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1 Introduction

In this paper, we study quaternions in depth in the context of both algebra and
analysis. Quaternions were initially introduced to the world of mathematics,
by William Rowan Hamilton in 1843. Though they are not studied quite as
often, their usefulness extends beyond just math. This paper will also explore
the extension of quaternions to the theory of special relativity. We will start by
establishing basic quaternion arithmetic. We will then introduce unit quater-
nions and interesting properties regarding rotations. The article [5] provides
foundation for the information on both quaternion arithmetic and rotations.
After these basic notions are established, we then proceed with developing a
quaternion definition of regular functions, and the properties that make a func-
tion regular ([4] provides further detail into regular functions for quaternions).
This allows us state and prove the Cauchy-Riemann-Fueter Equations, an ana-
log of the Cauchy-Riemann equations in complex analysis. We move forward
to prove two elemental proofs in analysis: Cauchy’s Theorem and his Integral
Formula. Much of the Cauchy generalizations for quaternions are thanks to the
Swiss mathematician Fueter. However, two papers, one by A. Sudbery and an-
other by C. Deavours [7] [3], provide very detailed explanations of such topics.
Finally, we move into a brief discussion of special relativity and the motivation
for using quaternions to derive the theory. More information can be found in
the papers of V. Ariel [1] [2].

2 Quaternion Arithmetic

Before defining the quaternion itself, we start with looking at the Q8 quaternion
group. The quaternion group is a non-abelian group with exactly eight elements:
{1,−1, i,−i, j,−j, k,−k}. The elements of the group behave in the following
manner:

i2 = j2 = k2 = −1, ij = k = −ji, jk − i = −kj, ki = j = −ik

With that being established, we can proceed with defining quaternions:
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Definition 2.1. A Quaternion is a number of the form q = w + xi + yj + zk
where w, x, y, z ∈ R and i, j, and k are imaginary numbers such such that i2 =
j2 = k2 = ijk = −1.

Addition and subtraction are termwise, and so is multiplication but the latter
is not commutative.

Definition 2.2. The Conjugate of a quaternion is given by q∗ = w−xi−yj−zk.

The conjugate of a product of quaternions is the product of their respective
conjugates, so we have (pq)∗ = p∗q∗. Furthermore, (p∗)∗ = p.

Definition 2.3. The Norm of a quaternion is given by N(q) = w2+x2+y2+z2.

It is a real-valued function where N(p)N(q) = N(pq) and N(q∗) = N(q).

Definition 2.4. The multiplicative inverse of a quaternion is given by q−1 =
q∗

N(q) where division of a quaternion by a scalar is done componentwise.

Unsurprisingly, the inverse satisfies (p−1)−1 = p and (pq)−1 = q−1p−1.
Next, we want a function that can select the real part of a quaternion; we’ll

denote it as W (q) and call it the selection function. It is possible to split a
quaternion into its real part an a 3D vector by writing it like q = w + v̂ where
v̂ = xi+ yj + zk. It can also be written as (x, y, z).

Now, we can represent multiplication through this form, using dot products
and cross products. We have

(w0 + v̂0) (w1 + v̂1) = (w0w1 − v̂0 · v̂1) + w0v̂1 + w1v̂0 + v̂0 × v̂1

Using this form, we can now understand when multiplication is commutative.
We see that it happens when the two 3D vectors are parallel. Thus, q0q1 = q1q0
if and only if v̂0 × v̂1 = 0.

Furthermore, as their name suggests, quaternions can be represented as 4D
vectors of the form (w, x, y, z). Let’s define their dot product.

Definition 2.5. The dot product of two quaternions is

q0 · q1 = w0w1 + x0x1 + y0y1 + z0z1 = W (q0q
∗
1)

3 Unit Quaternions

Definition 3.1. A unit quaternion is a quaternion q for which N(q) = 1.

The inverse of a unit quaternion and the product of unit quaternions are
also unit quaternions. We can also define them trigonometrically as such:

q = cos θ + û sin θ

where û is a 3D vector with length one. If we square it, we get −1.

2



With complex numbers, we have Euler’s Identity, and this can be generalized
to quaternions, if we use 3D vectors to represent the imaginary components. We
have

e(ûθ) = cos θ + û sin θ

where the left-hand side is derived from substituting ûθ into the power series
representation for ex (and using the fact that û2 = −1. This representation can
allow us to raise a quaternion to any power as such:

qt = (cos θ + û sin θ)t = e(ûtθ) = cos(tθ) + û sin(tθ)

Just as how we can define the exponential of a quaternion, we can define its
logarithm. We have that

log(q) = log(cos θ + û sin θ) = log(e(ûθ)) = ûθ

However, these are not quite as nice as we’d want them to be due to noncommu-
tativity. Some of the implications are that familiar identities are not true fro the
quaternions. For example, epeq may not be ep+q and log(pq) and log(p)+log(q)
are not necessarily equal.

Let us now explore what happens when we try to rotate a quaternion. We
want to perform an operation on a vector in R3, so we use unit quaternions.
Recall that a unit quaternion can be written as cos θ + û sin θ. Thus, we can
define the operator on a vector v ∈ R3 as such:

Lq(v) = qvq∗

=
(
q20 − ‖q‖2

)
v + 2(q · v)q + 2q0(q × v).

This operator is length preserving, since

‖Lq(v)‖ = ‖qvq∗‖
= |q| · ‖v‖ · |q∗|
= ‖v‖

It also preserves the direction of v. To show this, we let v = kq and have

qvq∗ = q(kq)q∗

=
(
q20 − ‖q‖2

)
(kq) + 2(q · kq)q + 2q0(q × kq)

= k
(
q20 + ‖q‖2

)
q

= kq

These properties make Lq a pretty good candidate for a rotation function about
q, and we will prove this soon.

Before proceeding with the theorem, we note that Lq is linear over R3 be-
cause for any two vectors v1,v2 ∈ R3 and any a1, a2 ∈ R we can easily show
that

Lq (a1v1 + a2v2) = a1Lq (v1) + a2Lq (v2) .

Now we move on to the theorem.
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Theorem 3.1. For any unit quaternion

q = q0 + q = cos
θ

2
+ u sin

θ

2

and for any vector v ∈ R3 the action of the operator

Lq(v) = qvq∗

on v is equivalent to a rotation of the vector through an angle θ about u as the
axis of rotation.

Proof. Given a vector v ∈ R3, we decompose it as v = a + n, where a is the
component along the vector q and n is the component normal to q. We’ll show
that under the operator Lq,a is invariant, while n is rotated about q through
an angle θ. Since the operator is linear, the image qvq∗ can be represented as a
rotation of v about q through an angle θ.

So we know that a is invariant under Lq. Let us now focus on the effect of
Lq on the orthogonal component n. We have

Lq(n) =
(
q20 − ‖q‖2

)
n+ 2(q · n)q + 2q0(q × n)

=
(
q20 − ‖q‖2

)
n+ 2q0(q × n)

=
(
q20 − ‖q‖2

)
n+ 2q0‖q‖(u× n)

where in the last step above we introduced u = q/‖q‖. Denote n⊥ = u×n. So
the last equation becomes

Lq(n) =
(
q20 − ‖q‖2

)
n+ 2q0‖q‖n⊥

Note that n⊥ and n have the same length:

‖n⊥‖ = ‖n× u‖ = ‖n‖ · ‖u‖ sin
π

2
= ‖n‖

Finally, we rewrite the equation into the form

Lq(n) =

(
cos2

θ

2
− sin2 θ

2

)
n+

(
2 cos

θ

2
sin

θ

2

)
n⊥

= cos θn+ sin θn⊥

Namely, the resulting vector is a rotation of n through an angle θ in the plane
defined by n and n⊥. This vector is clearly orthogonal to the rotation axis.

Note that this method of representing rotations is more elegant than other
representations, like orthogonal matrices, which contain 9 numbers. It is also
easy to derive the quaternion that corresponds to a given axis and angle (and
vice versa). Quaternions are often used in video game graphics, as they cleanly
represent rotating points in 3D space.
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4 Regular Quaternion Functions

In this section we want to develop the idea of an analytic function for quaternion
variables. In order to proceed, the definitions of quaternion derivatives and the
quaternion wedge product must be clearly established:

Definition 4.1. We can regard the differential of a function f : H → H as a
quaternion valued 1 form

df =
∂f

∂w
dt+

∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz

Definition 4.2. We consider a function f : H → H to be left quaternion-
differentiable if the following limit exists at q:

lim
h→0

[
h−1{f(q + h)− f(q)}

]
Additionally, we define the wedge product in the usual way: if θ is an r -form

and φ is an s -form,

θ ∧ φ (h1, . . . , hr+s) =
1

r!s!

∑
ρ

ε(ρ)θ
(
hρ(1), . . . , hρ(r)

)
φ
(
hρ(r+1), . . . , hρ(r+s)

)
where the sum is over all permutations ρ of r + s objects, and ε(ρ) is the sign
of ρ.

Knowing these definitions, we can look in to the following theorem to get a
better understanding of analytic functions in quaternions and their analogs to
complex analytic functions.

Theorem 4.1. Suppose for a connected open set U, we have a defined function
f , differentiable on the left. Then f has the following form on U , for some
a, b ∈ H

f(q) = a+ qb

Proof. We can start by equating the coefficients of the general quaternion -
dw, dx, dy, dz - providing us with the following:

df

dq
=
∂f

∂w
= i

∂f

∂x
= j

∂f

∂y
= k

∂f

∂z
(1)

Now, we can set q = v + jt where v = w + ix and t = y + iz, and allow
f(q) = g(v, t) + jh(v, t), where g and h are complex functions of two complex
variable v and t. This will allow us to separate equation (1) in to two sets of
complex equations:

∂g

∂w
= −i ∂g

∂x
=
∂h

∂y
= i

∂h

∂z
,

∂h

∂w
= i

∂h

∂x
=
∂g

∂y
= i

∂g

∂z
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When we represent these as complex derivatives, we can get the following:

∂g

∂v
=
∂h

∂t
=
∂h

∂v
=
∂g

∂t
= 0 (2)

∂g

∂v
=
∂h

∂t
(3)

∂h

∂v
=
∂g

∂t
(4)

Equation 2 shows that both h and g are in fact a complex analytic functions of v
and t. Therefore, by Hartog’s Extension Theorem [6], g and h have continuous
partial derivative of all orders. Hence, from equation (3), we have the following:

∂2g

∂v2
=

∂

∂v

(
∂h

∂w

)
=

∂

∂w

(
∂h

∂v

)
= 0

Now, suppose that U is a convex set. This allows us to deduce that g is linear in
t̄, h is linear in v and h is linear in v̄. This would provide us with the following:

g(v, t) = α+ βv + γt̄+ δ(vt̄)

h(v, t) = ε+ ζv + ηt+ θvt

where the Greek letters each represent a different complex constant. Referring
back to equations (3) and (4) we can see the following relations between the
constants:

β = η1 ζ = −γ1 δ = θ = 0.

Thus
f = g + jh = α+ jε+ (v + jw](β − jγ)

− a+ qb

where a = α+ je and b = β− jγi so f is of the stated form if U is convex. Now
to meet the actual requirements of the theorem of an open set U , we can use
connected chains of convex sets which overlap in pairs. If we compare the form
of the function f on the overlaps, it can be seen that f(q) = a + qb with the
same constants a, b throughout U .

Although this proof provide more insight into the properties of regular func-
tions for quaternions, such funcitons in general still do not satisfy Cauchy’s
theorem in the form ∫

dqf = 0

. Thus, at this point, we define regular functions for quaternions and move
to develop the Cauchy Riemann equations for quaternions (called the Cauchy-
Riemann-Fueter equations):
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Definition 4.3. A function f : H → H is left-regular at q ∈ H if it is real
differentiable at q and there exists a a quaternion f ′t(q) such that

d(dq ∧ dqf) = −2Dqf ′`(q)

It is right-regular if there exists a quaternion f tr(q) such that

d(fdq ∧ dq) = −2f ′r(q)Dq

Since the definitions of left and right regular functions are clearly equivalent,
we can only consider left regular functions for the sake of definiteness, which
we can call regular. Additionally, we will also consider the following and call
it the derivative of f at q : f ′(q) = f ′`(q). This will be done through the
Cauchy Riemann Fueter equations. However, before we can state and prove the
equations, we must define the Gamma map for quaternions:

Γf (df) =
∂f

∂w
+ i

∂f

∂x
+ j

∂f

y
+ k

∂f

∂z

Additionally, the following relation exists for the Gamma map, and is necessary
in proving the Cauchy-Riemann-Fueter equations. A proof/derivation of the
equation can be found in [7].

Γ`(α) = α(1) + iα(i) + jα(j) + kα(k) (5)

We can now state and prove the Caucy Riemann Fueter equations:

Theorem 4.2. (the Cauchy-Riemann-Fueter equations) A real-differentiable
function f is regular at q if and only if it satisfies the following:

Γr(dfq) = 0

With both such facts established, we can continue to the proof of the theo-
rem.

Proof. Suppose that f is regular at q. Then, from the definition of regular
functions, we have the following relation:

dq ∧ dq ∧ dfq = −2Ddf ′(q)

We now evaluate these trilinear functions using two different set of arguments.
The first is when we allow our arguments to be i, j, k and the second, is when
we allow our arguments to be 1, i, j:

(ij − ji)dfq(k) + (jk − kj)dfq(i) + (ki− ik)dfq(j) = −2f ′(q)

(ij − ji)dfq(1) = 2kf ′(q)

Comparing these two equations, we get the following final relationship:

f ′(q)− df0(1)− {idfq(i) + jdfq(j) + kdfq(k)} (6)

If we compare equations (5) and (6), we can see that Γr(dfq) = 0.
When looking at the converse, we can see that if Γr(dfq) = 0, we can define
f ′(q)−dfq(1). Evaluating this as we did above, will provide us with the following
relation: dq ∧ dq ∧ dfq = 2Ddf ′(q). Hence, the function f is regular at q.
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5 Quaternion Analysis

In this section we will establish the necessary terms and theorems, before stating
and proving both Cauchy’s Theorem and the Integral Formula in the context
of quaternions.To conduct this proof, we will start by proving these theorems
for parallelepipeds. To proceed, it is important that we establish the following
definition:

Definition 5.1. An oriented k -parallelepiped in H is a map C : Ik → H,
where Ik ⊂ Rk is the closed unit k cube, of the form

C (t1, . . . , tk) = q0 + t1h1 + . . .+ tkhk

Now, q0 ∈ H is called the original vertex of the parallelepiped, and h1, . . . , hk ∈
H are called its edge-vectors. A k -parallelepiped is non-degenerate if its edge-
vectors are linearly independent (over R ) . A non - degenerate 4 -parallelepiped
is positively oriented if v (h1, . . . , h4) > 0, negatively oriented if v (h1, . . . , h4) <
0.

Now, in order to study Cauchy’s theorem, it is important that we establish
the following foundation:

Theorem 5.1. A function f that is differentiable, is regular at q if and only if
the following is satisfied:

Dq ∧ dfq = 0

Proof.

Dq ∧ dfq(i, j, k, l) = Dq(i, j, k)dfq(l) Dq(j, k, l)dfq(i)
+Dq(k, l, i)dfq(j) Dq(l, i, j)dfq(k)
= dfq(l) + idfq(i) + jdfq(j) + kdfq(k)
= Γr (dfq)

Referring back to the Cauchy-Riemann-Fueter equations (Theorem 3.2), we can
see that the above vanishes if and only if f is regular at q.

With this foundation established, we can move toward stating and proving
Cauchy’s theorem and the integral formula for parallelepipeds.

Theorem 5.2 (Cauchy’s theorem for a parallelepiped). If f is regular at every
point of the 4-parallelepiped C, ∫

∂C

Dqf = 0

Proof. Suppose q0 and h1, . . . h4 are the original vertex and edge vectors of
C respectively. Then, for each subset S of {1, 2, 3, 4}, allow Cs to be the 4-
parallelepiped with edge-vectors 1

2h1, . . . ,
1
2h4 and original vertex

∑
i∈S

1
2Hi.

From this we can see the following:∫
∂C1

Dqf =
∑
S

∫
∂CS

Dqf
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This means that there must exists some Cs, we will call it C1, such that is
statisfies the following: ∣∣∣∣∫

∂C1

Dqf

∣∣∣∣ ≥ 1

16

∣∣∣∣∫
∂C

Dqf

∣∣∣∣
If we continue to further dissect C1 in the same manner, we get a sequence pf
4-pareallelepiped Cn with C ⊃ C1 ⊃ C2 ⊃ C3 ⊃ . . . and∣∣∣∣∫

∂Cn

Dqf

∣∣∣∣ ≥ 1

16n

∣∣∣∣∫
∂C

Dqf

∣∣∣∣ (7)

There must be a point q∞ ∈ ∩Cn, and qn → q∞ as n → ∞. Since f is real-
differentiable at q∞, we can write

f(q) = f (q∞) + α (q − q∞) + (q − q∞) r(q)

where α = dfq∞ ∈ F1, and r(q)→ 0 as q → q∞. Then if we define r (q∞) = 0, r
is a continuous function and so |r(q)| has a maximum value ρn on ∂Cn. Since
the Cn converge on q∞, ρn → 0 as n→∞. Now∫

∂Cn

Dqf(q) =

∫
Cn

d(Dq)f (q∞) = 0

and ∫
∂Cn

Dqα (q − q∞) =

∫
Cn

d(Dqα) = 16n(Dq ∧ α) (h1, . . . , h4) = 0

by theorem 5.1 , since f is regular at q∞. Thus∫
∂Cn

Dqf(q) =

∫
∂Cn

Dq (q − q∞) r(q)

Allow F : I3 → H to be one of the 3 -parallelepipeds that forms the faces Cn.
Then F ⊂ ∂Cn, and the edge-vectors of F are three of the four edge-vectors
of Cn, 2−nha, 2

−nhb, and 2−nhc. For q ∈ F
(
I3
)

we have |r(q)| < ρn and
|q − q∞| ≤ 2−n (|h1|+ . . .+ |h4|); hence∣∣∣∣∫

F

Dq (q − q∞) r(q)

∣∣∣∣ ≤ 8−n |Dq (ha, hb, hc)| 2−n (|h1|+ . . .+ |h4|) ρn

Suppose V is the largest |Dq (ha, hb, hc)| for all of a, b, c; since the integral over
∂Cn is the sum of 8 integrals over faces F ,∣∣∣∣∫

∂Cn

Dqf(q)

∣∣∣∣ ≤ 8.16−nV (|h1|+ . . .+ |h4|) ρn.

If we combine this with (7), we can see that∣∣∣∣∫
∂C

Dqf

∣∣∣∣ ≤ 8V (|h1|+ . . .+ |h4|) ρn.

Since ρn → 0 as n→∞, it follows that
∫
∂C

Dqf = 0
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Theorem 5.3 (Cauchy-Fueter integral formula for parallelepiped). If f is reg-
ular at every point of the positively oriented 4-parallelepiped C, and q0 is a point
in the interior of C,

f (q0) =
1

2π2

∫
∂C

(q − q0)
−1

|q − q0|2
Dqf(q)

Proof. Theorem 4.1 provides us with the following:

Dq ∧ dfq = −∂̄`f(q)v

where v = dw∧ dx∧ dy ∧ dz, for any differentiable function f. Similarly, we can
also show that

dfq ∧Dq = ∂rf(q)v

Therefore, if f and g are both differentiable,then the following is also true

d(gDqf) = d(gDq)f + gd(Dqf)

= dg ∧Dqf − gDq ∧ df
= {(∂rg) f + g (∂`f)} v

Now, suppose we allow g(q) = (q−q0)−1

|qq0|2
= q−q0
|q q0|4

= ∂r

(
1

qq02

)
; then g is

differentiable at all points except at q0. Its derivative is the following:

∂̄rg = ∆

(
1

|q − q0|2

)
= 0.

If f is a regular function, then we have ∂`f = 0, hence

d

[
(q − q0)

−1

|q − q0|2
Dqf

]
= 0

We can now follow the argument of theorem 4.2 to show the following:∫
∂C′

(q − q0)
−1

|q − q0|2
Dqf(q) = 0

where C ′ is any 4 -parallelepiped that does not contain q0. If we dissect the
given 4-parallelepiped C into 81 4-parallelepipeds with edges parallel to those
of C, we can conclude that∫

∂C

(q − q0)
−1

|q − q0|2
Dqf(q) =

∫
∂C0

(q − q0)
−1

|q − q0|2
Dqf(q),

where C0 is any 4-parallelepiped containing q0 that lies in the interior of C and
has edges parallel to those of C. Now, take C0 to have edge-vectors δh1, . . . , δh4,
where δ is a positive real number and h1, . . . , h4 are the edgevectors of C,
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and allow q0 to be at the centre of C0 (so that the original vertex of C0 is
q0 − 1

2δh1 − . . .−
1
2δh4

)
; then

min
q∈∂C0

|q − q0| = min
1≤a,b,c≤4

∣∣∣∣∣ v (δh1, . . . , δh4)

Dq
(
1
2δha,

1
2δhb,

1
2δhc

) ∣∣∣∣∣ = Wδ

where W depends only on h1, . . . , h4. Because f is continuous at q0, we can
choose δ so that q ∈ C0

(
I4
)
⇒ |f(q)− f (q0)| < ε for any given ε > 0; hence∣∣∣∣∣

∫
∂C0

(q − q0)
−1

|q − q0|2
Dq {f(q)− f (q0)}

∣∣∣∣∣ ≤ 8V

W 3
ε (8)

where, as in theorem 4.2 .

V = max
1≤a,b,c≤4

|Dq (ha, hb, hc)|

Since the 3 -form (q−q0)1Dq
|q−q0|2

is continuously differentiable and closed in H\ {q0},
based on Stokes’s Theorem, we have∫

∂C0

(q − q0)
−1
Dq

|q − q0|2
=

∫
S

(q − q0)
−1
Dq

|q − q0|2

where S is the 3 -sphere |q − q0| = 1, oriented so that Dq is in the direction of
the outward normal to S. Working in spherical coordinates (r, θ, φ, ψ), in which

q − q0 = r
(
cos θ + i sin θ cosφ+ j sin θ sinφe−iψ

)
we find that on S, i.e. when r = 1,

Dq = (q − q0) sin2 θ sinφdθ ∧ dφ ∧ dψ
= (q − q0) dS

where dS is the usual Euclidean volume element on a 3 -sphere. Hence∫
∂C0

(q − q0)
−1
Dq

|q − q0|2
=

∫
S

dS = 2π2

Equation (9) then becomes the following:∣∣∣∣∣
∫
∂C0

(q − q0)
1

|q − q0|2
Dqf(q)− 2π2f (q0)

∣∣∣∣∣ ≤ 8V

W 3
ε

However, because we selected ε to be arbitrary, it follows that∫
∂C

(q − q0)
−1

|q − q0|2
Dqf(q) =

∫
∂C

(q − q0)
−1

|q − q0|2
Dqf(q) = 2π2f (q0) .
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6 Special Relativity

One of the most intriguing applications of quaternions is a formulation of spe-
cial relativity. The inventor of quaternions, Hamilton, had hoped that quater-
nions would be used to formulate physics. Over 60 years later, Einstein came
up with special relativity, but used Minkowski’s spacetime, which involved 4-
vectors rather than quaternions. However, the quaternion formulation has a
few advantages over this. Real quaternions form a division algebra and have
positive quadratic norms, allowing us to use the same framework for rotations
and translations of particles. Furthermore, multiplying two quaternions gives
us a quaternion, as we saw in the beginning of this paper, but the same cannot
be said for 4-vectors. The main reason why quaternions are a great candidate
for formulating special relativity is that they can be described as a scalar plus
a 3D vector, just like 4-vectors. This is a natural way to represent spacetime,
as the vector corresponds to space, and the scalar corresponds to time.

Let us now describe the equivalence of quaternion time and space-time. We
can define a quaternion time domain as a scalar clock at the origin of a 3D
coordinate system, writing t = t0 + ~x

c where t0 is the scalar clock, ~x is a space
coordinate, and c is the speed of light. Dividing ~x by c gives us the time of light
propagation. Now, if we place an observer at the origin, which is also where the
clock is located. This means that the observer can precisely measure the scalar
time of the clock at any given instant. Furthermore, if we had two simultaneous
but different scalar clock signals, this observer could measure the time interval
between them. Now suppose that the observer is at a quaternion location t
and assume they are wearing a watch that has been perfectly synchronized
with the clock. Orient the vector ~x such that it points from the clock towards
the observer. Since the light from the clock will take some time to reach the
observer, they will see different times on the watch and the clock. Since we have
two simultaneous clock signals that are both scalar time images, the observer
can calculate the quaternion time interval as such

δt = t− t0 = t0 +
~x

c
− t0 =

~x

c

, which is simply the time vector for light propagation. However, we want a time
interval that doesn’t involve direction. We want time to be a scalar quantity,
that only depends on distance between the clock and observer. Multiplying by
the conjugate of a quaternion can do just that. Thus, we have

δt = t− t0 =
√
δtδt∗ =

√
x2

c2
=
x

c
.

Note that if we switch the positions of the clock and the observer, we will still
get x

c as squared scalar quantities are always positive. Also note that the time
interval can be used to calculate distance; x = cδt. Furthermore, if we wanted
to calculate the time interval between two different signals from the origin, it
would just be the difference between the scalar times, as there would be no light
propagation delay.
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What if the observer is moving (rotation or translation)? Then in the clock
time interval δt0 = t02 − t01, the observer moves by δ~x = x2 − x1. We can
express the initial and final time values with quaternions:

t1 = t01 +
~x1
c

t2 = t02 +
~x2
c

And from this, we can calculate the quaternion time interval:

δt = t2 − t1 = t02 − t01 +
~x2
c
− ~x1

c
= δt0 +

~δx

c
.

If we define the average velocity of the observing during our quaternion time
interval as a quaternion v = δ~x

δt , then we can express our time interval through
the recursive formula:

δt = δt0 +
~δx

c
= δt0 +

vδt

c
.

Similarly, if the clock is moving, our interval is

δt = δt0 −
~δx

c
= δt0 −

vδt

c
.

Like when the observer was stationary, we want our answer to only depend
on the magnitude of the vector, so we again multiply by the conjugate, giving

δt2 = δtδt = δt20 +
δx2

c2
= δt20 +

v2δt2

c2
.

Taking the square root gives us the Lorentz transformation for the moving time
interval between both reference frames.

δt =
δt0√
1− v2

c2

.

This result is also present in traditional special relativity, but we have just de-
rived it using the properties of quaternions. We’ve shown that the time intervals
and measured time depend only on location and relative movement between the
clock and observer, and that they are the same in both reference frames (clock
and observer). We see that real quaternions represent physical quantities, and
their absolute values correspond to the Lorentz transformations. See [1] [2] for
an application of this formulation to mass, energy, and their Lorentz relations.
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