary parts of the τk ’s are bounded, say by some M ∈ R. Hence each τk lies in
the region

R =

{
τ ∈ H : |Re(τ)| ≤ 1

2
,

√
3

2
≤ | Im(τ)| ≤ M

}
a compact subspace of H. But this implies that τk has a subsequence converging to some
τ0 ∈ H. Since j(τ) is continuous and j (τk) converges to w, then j (τ0) = w, and hence
w ∈ j(H). Thus j(H) is closed, and so j(H) = C.

�

We will state the next theorem without proof:

Theorem 3.4 (Schneider (1937)). Suppose τ ∈ H is algebraic and not an imaginary qua-
dratic, then the value of j(τ) is transcendental.

q-expansion

We begin by defining the map q : H→ D as

q(τ) = e2πiτ .

We can write this as e−2πiτ (cos(2π re(τ)) + i sin(2π re(τ))). We can see that map bijectively
maps each vertical strip Hn := {τ ∈ H : n ≤ re τ < n+ 1}( for any n ∈ Z) to the punctured
unit disk D0 := D− {0}. Also note that

lim
τ→∞

q(τ) = 0.

If f : H → C is a meromorphic function that satisfies f(τ + 1) = f(τ) for all τ ∈ H, then
we can write f in the form f(τ) = f ∗(q(τ)), where f ∗ : D0 → C is a meromorphic function

that we can define by fixing a vertical strip Hn and putting f ∗ := f ◦
(
q|Hn

)−1
.

The q -expansion of f(τ) is obtained by composing the Laurent-series expansion of f ∗ at
0 with the function q(τ)

f(τ) = f ∗(q(τ)) =
+∞∑

n=−∞

anq(τ)n =
+∞∑

n=−∞

anq
n.

We typically just write q for q(τ).
We have the following the following lemma:

Lemma 3.5. Let ζ(x) =
∑∞

n=1 n
−x and let

σ`(n) =
∑
d|n

d`
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be the sum of the ` th powers of the positive divisors of n. If k ≥ 2 is an integer, then

G2k(τ) = 2ζ(2k) + 2
(2πi)2k

(2k − 1)!

∞∑
n=1

σ2k−1(n)qn

= 2ζ(2k) + 2
(2πi)2k

(2k − 1)!

∞∑
j=1

j2k−1qj

1− qj

Proof. We have

π
cosπτ

sin πτ
= πi

eπiτ + e−πiτ

eπiτ − e−πiτ

= πi
q + 1

q − 1
= πi+

2πi

q − 1

= πi− 2πi
∞∑
j=0

qj

Using the product expansion,

sin πτ = πτ
∞∏
n=1

(
1− τ

n

)(
1 +

τ

n

)
and taking the logarithmic derivative yields

π
cos πτ

sinπτ
=

1

τ
+
∞∑
n=1

(
1

τ − n
+

1

τ + n

)
.

Differentiating the first equation and the above equation 2k−1 times with respect to τ yields

−
∞∑
j=1

(2πi)2kj2k−1qj = (−1)2k−1(2k − 1)!
∞∑

n=−∞

1

(τ + n)2k
.

Consider the Gk expansion with 2k in place of k. Since 2k is even, the terms for (m,n) and
(−m,−n) are equal, so we only need to sum for m = 0, n > 0 and for m > 0, n ∈ Z, then
double the answer. We obtain

G2k(τ) = 2
∞∑
n=1

1

n2k
+ 2

∞∑
m=1

∞∑
n=−∞

1

(mτ + n)2k

= 2ζ(2k) + 2
∞∑
m=1

∞∑
j=1

(2πi)2kj2k−1

(2k − 1)!
qmj

= 2ζ(2k) + 2
(2πi)2k

(2k − 1)!

∞∑
m=1

∞∑
j=1

j2k−1qmj

Let n = mj in the last expression. Then, for a given n, the sum over j can be regarded as
the sum over the positive divisors of n. This yields the first expression in the statement of
the proposition. The expansion

∑
m≥1 q

mj = qj/ (1− qj) yields the second expression. �

Using the facts that

ζ(4) =
π4

90
and ζ(6) =

π6

945
,
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we obtain

g2(τ) = 4π4

3
(1 + 240q + · · · ) = 4π4

3

(
1 + 240

∑∞
j=1

j3qj

1−qj

)
g3(τ) = 8π6

27
(1− 504q + · · · ) = 8π6

27

(
1− 504

∑∞
j=1

j5qj

1−qj

)
Since ∆ = g3

2 − 27g2
3, a straightforward calculation shows that

∆(τ) = (2π)12(q + · · · )

Then j(τ) = 1
q

+ · · · . Including a few more terms in the above calculations yields

j(τ) =
1

q
+ 744 + 196884q + 21493760q2 + · · · .

The coefficents of the expansions are always integers, and this results is several almost inte-

gers, in particular, the Ramanujan constant, eπ
√

163 = 262537412640768743.9999999999992.
The details of this, require results from Complex Multiplication, and thus, we will omit
them. However, we give a brief explanation of why this is true using q-expansions:

We first state the following theorem:

Theorem 3.6. For algebraic numbers α and β with α 6= 0 and β /∈ Q and for any choice of
log(α) 6= 0, the number αβ is transcendental.

Note that this implies that the number eπ
√

163 is transcendental and we may use Theorem

3.4. Now let τ = +i
√

163
2

. Then q = −e−π
√

163. Then we have

j(τ) = −(640320)3

and ∣∣∣∣j(τ)− 1

q
− 744

∣∣∣∣ < 10−12.

Therefore ∣∣∣−(640320)3 − 744 + eπ
√

163
∣∣∣ < 10−12

and thus j(τ) is a good approximation of eπ
√

163.

More on Modular Functions

We first give the definition of a modular function.

Definition 3.7. A function f : H → C is called a modular function if it satisfies the
following:

1. f is meromorphic on H.
2. f(γ · τ) = τ for any γ ∈ SL2(Z) and all τ ∈ H.
3. The function f has a q- expansion at ∞ of the form

f(τ) =
∞∑

n=−m

c(n)qn

where q = e2πiτ , and m is some integer.

Lemma 3.8. The j-invariant is a modular function for SL2(Z).
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Proof. We know from Equation (3.2) in Lemma 3.2 that ∆(τ) has a simple zero at ∞, then
j(τ) has a simple pole at ∞. This implies that j(τ) is meromorphic at ∞. Combining this
with Theorem 3.1, we see that the lemma must hold. �

We also have the following.

Lemma 3.9. A modular function f which is holomorphic at ∞, that is, its q-expansion has
no negative powers of q, is constant.

Proof. It suffices to show that f(H∪{∞}) is compact in C; the maximum modulus principle
of complex analysis then tells us that f must be constant. We do so by showing that
f(H ∪ {∞}) is sequentially compact, i.e., every sequence has a subsequence that converges
to a point in f(H∪{∞}). Since C is a metric space, compactness is equivalent to sequential
compactness.

Let {f (τk)} be a sequence in f(H∪{∞}). Since f is modular and thus SL2(Z) -invariant,
we can assume that each τk lies in our fundamental region F . If the imaginary parts of the
τk ’s are unbounded, then there is a subsequence of {τk} converging to i∞. But then there is
a subsequence of {f (τk)} which converges to f(∞), which is a finite complex number since
f is holomorphic at ∞.

If the imaginary parts of the τk ’s are bounded, say Im (τk) ≤ M for some M ∈ R, then
each τk lies in the region R := {z ∈ C : |z| ≥ 1,−1/2 ≤ Re(z) ≤ 1/2, Im(z) ≤ M}, which
is closed and bounded and hence compact. Thus a subsequence of {τk} can be found which
converges to an element τ0 of R, and hence f (τk) converges to f (τ0), since f is continuous.
Hence, f(H ∪ {∞}) is compact and thus f must be constant. �

Lemma 3.10. Every holomorphic modular function for SL2(Z) is a polynomial in j(τ).

Proof. Suppose f(τ) is a holomorphic modular function for SL2(Z). Since f is modular and
thus meromorphic at the cusp i∞, its q -expansion looks like

f(τ) =
∞∑

n=−m

anq
n

where m is some positive integer. But the only negative q -power term in j(τ) ’s q -expansion
is simply q−1. Hence, we can define a polynomial A(x) such that f(τ)−A(j(τ)) has no terms
with negative q powers. So then f(τ) − A(j(τ)) is holomorphic at ∞ and hence must be
constant by Lemma 3.7. Thus,

f(τ) = k + A(j(τ))

for some k ∈ C and hence f(τ) is a polynomial in j(τ). �

Theorem 3.11. Every modular function for SL2(Z) is a rational function in j(τ).

Proof. Suppose f(τ) is a modular function for SL2(Z). Our goal is to find some polynomial
B(x) such that B(j(τ))f(τ) is holomorphic. Then by Lemma 3.8, we are done.

Since f is modular, it only has a finite number of poles in our fundamental domain F .
The idea is to find a polynomial of j(τ) for each pole that kills each pole of f(τ), making
the resulting function holomorphic at that point. Let τ0 be a pole of f of order m. Suppose
j′ (τ0) 6= 0. Then consider

(j(τ)− j (τ0))m f(τ)
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If we write j(τ) and f(τ) as Laurent series about τ0, we get

j(τ) =
∞∑
n=0

an (τ − τ0)n and f(τ) =
∞∑

n=−m

bn (τ − τ0)n

for some constants an and bn since, at the point τ0, we know j is holomorphic and f has a
pole of order m. Note that a0 = j (τ0). Then consider

(j(τ)− j (τ0))m f(τ) =

((
∞∑
n=0

an (τ − τ0)n
)
− a0

)m

f(τ)

=

(
∞∑
n=1

an (τ − τ0)n
)m ∞∑

n=−m

bn (τ − τ0)n .

The resulting expansion will have no negative powers of (τ − τ0), and hence

(j(τ)− j (τ0))m f(τ)

is holomorphic at τ0. Multiplying all such polynomials (j(τ)− j (τk))
mk corresponding to

each of the k poles of f in F yields the polynomial in j(τ)∏
k

(j(τ)− j (τk))
mk

which, when multiplied by f , gives a function that is holomorphic at each pole τk. The only
case we have omitted is if we have a pole τ0 such that j′ (τ0) = 0. It turns out that this only
happens at i and e2πi/3, and similar polynomials in j(τ) are easily obtained at each point
so that their product with f(τ) gives a suitably holomorphic function. Thus, multiplying
all of our collected polynomials together to get some B(j(τ)), we have that B(j(τ))f(τ) is
holomorphic, and hence by our previous theorem.

f(τ) =
A(j(τ))

B(j(τ))

for some polynomial A(x). �
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