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Abstract. The development of mathematics is somewhat similar to a tree. From an idea,

another idea may be formed, and these ideas tend to separate as if they were the branches of

a tree. In this case, the paper will first prove a theorem about the Montel‘s Second Theorem

or the fundamental normality test. However, the two main ideas of the modular forms and

monodromy will be greatly expanded upon in the upcoming sections.

1. Montel‘s Second Theorem

Montel‘s Second Theorem first appeared when trying to prove the Riemann Mapping

Theorem. There had not yet been a proof constructed at that time. This section will

examine the proof of Montel‘s Second Theorem. Montel‘s Second Theorem was created by

a mathematician by the name of Paul Montel who introduced the notion of normality. This

section will show the steps to proving Montel‘s Second Theorem.

Definition 1.1. A family of functions is normal if every sequence of functions in the family

contains a subsequence of functions that converges uniformly on all compact subsets of Ω.

Theorem 1.2 (Montel‘s Theorem). If F is a family of analytic functions defined on an open

set Ω ⊂ C, uniformly bounded on every compact set of Ω, then F is a normal family.

Theorem 1.3 (Montel‘s Second theorem (Also known as the fundamental normality test)).

. Let Ω ⊂ C be an open subset, and let F be a family of holomorphic functions in Ω whose

range omits two values a and b. Then F is a normal family.

Before we begin the proof, there are some reductions we have to make. We may assume

that the two omitted values are 0 and 1 considering the fraction f(z)−a
b−a . If the two omitted

values of f were not already 0 and 1, a linear map in the form of the fraction above may

transport where the omitted values occur. We may assume that the domain Ω is the unit

disk since normality is a local property. This means that the only significant points are in a

nearby neighborhood, so the domain may be restricted to a smaller set. Finally, it suffices to

prove normality of the smaller family F1 such that F1 = {f ∈ F : |f(0)| ≤ 1} or if f 6∈ F1,

then 1
f
∈ F1 also due to the locality of normality.
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Definition 1.4. The modular function λ maps the open upper half plane onto C \ {0, 1}.
Another property is that λ is invariant under the action of the congruence subgroup of the

modular group, meaning λ(az+b
cz+d

) = λ(z) when a, b, c, and d are integers such that ad−bc = 1

and

(
a b

c d

)
≡

(
1 0

0 1

)
(mod 2).

As a reminder, the original definition of the modular function λ(z) is the fraction e3−e2
e1−e2

where e1 = ℘(ω1

2
), e2 = ℘(ω2

2
), ande3 = ℘(ω1+ω2

2
).

We are examining the lattice Λ = {mω1 + nω2 : m,n ∈ Z for an elliptical function. Now,

we may prove why the modular function is invariant under the congruent subgroup of the

modular group.

For some lattice with the periods of ω1 and ω2, we might apply the modular group matrix,

yielding a new lattice where the new periods are Ω1 and Ω2.(
Ω1

Ω2

)
=

(
a b

c d

)(
ω1

ω2

)
=

(
aω1 + bω2

cω1 + dω2

)
where a, b, c, d ≡ 1, 0, 0, 1(mod2).

Ω1 ≡ aω1 + bω2(modΛ)

Ω2 ≡ cω1 + dω2(modΛ).

Additionally,
Ω1

2
≡ ω1

2
(modΛ)

Ω2

2
≡ ω2

2
(modΛ).

This means that the modular transformation does not change the lattice but only moves

around the specific lattice points. Since e1, e2, e3 are not changed, the modular λ function is

not changed by the matrix.

Definition 1.5. (The Monodromy Theorem). If f is analytic in a disk contained in a simply

connected domain D, and f can be analytically continued along every polygonal arc in D,

then f can be analytically continued to a single-valued analytic function on all of D.

Definition 1.6. Alternate Monodromy Theorem. Let two continuous paths γ(s),0 ≥ s ≥ 1

and δ(s),0 ≥ s ≥ 1 be given, which have the same end points γ(0) = δ(0), γ(1) = δ(1) and

which are homotopic. This means is a map from the curve γ and δ given by a continuous

function F(s,t), 0 ≥ s, t ≥ 1 such that F (s, 0) = γ(s), F (s, 1) = δ(s). Then analytic

continuation along γ yields the same result as analytic continuation along δ.

This means that if we have a function f which admits analytic continuation over the whole

domain, and the domain is simply connected, then f extends to a single valued function.
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Lemma 1.7. If f maps the unit disc into C\{0, 1}, then λ−1f has a local branch (the issue of

the possibility of two values has been eliminated) defined near f(0), and this function element

admits unrestricted analytic continuation in the disc. This means that the function is still

well-defined.

Proof. By the monodromy theorem, there exist a function f̂ from the unit disc into the upper

half-plane such that λf̂ = f . Remember that the modular function, λ can map the upper

half plane to C \ {0, 1}. The function of f̂ can be analytically continued all across the disc

which allows f̂ to be defined at all points in the disc and not just a proper, open subset. �

Proof. In the first part of the proof, we will examine the first subsequence. Suppose {fn :

n ∈ N} is a sequence of functions in the family F1. We need to prove a normally convergent

subsequence.

Since the numbers fn(0) lie in a bounded set, there is a subsequence {n(k) : k ∈ N} such

that the numbers fn(k)(0) converge to some complex number L.

Suppose first that L 6= 0or1. (These cases will be examined later.) We fix a branch of λ−1

in a neighborhood of L and use it to define the function ˆfn(k) consistently.

Next, we will look at the second subsequence. Since each ˆfn(k) has a range contained in

the upper half-plane, the sequence { ˆfn(k) : k ∈ N} is a normal family. Let {n(k(j)) : j ∈ N}
be a subsequence such that the functions ˆfn(k(j)) converge normally to a limit function g.

The range of the limit function g is certainly contained in the closed upper half plane.

Since g(0) = λ−1(L), the open mapping principle implies that the range of g is contained in

the open upper half-plane.

Consequently, λg is defined, and fn(k(j)) = λ ˆfn(k(j)). λ ˆfn(k(j)) −→ λg when j −→∞. (This

is it for the main case.)

Here is the proof for the edge cases when the limit is either 0 or 1. Suppose that

limk−→∞fn(k)(0) −→ 1. Let hk be a holomorphic square-root of the non-vanishing func-

tion fn(k) with the branch chosen such that limk−→∞hk(0) = −1. Clearly the range of each

function hk omits the values 0 and 1.

The preceding analysis applies to the sequence {hk : k ∈ N} and shows that there is

a normally convergent subsequence {hk(j) : j ∈ N}. Squaring shows that the sequence
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{fn(k(j)) : j ∈ N} converges.

Finally, suppose limk−→∞fn(k)(0) −→ 0. The preceding case applies to the functions

1− fn(k).

We are now done. �

The proof of Montel‘s Second Theorem has many similarities with the proof of Picard‘s

Little Theorem. The monodromy theorem was able to take the place of the theory of cov-

ering spaces in Picard‘s Little Theorem. In fact, there is actually a proof of Picard‘s Little

Theorem where the monodromy theorem is used. To outline that proof, we first define a func-

tion to be the fraction f(z)−a
b−a . Next, we take similar steps to define a composition with this

fraction to be analytic. Finally, we will use the monodromy theorem to extend this function

to be entire and then prove that it is bounded and hence constant using Liouville‘s Theorem.

To expand on the idea of analytical continuation, this idea is currently thought of through

the lenses of sheaves. To give some history, the theory of sheaves were created after the

theory of complex analysis. Leray invented this concept during World War II to analyze the

topological obstructions to determine global solvability after local solvability is proven. A

global analytic function can be constructed when the sheaf of germs are path-connected and

maximal. We will not explore this topic further in the research paper. However, it can be a

possible topic for further research later.
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2. More on Modular Forms

We have only tapped the surface of the properties and applications of modular forms.

We only examined the invariance of the SL subgroup on the modular function and how the

modular form maps H to C \ {0, 1}. There are many more important properties. In this

section, we will define the congruence subgroup and the properties which are important to

it. We will then discuss its connections to differential forms and how the orders of zeros and

poles are related to each other.

Definition 2.1. For some N ≥ 0, let us define

Γ(N) = {

(
a b

c d

)
: a ≡ 1, b ≡ 0, c ≡ 0, d ≡ 1(modN)}

as the principal congruence subgroup of level N. Earlier in this paper, we examined the

properties of this group of level 2 for the modular λ function.

One important property of this subgroup is that is it meromorphic as the cusps. A known

property of modular functions is that f(z) = f(z + 1). We may rewrite any function which

satisfies this property in the form f(z) = f ∗(q) where q = e2πiz. Notice that as z goes around

the upper half plane, q(z) ranges over a disc with the 0 removed. The term meromorphic

at the cusp means that f ∗(q) is meromorphic on the full plane and can be rewritten as

f(z) =
∑

n≥−N0
anq

n.

Definition 2.2. A modular function f for Γ is a function on H satisfying these following

conditions:

• f(z) is invariant under Γ, i.e., f(γz) = f(z) for all γ ∈ Γ;

• f(z) is meromorphic in H;

• f(z) is meromorphic at the cusps.

Let the last condition be clarified. The cusp might be the point at infinity i∞. A subgroup

of Γ(1) may be generated by

(
1 h

0 1

)
where h ∈ N. Therefore, f(z + h) = f(z) since f(z)

is invariant under

(
1 h

0 1

)
. f(z) may be expressed as a function f ∗(q) for a q = e

2πiz
h on a

punctured disc where 0 < |q| < ε. For f to be meromorphic at i∞, f ∗ must be meromorphic

at q = 0.

If the cusp is not at the point at infinity, it can be mapped there by a subgroup of Γ(1).

f is invariant at the subgroups, so the point of infinity will still be in the domain of f.
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There is an analogous characteristic of holomorphism for modular function where the

holomorphism at a neighborhood is guaranteed by the boundedness. f(z) is meromorphic at

i∞ if and only if for some A > 0, eAizf(z) is bounded as z −→ i∞.

Definition 2.3. A modular form for Γ of weight 2k is a function on H such that:

• f(γz) = (cz + d)2kf(z), for all z ∈ H;

• f(z) is holomorphic in H;

• f(z) is holomorphic at the cusps of Γ.

Next, let us examine the structure of the group SL2(C). The group SL2(C) acts on C2,

and hence on the set P1(C) of lines through the origin in C2. When we examine the slope of

the line, P1(C) becomes identified with C ∪ {∞}.

Definition 2.4.

(
a b

c d

)
(z) = az+b

cz+d
,

(
a b

c d

)
(∞) = a

c
.

These mappings are defined as linear fractional transformations of P1(C) = C ∪ {∞}

Some basic observations of this mapping is that it maps circles and lines into circles and

lines. The identity is any matrix in the form

(
a 0

0 a

)
.

Now, we will view the modular forms as k-form differentials. The reason we are doing

this is because differential forms are a motivation for the idea of modular form outside of

elliptical functions.

Definition 2.5. A differential form on an open subset U of C is an expression of the form

f(z)dz where f is a meromorphic function on U. With any meromorphic function f(z) on U,

we associate the differential form df = df
dz
dz.

Example. Let w : U −→ V be a mapping from U to another open subset V of C. For any

z ∈ U and z0 ∈ V we can write it z0 = w(z). Let ω = f(z0)dz0 be a differential form on V.

Then w∗(ω) is the differential form f(w(z))dw(z)
dz

dz on U.

Let us examine how to construct a differential form on a Riemann surface.

Example. Let X be a Riemann surface, and let (Ui, zi) be a coordinate covering of X. To

give a differential form on X is to give differential forms ωi = f(zi)dzi on zi(Ui) for each i

that agree on overlaps in the following sense: let zi = wij(zj), so that wij is the conformal

mapping zi ◦ z−1
j : zj(Ui ∩ Uj) −→ zi(Ui ∩ Uj); then w∗ij(ωi) = ωj. Overall, fj(zj)dzj =

fi(wij(zj))wij′(zj)dzj.

Proposition 2.6. A meromorphic function f on a compact Riemann surface has the same

number of poles as it has zeros (counting multiplicities). Additionally, let ω be a differential

form on a compact Riemann surface; then the sum of the residues of ω at its poles is zero.
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Proof. In proving part b, we know that for some closed path C not passing through any

poles,
∫
C
fdz = 2πi

∑
poles(f ; p) where p represents the poles. We may rewrite f dz as ω as

a differential form.
∫
C
ω = 2πi

∑
poles(ω; p). If we fix a finite covering (Ui, zi) of the surface

and fix a triangulation, then the integrals on the paths would cancel out since there cannot

be any poles due to how the surface is bounded. For the first part, we can just define the

form to be ω = df
f

. �

Definition 2.7. On a compact Riemann surface, X, the group of divisors Div(X) on X is

the additive abelian group generated by the points on X; thus an element of Div(X) is a

finite sum
∑
niPi, ni ∈ Z.

Definition 2.8. Let f be a nonzero meromorphic function on X. For any point P ∈ X, let

ordP (f) = m,−m, or 0 according as f has a zero of order m at P, a pole of order m at P, or

neither a pole nor a zero at P.

Definition 2.9. div(f) =
∑
ordp(f)P.

We may attach a divisor to a differential form ω. let P ∈ X, and let (Ui, zi) be a coordinate

neighbourhood containing P. The differential form ω is described by a differential fidzi on Ui,

and we set ordp(ω) = ordp(fi). Then ordp(ω) is independent of the choice of the coordinate

neighbourhood Ui.

Now, let us consider what happens to a differential ω = f(z)dz on H for a meromorphic

function f(z) under the action of Γ. Is it still ω invariant?

Let γ = az+b
cz+d

. Then,

γω = f(γz)d(az+b
cz+d

) = f(γz)a(cz+d)−c(az+b)
(cz+d)2

dz = f(γz)(cz + d)−2dz.

Remember, ad− cb = 1.

In conclusion, ω is invariant if and only if f(z) is a meromorphic differential form of weight 2.

Remark 2.10. There is a notion of a k-fold differential form on a Riemann surface. Locally,

it can be written ω = f(z)(dz)k, and if w = w(z), then

wω = f(w(z))(dw(z))k = f(w(z))(w′(z))k(dz)k.

Modular forms of weight 2k correspond to Γ-invariant k-fold differential forms on H∗, and

hence to meromorphic k-fold differential forms on Γ \ H∗. H∗ is H ∪ P1(Q) where P1(Q) is

the set of cusps for Γ(1).



8 ANTHONY LEONG

A zero or pole of order m for ω = f(z)(dz)k at z = 0 is dependent on whether f(z) has a

zero or pole of order m at z = 0.

As the last analysis of the k-fold differentials, we will be identifying a couple of interesting

properties about the orders at points that relate the modular forms and k-fold differential

forms.

Theorem 2.11. Let f be a (meromorphic) modular form of weight 2k, and let ω be the

corresponding k-fold differential form on Γ \H∗. Let Q ∈ H∗ map to P ∈ Γ \H∗.
• If Q is an elliptic point with multiplicity e, then ordQ(f) = eordP (ω) + k(e− 1).

• If Q is a cusp, then ordQ(f) = ordP (ω) + k.

• For the remaining points, ordQ(f) = ordP (ω).

Proof. A point z ∈ H is called an elliptic point if it is the fixed point of an elliptic el-

ement γ of Γ where γ ∈ SL2(R). To prove the first case, let w be a map between the

unit discs D such that w : z −→ ze. Suppose that P and Q are both zero. Let f be a

function on D and f ∗ = f ◦ w. If f has a zero f order m, then f ∗ has a zero of order

em. Thus, ordQ(f ∗) = eordP (f). Now, let us consider a k-fold differential form ω on D.

Then ω = f(z)(dz)k and ω∗ = f(ze)(dze)k = f(ze)(eze−1dz)k = ekf(ze)zk(e−1)(dz)k for

ω∗ = w∗(ω). f is isomorphic to ω∗ as a result of the invariance under the action of γ.

For the second case, consider the map q : H −→ (punctureddisk), q(z) = e
2πiz
h , and let

ω∗ = g(q)(dq)k be a k-fold differential form on the punctured disk. Then dq = (2πi
h

)qdz, and

so the inverse image of ω∗ on H is

ω = g(q(z))q(z)k(dz)k,

and so ω∗ corresponds to the modular form f(z) = g(q(z))q(z)k. Thus f ∗(q) = g(q)qk.

The zeros already at g(q) for f will have the zeros at q added to it for the k-fold differential

form. And we are done!

The last case is trivial due to the isomorphism in the map between a modular form of

weight 2k and corresponding differential form. �

We have now finished analyzing the properties of generalized modular forms for the scope

of this paper. There are other topics which may be researched further within modular forms.

For example, more can be said about the impact of including the concept of the genus which

is the number of holes. This can help define the dimension of the space of modular forms.

There is also a method to give a more direct count of the number of zeros and poles on

the differential form. This would involve results from the Riemann-Roch theorem which
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describes the number of functions there are on a compact surface given a number of zeros

and poles. This is beyond the scope of the paper. However, it may be a topic of further

research.
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3. Monodromy and Group Theory

In this section, we will talk about the monodromy group. This concept arises from the

idea of how multiple-valued functions can be rewritten as single-valued functions on Riemann

surfaces. As a result of how the functions are defined on the specific surface, there may be

a permutation group involved. This permutation group will be known as the permutation

monodromy group and can be used to prove the Abel-Ruffini Theorem about the insolvability

of a polynomial of degree 5 or greater.

Definition 3.1. So, what is a monodromy? A monodromy is the idea of how an object

reacts when it circles a singularity.

For example, when a parametrized curve circles 0 in the square root function, something

interesting happens. There may two values which are positive and negative.

Definition 3.2. Another way of thinking of monodromies is in terms of the function. A

function is monodromic if it admits single values. A function may also be thought of poly-

dromic if it admits multiple values. Although this is not that important for this section, it

should be noted that many textbooks view monodromies this way.

The sets of monodromies may form a group which will be explored in this section.

Definition 3.3. Just a reminder, a group is a set which is closed under the binary operation.

The properties of associativity, existence of an inverse, and existence of an identity are

satisfied.

Definition 3.4. A symmetric group is a group under the operation of permutations (switch-

ing the position of elements). Let us define a bijective function f [n] −→ [n] such that

[n] = {1, 2, . . . n}.

Before looking further into groups of monodromies, we must revisit the Riemann Surfaces.

First, we will define algebraic functions since the inspiration comes from functions with

multiple values.

Definition 3.5. An algebraic function is defined as

f : Cn −→ C
(a0, . . . an) −→ {z : p(a0, . . . an, z) = a0z

n + a1z
n−1 + . . .+ an = 0}.

Notice that this algebraic function extracts the roots from a polynomial when given the

coefficient. So how is this relevant to our analysis of monodromies? Let us examine the

algebraic function for the polynomial p(z) = z2 − a. The functions that helps find the z
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when p(z) = 0 are f(a) =
√
a or f(a) = −

√
a.

For a visual representation on a complex plane. Let us define a loop a(t) such that

t ∈ [0, 1]. Let the starting point be a0 ∈ C \ 0. When we apply our functions, we find that√
a(1) = −

√
a(0) and −

√
a(1) =

√
a(0).

We may now create our Riemann Surfaces. For the two branches of f(a), we may define

two parametrized curves as f1(a) =
√
re

iθ
2 and f2(a) =

√
re

iθ
2

+π. Now, we may view f(a)

to be defined two different sheets C \ 0 and not just the complex plane. We know that the

sheets must be abstractly glued together where the branch cut occurs. But how do we find

branch points?

The square root function has a branch point due to its multiple values; however, all radical

functions are bound to have singularities. Singularities differ from branch points because

they may also include non-uniqueness points.

Example. The surface for
√
a2. This function has two single valued functions a and −a.

Both functions actually return the same value when passing through 0. When going around

0, the argument of a varies by 2π. Therefore, the argument of a2 varies by 4π. However, the

argument of
√
a2 varies by 2π again. The two sheets would only connect at the one point 0,

making it unnecessary to have two different sheets.

Is there a way to more easily tell whether a singularity is a branch point or a non-uniqueness

point? There is!

Definition 3.6. For a curve given by a(t) : [0, 1] −→ C\{0}, define θ(t) to be the argument

of the curve at a time t. This function will be continuous since the loop is continuous with

respect to the variable t. The variation of the argument is the angle that the loop travels

with respect to the singularity or more formally, θ(1)− θ(0).

Definition 3.7. The winding number is the variation divided by 2π. The winding number

counts how many times the loop travels around the singularity.

Example. Let us examine the winding number of the square root function. Recall that our

parametric curves were defined as f1(a) =
√
re

iθ
2 and f2(a) =

√
re

iθ
2

+π. The argument of

f(a) is half the argument of a(t). The variation of the function of the curve is also only half

of the variation of the curve. So, the image must have an twice the variation of the curve to

be considered closed; therefore, the winding number of the image of a curve has to be even.

If the variance of the loop is not a multiple of 2π after wrapping and the images at the

starting and ending points are not equal, then there is a branch point. For example, this
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happens with the square root function since the variance may just be π. This will cause

the image to be additive inverses of each other around 0 which we already know is a branch

point.

Definition 3.8. Let f(a) be a function associated with the polynomial p(a,z).

The Riemann surface is defined as M of f(a) along the map φ : {(a, z)|p(a, z) = 0} −→ {a},
as a covering space of C \ {singular points of f(a)}.

Let use construct a couple of surfaces as examples.

Example. f(a) = n
√

(a− a0)i0 . . . (a− am)im where n,m ∈ N and i0, . . . im ∈ Z. Each aj will

be either branch points or non-uniqueness points if we separate the function onto n sheets.

To distinguish between branch points and non-uniqueness points, we take a loop around the

point in question. It will be a branch point if the difference of the function between the

ending an starting point is not a multiple of 2π. Each function can be labeled as fi where

f1 is chosen to be a function, and each fi = e
2π(i−1)

n f1.

Under the field operations like multiplication and addition, two functions with Riemann

sheets can be composed. The branches of the composed function will just be the com-

position of the branches of the two functions for all the possible combinations. Let us

define the functions as f and g. The branches of f are {f1, f2, . . . fm}. The branches of

g are {g1, g2, . . . gn}. The branches of h if h = f ∗ g where ∗ is some field operation are

{f1 ∗ g1, . . . f1 ∗ gn, . . . fm ∗ g1, . . . fm ∗ gn}.

Example. g(a) = f(a)n. g(a) has the same amount of sheets as f(a) except that the branches

are squared. The connection points of the sheets are the same.

Example. g(a) = n
√
f(a) where we already know the Riemann surface of f(a). The single

valued functions from f differ by a multiplication by a root of unity, so maximal amount of

single-valued functions is n times the amount from f.

We may now associate the different sheets to the permutation group. What this means

is that the different sheets informally switch places with each other on the function. The

permutations form a group based on the logic for why a symmetric group is a group.

Here is a way to visualize the permutations mathematically. Take a point a0 which is not

a singularity (a branch or a non-uniqueness point). Next, define a continuous loop L given

by a(t). The starting point is given by a(0) = a0. The function f(a(0)) = fi can move across

the loop L to the value fj = f(a(1)). The different values of fj can be determined by the

different values of fi. Therefore, there is a permutation between the functions.

Definition 3.9. We may define two groups as the permutations of the values of f(a0) and

the permutations of f(a1). These are both considered the permutation monodromy group.
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Despite the abstractness within this structure, there are some applications. We can use

the ideas to solve cubic and quartic equations and prove the a polynomial that is a quintic

or of higher degree is unsolvable. We will only prove that there exists a monodromy group

for cubics and that this is actually impossible for quintics or greater.

Let us set up a cubic equation. p(z) = z3 +αz2 +βz+a where f(a) is the algebraic function

which is associated with it. The branch points are where the double roots occur. This is

because f(a) admits less than 3 values.

So, how do we figure out where the double roots are? We can take advantage of the

derivative. We know that the geometric representation of a cubic equation has at most two

points where the derivative is zero. We can only intersect the y-axis twice since one root is

single and the other is double. When taking the derivative, we must have two distinct roots;

therefore, α2 − 3β cannot be 0.

f(a) will admit two values at a = a1 = −((z1)3 + α(z1)2 + β(z1)) and at a = a2 =

−((z2)3 + α(z2)2 + β(z2)) for the roots z1 and z2.

Now, we must prove that we can construct a Riemann surface since this will determine

whether the monodromy group exists for the cubic. We will construct the Riemann surface

with the branch points a1 and a2 where a function f(a) is continuous (being a function implies

that it is single-valued).

Let us define a curve that does not go through a1 and a2. Since f is continuous, and

the curve is connected, the image of the curve under f will also be connected. Therefore, f

will be a continuous function on this Riemann surface. There are 3 roots with two possible

transpositions (permutations which switch the places of the branch points since each point

connects two Riemann surfaces). The permutation monodromy group will be congruent to

S3.

Although we will not prove it in this paper, the permutation monodromy group for quartic

polynomials will be congruent to S4.

To determine whether the quintic or a polynomial of a degree greater than the quintic is

solvable, we will have to prove two lemma.

Definition 3.10. A group is abelian if it satisfies the commutative property.

Definition 3.11. A group is solvable if it can be constructed from existing abelian groups.
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Lemma 3.12. Let f(a),g(a) be two algebraic functions with abelian permutation monodromy

groups F and G. Then h(a) = f(a) ∗ g(a), where the operation ∗ is a field operation, has an

abelian permutation monodromy group.

Proof. To prove this lemma, observe that the monodromy group H1 of the Riemann surface

of h(a) before merging equal sheets, is isomorphic to a subgroup of F ×G. This is because

each surface of h corresponds with a combination of the surfaces in f and g as shown in a

previous example. Next, observe that there exists a surjective homomorphism from H1 to H2

where H2 is the monodromy group associated to the Riemann surface with merged sheets.

Hence because Fas well as H1 and H2.

�

The permutation monodromy group of an algebraic function of the form h(a) = n
√

(aa0)i0 . . . (aam)im

is always abelian. To each branch point, there corresponds a permutation of all the sheets

of the form

h1 −→ h2 −→ . . . −→ hn −→ h1

This means that all the branch points are associated to the same permutation and the

monodromy group is cyclic.

In conclusion, a non-abelian permutation monodromy group implies the algebraic function

involves nesting of roots. S3 and S4 are actually non-abelian.

Lemma 3.13. If a multivalued function h(x) is representable by radicals, its permutation

monodromy group is solvable.

Proof. We will want to prove that given f(a) with solvable permutation monodromy groups,

the monodromy group of n
√
f(a) is also solvable.

Let F the monodromy group of f(a) and H be the monodromy group of n
√
f(a). For every

sheet of the Riemann surface for f(a), there are n-sheets in the Riemann surface for n
√
f(a).

If we go around a branchpoint of n
√
f(a), then the n sheets are moved to another set of the n

sets of sheets. As a result, the sets of sheets are preserved under the permutations of H. We

may define a permutation group of the packs as Γ of H. Γ is a surjective homomorphism and

its image is an isomorphism with F. The kernel (the elements which map to the identity) of

Γ is the permutations in H which transform each set of n sheets back onto itself. As a result,

if two elements are within the kernel, they are commutative. The kernel is abelian.
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We know that the quotient group of the H over the kernel of Γ is isomorphic to F. The

kernel is abelian, and F is solvable; therefore, H is solvable. �

Now, we may move onto the Abel-Ruffini Theorem which is where we will prove that a

polynomial with a degree of 5 or greater is unsolvable.

Theorem 3.14. Given n ≥ 5, the general algebraic equation of degree n

a0z
n + a1z

n−1 + . . .+ an = 0

is not solvable by radicals.

Proof. We only need to prove that a polynomial of degree 5 is unsolvable. We know that

the monodromy group will be S5 by using the previous methods for the quartic and cubic

polynomials. This cannot be represented by radicals due to the previous lemma. �

Now, we have seen an application of the monodromy group. In this case, it is a substitute

for the Galois groups in proving the unsolvability of the quintic. In fact, there is actually a

theorem which proves that the monodromy group and Galois group are identical.

There are a couple notable expansions for the concept of the monodromy group which

has not been talked about in this section. One example is the braid group. The way braid

groups would be viewed in this case is as particles dancing through time. Another notable

property which has not been mentioned in this paper is the topological construction of the

monodromy group through the actions of a fundamental group and a covering map between

topological spaces.
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4. Conclusion

From a simple theorem, mathematics about different tools used in the proof were expanded

upon. One main idea that is a great possibility for further research is the generalized idea of

normality. Overall, the goal of this paper was to learn about the different possibilities and

implications of Montel‘s Second Theorem and possibly open new doors for further exploration

of the concepts discussed.
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