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Abstract. The subject of Modular Forms is a rich sub-area of complex analysis that re-
veals powerful and surprising results in Number Theory. In this paper, we will introduce
Modular Forms as holomorphic functions on the upper half of the complex plane H ⊂ C,
exhibiting specific regularity conditions (of "modularity") and some asymptotic behavior at
infinity in the imaginary direction.

The main angle of the paper is to illustrate and enjoy how Abstract Algebra (e.g., group
theory on matrices), Linear Algebra (vector spaces and dimensions), Complex Analysis (el-
liptic functions and lattices on C, Eisenstein series and Fourier analysis, holomorphicity,
summation techniques and convergence of series) come together to deliver powerful results
in Number Theory, such as relationships between sums of divisors of integers, and the Four
Square Theorem which counts the ways in which any integer can be written as a sum of
four squares.

The paper assumes sufficient background in Complex Analysis and Holomorphic and Elliptic
Functions, as it is the capstone of a course on these topics, but we have attempted to make
it self-contained when it comes to definitions and results from other domains, notably from
Abstract and Linear Algebra. This has led to significant sections on necessary preliminaries.

We will also discuss examples and benefits of broadening the topic to include Mock Modular
Forms, and will end with an introduction to Hecke Operators and discuss how they led to
proofs of some conjectures posited by Ramanujan.

1. Historical Background

By the late nineteenth century, the field of Number Theory had already evolved to make
advances by using non-elementary techniques, i.e., by leveraging other fields of mathematics
including real analysis (e.g., Dirichlet's use of the pigeonhole principle) and the use of infinite
sums and products (e.g., by Euler then Gauss).

By that time, the use of Complex Analysis towards Number Theory was also well underway,
such as with the work of Klein and Jacoby on Elliptic Curves, and of course Riemann's work
and insights in leveraging the ζ function that now bears his name and the corresponding
Riemann Hypothesis about zeros of the ζ function and the distribution of the primes.

The field of Modular Functions had also been developed by that late nineteenth century
timeframe, although it was mostly aimed at achieving results in Hyperbolic Geometry. A
seminal period appeared in the early twentieth century regarding Modular Forms strongly
impacting Number Theory, when Ramanujan had the idea of expressing Modular Forms
through their corresponding q-series, also known as q-expansions, and more formally as
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Fourier Series representation.

This intuition led him to formulate three conjectures around his so-called ∆ function, subse-
quently designated as Ramanujan's ∆ function. These conjectures led to active work for the
rest of the twentieth century, including Mordell's proof of two conjectures, then Hecke's de-
velopment of his framework of linear operators on Modular Forms, culminating with Deligne's
proof of the third conjecture as part of proving the Weil conjecture in the 1970's.

The impact of Modular Forms has continued through the twentieth century, with a high
point being Andrew Wiles' 1994 proof of Fermat's Last Theorem via his proof of the Shimu-
ra-Taniyama-Wiles Modularity Theorem which states that every elliptic curve corresponds
to a Modular Form. The juxtaposition of the Wiles result with a previous result by Frey
(1986) that a solution of Fermat's equation would lead to an elliptic curve, and with a
subsequent result by Ribet (1986) that Frey curves do not correspond to Modular Forms,
achieved the proof by contradiction that solutions to Fermat's Last Equation could not exist.

Exciting work continues well into the twenty-first century, notably with the connections
between Mock Modular Forms (a relaxed and more inclusive class of functions) and Finite
Simple Groups (with no non-trivial quotient groups). Important results are revealed by the
Representation Theory Moonshine approach to quantifying the order (i.e., cardinality) of
Sporadic Groups (Finite Simple Groups that are neither cyclic nor alternating nor Lie), such
as Mathieu Groups and The Monster.

2. Abstract Algebra Preliminaries

As we will see when we introduce Modular Forms, a key condition to be satisfied by these
is a certain form of invariance in the face of fractional linear transformations derived from a
matrix group. In order to make this document self-contained, we introduce in this section the
main definitions and results from Group Theory that are needed to understand the definition
of modular forms. In particular, we will lead towards concepts of a Quotient Group, the
Index of a Subgroup, and Groups Actions. Lastly, since we mentioned how modular forms
impacted research on Finite Simple Groups in the Historical Background section, we will
cover that topic as well.

Definition 2.1 (Group). We recall that a group (G, ·) is defined as a non-empty set G
endowed with a binary operation denoted by "·" (a dot symbol): G×G → G such that

• Closure: f, g ∈ G =⇒ f · g ∈ G.
• Associativity: ∀f, g, h ∈ G, we have (f · g) · h = f · (g · h).
• Identity: there exists and element e ∈ G acting as the neutral identity element for

the · operation, i.e., e · g = g · e = g, ∀g ∈ G.
• Invertibility: ∀g ∈ G, there exists an inverse element denoted as g−1 ∈ G such that
g−1 · g = g · g−1 = e.

Remark 2.2. It is frequent to denote the binary operation by "∗" or "+", and it is also frequent
to omit the explicit presence of the operator symbol altogether, and to denote f · g simply
by fg when the context is clear enough. It is also frequent to refer to the operation as
multiplying, when the context is clear enough.
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Theorem 2.3 (Uniqueness of Inverse). If x, y ∈ G and x · y = e then y · x = e. The left
inverse and right inverse are necessarily the same. In addition, there is a unique inverse for
each element.

Proof. If x · y = e, then we left-multiply by y and we have y · (x · y) = y · e = y. Now we
left-multiply by y−1 and we have y−1 · (y · (x · y)) = y−1 · y = e and we now now associativity
on the left-hand side to get y−1 · (y · (x · y)) = (y−1 · y) · (x · y) = e · (x · y) = x · y. We have
therefore shown that x · y = e =⇒ y · x = e, so the left inverse and the right inverse are
necessarily the same.
To complete the uniqueness proof, we show uniqueness of the inverse on a given side, e.g.,
the left side, and we are done. If x · y = x · z = e, we left-multiply by x−1 and we have
x−1 · (x · y) = x−1(x · z), i.e., (x−1 · x) · y = (x−1 · x) · z, i.e., e · y = e · z, i.e., y = z. □
Theorem 2.4 (Inverse of Product). ∀x, y ∈ G, (x · y)−1 = y−1 · x−1.

Proof. We multiply and we have the following by repeatedly using associativity of the oper-
ation

(x · y)(y−1 · x−1) = [(x · y) · y−1] · x−1 = [x · (y · y−1] · x−1 = (x · e) · x−1 = x · x−1 = e.

By virtue of Theorem 2.3, it is enough to show on one side that two elements are inverses,
for them to be each other's unique inverse. □
Theorem 2.5 (Injection Induced by Operation). Let (G, ·) be a group and let S ⊆ G
be a subset of G. Let g be any element of G. Then the function

S → G

fg(s) = g · s
is injective. It is therefore bijective when its co-domain is restricted to its image (which we
will define below as a coset). The same is true for the function defined by right-multiplying
by g, i.e., f ∗

g (s) = s · g.

Proof. If fg(s) = fg(t) for two elements s, t ∈ S, then g · s = g · t. We multiply both sides by
g−1 which is guaranteed to be an element in G, and we get by invoking associativity of the
group operation

g−1 · (g · s) = g−1 · (g · t) =⇒ (g−1 · g) · s = (g−1 · g) · t =⇒ e · s = e · t =⇒ s = t.

The proof is identical for the function f ∗
g . □

Corollary 2.6. If we designate by g · S the image set of S by fg, i.e., the set {x ∈ G : x =
g · s, for some s ∈ S}, then fg is a bijection from S to g · S. Similarly, if we designate by
S · g the image set of S by f ∗

g , i.e., the set {x ∈ G : x = s · g, for some s ∈ S}, then f ∗
g is a

bijection from S to S · g.

Proof. We have already shown that fg is injective, and it is clear that it is surjective by
construction of the co-domain as its image. It is therefore a bijection. A similar reasoning
on f ∗

g concludes that it is bijective. □
Corollary 2.7. For any subset S of G, and any element g of G, we have

|S| = |g · S| = |S · g|,
where we are referring to cardinalities of sets.

Proof. This is a direct consequence of having fg as a bijection from S to g ·S and a bijection
from S to S · g. □
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Definition 2.8 (Conjugates). We say that two elements a, b ∈ G are conjugates if there
exists an element g in G such that

b = g−1 · a · g.

Theorem 2.9 (Conjugacy Equivalence Relation). Conjugacy between elements defines
an equivalence relation, and conjugate elements are within equivalence classes.

Proof. We let the relation xRy be defined as xRy ⇐⇒ ∃ g ∈ G : y = g−1 · x · g. We prove
that R is an equivalence relation on G.

• Reflexive: ∀ x ∈ G, x = e−1 · x · e so we have established that xRx.
• Symmetric: If xRy, then y = g−1 · x · g for some g ∈ G. We left-multiply by g and

right-multiply by g−1 and with associativity, we get

xRy ⇐⇒ y = g−1 · x · g ⇐⇒ g · y · g−1 = x ⇐⇒
!
g−1

"−1 · y · (g−1) = x ⇐⇒ yRx.

• Transitive: If xRy and yRz, then let y = g−1 · x · g and z = h−1 · y · h for some
h, g ∈ G. We then have

z = h−1 · y · h = h−1 · (g−1 · x · g) · h = (h−1 · g−1) · x · (g · h) = (g · h)−1 · x(g · h) =⇒ xRz,

where we have used associativity as well as Theorem 2.4.
□

Notation. Given a subset S of G and an element g of G, we denote by
g−1 · S · g = {g−1 · x · g : x ∈ S},

the set of the results of conjugation of all elements of S by the element g.

Definition 2.10 (Order of an Element). The order of an element g ∈ G is the smallest
m ∈ N such that gm = g · g · . . . · g = e.

Definition 2.11 (Abelian Group). An Abelian group, also known as a Commutative
Group is a group in which the defining "·" binary operation is commutative, i.e.

∀f, g ∈ G, f · g = g · f.

Example. The integers with the addition operation form an Abelian group (Z,+).

Example. The Rubik's cube with the operation of composition of actions is a group. However,
it is not an Abelian group as switching the order in which two actions are performed generally
leads to different results.

Definition 2.12 (Subgroup). A non-empty subset H ⊆ G of a group G is called a subgroup
of G if the defining "·" binary operation defines a group (H, .) when restricted to H ×H. In
particular, the result of operating on two members of the subgroup remains in the subgroup,
the neutral element is in the subgroup, and the inverse of each element in the subgroup is
also in the subgroup.

Definition 2.13 (Proper Subgroup). A subgroup H of a group G is proper if H ⊊ G.

Example. The set of even integers with the addition operation (2Z,+) forms a proper sub-
group of (Z,+).
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Definition 2.14 (Left Cosets). Given a subgroup H of a group G, and an element g ∈ G,
the left coset g ·H is

g ·H = {g · h : h ∈ H},
i.e., it is the set of the results of the operation on g with all elements of H, with g being in
the left position of the binary operation.

Definition 2.15 (Right Cosets). Given a subgroup H of a group G, and an element g ∈ G,
the right coset H · g is

H · g = {h · g : h ∈ H},
i.e., it is the set of the results of the operation on all elements of H with g, with g being in
the right position of the binary operation.

Remark 2.16. Clearly when (G, ·) is Abelian, g ·H = H · g, i.e., the left coset and the right
coset are the same set for a given element g and a given subgroup H.

Remark 2.17. We note that g ∈ g · H, ∀g ∈ G because e ∈ H due to the fact that H is a
subgroup. Therefore, g · e ∈ g · H and since g · e = g, this implies that g ∈ g · H. It is
similarly true that g ∈ H · g, ∀g ∈ G.

Lemma 2.18. We have x ∈ g ·H if and only if g ∈ x ·H if and only if g−1 · x ∈ H if and
only if x−1 · g ∈ H.

Proof. x ∈ g · H ⇐⇒ ∃h ∈ H such that x = gh. Left-multiplying both sides by g−1

maintains the equivalence with g−1 · x = g−1 · (g · h) = (g−1 · g)h = e · h = h ∈ H. Reversing
the roles of x and g shows the rest of the equivalence being true. □
Corollary 2.19. We note that by Lemma 2.18, a given coset may very well have several
representatives and that it can be equivalently referred to using any of its representatives.

Theorem 2.20 (Cosets are Equivalence Classes). Given a subgroup H, the relation
xRy ⇐⇒ x−1 · y ∈ H is an equivalence relation over G. Similarly, the relation xR′y ⇐⇒
x · y−1 ∈ H is an equivalence relation.

Proof. We prove that the relation R is reflexive, symmetric, and transitive.
• Reflexivity: for any x ∈ G, xRx ⇐⇒ x−1 · x ∈ H ⇐⇒ e ∈ H which is true since
H is a subgroup.

• Symmetry: for any x, y ∈ G, xRy ⇐⇒ x−1 · y ∈ H =⇒ (x−1 · y)−1 ∈ H ⇐⇒
y−1 ·x ∈ H ⇐⇒ yRx, where we have used Theorem 2.4 for the inverse of a product.

• Transitivity: for any x, y, z ∈ G, if xRy and yRz, then by definition x−1 · y ∈ H and
y−1·z ∈ H. Since H is a subgroup, the product of two of its elements is also an element
of H, so that (x−1 ·y) · (y−1 ·z) = ((x−1 ·y) ·y−1) ·z = (x−1 · (y ·y−1)) ·z = x−1 ·z ∈ H,
which shows that xRz.

The proof for the right-coset equivalence relation is identical and we omit detailing it. □
Corollary 2.21 (Cosets Partition a Group). Since every equivalence relation on a set
induces a partition of the set into equivalence classes, this is the case with left cosets of a
subgroup H. It is also the case with right cosets of a subgroup H.

Theorem 2.22 (Conjugation of Subgroup). If H is a subgroup of G and g ∈ G, then
g−1 ·H · g is also a subgroup.
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Proof. We show that the identity is in g−1 ·H ·g, that it is closed under the group operation,
and that the inverse of an element in g−1 ·H · g is also in g−1 ·H · g.

• Identity: since e ∈ H, and therefore g−1 · e ·g ∈ g−1 ·H ·g, and g−1 · e ·g = g−1 ·g = e,
we have established that e ∈ g−1 ·H · g.

• Closure: let x1, x2 ∈ g−1 ·H · g, then there exist h1, h2 ∈ H such that x1 = g−1 · h1 · g
and x2 = g−1 · h2 · g. We write

x1 · x2 = (g−1 · h1 · g) · (g−1 · h2 · g) = g−1 · (h1 · h2) · g,
and h1 · h2 ∈ H because H is a subgroup.

• Inverse: let x = g−1 · h · g ∈ g−1 · H · g. Then by Theorem 2.4, x−1 = g−1 · h−1 · g,
and h−1 ∈ H because H is a subgroup. Therefore, x−1 ∈ g−1 ·H · g.

□

Theorem 2.23 (Cosets and Conjugate Subgroups). Given a subgroup H of G, and an
element g of G, the right coset H · g of the subgroup H with respect to the element g is the
left coset g · (g−1 ·H · g) of the conjugate subgroup g−1 ·H · g with respect to the element g,
i.e.,

H · g = g · (g−1 ·H · g).

Proof. We have

x ∈ H · g ⇐⇒ ∃h ∈ H such that x = h · g
⇐⇒ ∃h ∈ H such that x = (g · g−1) · h · g
⇐⇒ ∃h ∈ H such that x = g · (g−1 · h · g)
⇐⇒ ∃h′ = (g−1 · h · g) ∈ g−1 ·H · g such that x = g · h′

⇐⇒ x ∈ g · (g−1 ·H · g)
□

Remark 2.24. We note that in the general case the right cosets of a subgroup H are distinct
from its left cosets. However, by Corollary 2.7, the cardinality of all cosets (right or left) of
a given subgroup is the same as the cardinality of that subgroup, and by Theorem 2.23, the
number of left cosets of a subgroup is equal to the number of its right cosets.

Definition 2.25 (Normal Subgroup). A subgroup N of a group G is a normal subgroup
if and only if for any element g ∈ G, the corresponding left and the right cosets are equal,
i.e., g · N = N · g. Equivalently, this means that a normal subgroup is its own conjugate
subgroup, i.e.,

∀ g ∈ G, n ∈ N, we have g−1 · n · g ∈ N.

Remark 2.26. We note that the condition for a subgroup being normal does not imply that
an element in that subgroup commutes with all elements of the group G (see the definition
for center). It simply implies that if x ∈ g · N = g · n1 with n1 ∈ N , then x ∈ N · g, i.e.,
there exists some n2 ∈ N such that x = n2 · g but we may have n1 ∕= n2.

Definition 2.27 (Center of a Group). The center of a group G, denoted by Z(G), is the
set of elements of G that commute with all elements of G, i.e.,

Z(G) = {z ∈ G | ∀ g ∈ G, g · z = z · g}.
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Theorem 2.28 (The Center is a Subgroup). The center Z(G) of a group G is a subgroup
of G.

Proof. • Identity: the identity element commutes with all elements of a group because
∀ g ∈ G, e · g = g · e = g, so it is in the center.

• Closure: if c1, c2 ∈ Z(G), then for any g ∈ G, we have
(c1 · c2) · g = c1 · (c2 · g) = c1 · (g · c2) = (c1 · g) · c2 = (g · c1) · c2 = g · (c1 · c2),
which shows that c1 · c2 ∈ Z(G).

• Inverse: let c ∈ Z(G), we want to show that c−1 ∈ G. For any g ∈ G, we have after
left-multiplying by c−1, then right-multiplying by c−1:
c · g = g · c =⇒ c−1 · c · g = c−1 · g · c =⇒ g · c−1 = c−1 · g · c · c−1 = c−1 · g,
which shows that c−1 also commutes with all elements g of G, thus c−1 ∈ Z(G).

□
Corollary 2.29 (The Center is a Normal Subgroup). The center Z(G) of a group G
is a normal subgroup of G, i.e., it is its own conjugate subgroup, and its left coset is equal
to its right coset with respect to any element of G.

Proof. This is clear since elements of Z(G) commute with all elements of G, then the left-coset
and the right-coset of Z(G) are the same with respect to any element g ∈ G. The condition
for the center is stronger than the condition for a normal subgroup. □
Definition 2.30 (Quotient Group). For a normal subgroup N of a group G, we define
the set of all left cosets of N (which are the same as its right cosets, because N is normal),

G/N = {g ·N : g ∈ G}.
We define the binary operation on elements of G/N as follows:

(g ·N) ∗ (g′ ·N) = (g · g′) ·N.

Theorem 2.31. (G/N, ∗) is a group.

Proof. We first show that the binary operation is well defined and does not depend on the
choice of representative elements of the cosets. Indeed, if g ·N = h ·N and g′ ·N = h′ ·N ,
then we have (omitting the dot notation for convenience)
(gg′)N = g(g′N) = g(h′N) = g(Nh′) = (gN)h′ = (hN)h′ = h(Nh′) = h(h′N) = (hh′)N.

We remark that we used repeatedly the fact that N was a normal subgroup in the trans-
formations above, notably when switching freely between a left coset and a right coset of N
with respect with the same element of G.

We then note that associativity of the ∗ operation on G/N follows directly from the
associativity of the · operation on G.

The identity element is the coset e ·N = N , as we can easily see that
N ∗ (g ·N) = (e ·N) ∗ (g ·N) = (e · g) ·N = g ·N, ∀ g ∈ G.

And the inverse with respect to ∗ of a coset gN is the coset g−1N , as we have by definition
of the ∗ operation

(g−1 ·N) ∗ (g ·N) = (g−1 · g) ·N = e ·N = N,

with N being the identity element. This completes the proof that (G/N, ∗) is a group, thus
justifying its designation as a quotient group. □
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Remark 2.32. Given that N is normal, it is clear that we could have defined the quotient
group G/N by way of right cosets, those being the same as the left cosets of N .
Remark 2.33. We note (but don't prove) that there is a converse statement to Claim 2.31,
which states that if the operation ∗ above is well defined on a subgroup N , then N must be
a normal subgroup.
Definition 2.34 (Index of Subgroup). As noted in Remark 2.24, every left or right coset
of a subgroup H has the same number of elements (or cardinality, if infinite). Furthermore,
the number of left cosets of H is equal to the number of right cosets of H. This number is
the index of the subgroup H in G and is denoted by [G : H].
Remark 2.35. When a group is finite, then Lagrange's Theorem lets us relate the index of a
subgroup H in G to the cardinalities of H and G, via the relation

|G| = [G : H]|H|.
Definition 2.36 (Finite Index Subgroup). A finite index subgroup is a subgroup whose
index is finite. The number of left cosets or of right cosets of such a subgroup is finite. We
will refer to this concept when discussing certain matrix subgroups later on in the paper.

As we made reference to Finite Simple Groups in the Historical Background section of
this paper, we provide the definition of simple groups.
Definition 2.37 (Simple Group). A non-trivial group is said to be a simple group if its
only normal subgroups are the trivial subgroup ({e}, ·),where e is the identity element, and
the group itself.
Definition 2.38 (Finite Simple Group). A finite simple group is a simple group that has
finite cardinality, i.e., it has no non-trivial normal subgroups and has finite order (which is
a synonym for the cardinality of a group).
Remark 2.39. A non-simple group can be broken down into a proper normal subgroup and
the corresponding quotient group. This can be recursively pursued until arriving (in the case
of a finite group) at uniquely determined simple groups, by the Jordan-Hölder Theorem.

Not so for a simple group as it has no proper normal subgroups, thus cannot be broken
down into normal subgroup and corresponding quotient group substructures.
Definition 2.40 (Subgroup Generated by Set). Given a group (G, ·) and S ⊆ G a
subset of G, the Subgroup Generated by S , denoted as 〈S〉 is the subgroup of all elements
of G that can be expressed as the finite product of elements of S and their inverses.
Remark 2.41. This is clearly a subgroup as can be derived from its definition.
Definition 2.42 (Generator Set). We say that a subset S ⊆ G is a Generator Set of the
group G if the subgroup 〈S〉 is equal to G, i.e., every element in G can be expressed as a
product of elements of S and their inverses. We also say that G is generated by S, and write

〈S〉 = G.

Example. The additive group of integers (Z,+) is generated by the one-element set {1} as
every integer can be expressed as a finite sum of the element 1 or its inverse −1. Therefore,
we have

〈{1}〉 = (Z,+).
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Definition 2.43 (Presentation of a Group). A Presentation of a Group is a method of
specifying a group via a generator set S such that 〈S〉 = G and a set of relations R between
the elements of the generator set. We then say that G has a presentation

G = 〈S |R〉.

Example. The multiplicative group (Z/5Z)× of integers modulo 5 is generated by the element
2 as 22 ≡ 4 (mod 5), 23 ≡ 3 (mod 5), and 24 ≡ 1 (mod 5), and this element is characterized
by its fourth power being equal to the identity element of the group. We therefore have

(Z/5Z)× = 〈{2} | {24 = 1}〉.

Example. The Dihedral Group D4 is the group of symmetries on the square. It is called the
dihedral group of order 8 (because it has 8 elements). It consists of all possible 90◦ rotations
and reflections about the horizontal or vertical or diagonal axes of symmetry of the square,
with the operation of composition of such transformations. The group D4 can be generated
by any one 90◦ rotation and any one reflection about a symmetry axis. So if we designate a
counter-clockwise 90◦ rotation as the element a, and a reflection about the vertical axis of
symmetry as b, then we have the generator set

〈S〉 = 〈{a, b}〉 = D4.

Furthermore, and if designate the identity operation as e, then the elements a and b are
characterized by the relations a4 = e, b2 = e, and a · b = bcȧ−1, so that the set of relations is

R = {a4 = b2 = e, a · b = b · a−1},
and therefore a presentation of the group D4 is the following

D4 = 〈{a, b} | {a4 = b2 = e, a · b = b · a−1}〉.

Definition 2.44 (Finitely Generated / Related / Presented). If a group can be gener-
ated by a finite subset S, then it is said to be finitely generated. If the set of relations among
the elements of the generating set is finite, then the group is said to be finitely related. If
both conditions are met, then the group is said to be finitely presented.

2.1. Functions on Groups.

Definition 2.45 (Group Homomorphism). A group homomorphism is a function from
a group to another that preserves the operations of the groups, i.e., for x, y ∈ G:

f : (G, ·) → (G′, ∗)
f(x · y) = f(x) ∗ f(y)

Example. The structure (R,+) is a group and the structure (R+ \ {0}, ·) is another group,
and the exponential function

f : (R,+) → (R+ \ {0}, ·)
f(x) = ex

is a group homomorphism between the two groups above, because we have
f(x+ y) = ex+y = ex · ey = f(x) · f(y).

Definition 2.46 (Group Isomorphism). A group isomorphism is a bijective group homo-
morphism between two groups.
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Definition 2.47 (Group Automorphism). A group automorphism is an isomorphism
from a group onto itself.

Definition 2.48 (Kernel). Given a homomorphism f : G → G′ from a group to another,
we define the kernel of the homomorphism as the subset of elements of G whose image by f
is the identity element of G′, i.e.,

ker(f) = {g ∈ G : f(g) = eG′} ⊆ G.

Definition 2.49 (Image). Given a homomorphism f : G → G′ from a group to another,
we define the image of the homomorphism as the subset of elements of G′ that are images
by f of some elements of G, i.e.,

im(f) = {g′ ∈ G′ : ∃ g ∈ G such thatf(g) = g′} ⊆ G′.

Theorem 2.50 (Group of Automorphisms on a Group). Given a group G, the set of
automorphisms on G, with the operation of function composition, is a group.

Proof. We prove that all the conditions of a group structure are met.
• Identity: the identity function on a group is an automorphism of that group, and is

the identity element for the function composition operation.
• Associativity: function composition is associative in general, so it is so for automor-

phisms on a group.
• Closure: if f1 and f2 are two automorphisms on G, then they are bijective from G to
G, and their composition is also a bijection from G to G, as this is a general result.
We now examine the behavior of their composition with respect to homomorphic
behavior. For any two elements x, y ∈ G, we have

(f2 ◦ f1)(xy) = f2[f1(xy)] = f2[f1(x)f1(y)] = f2(f1(x))f2(f1(y)) = (f2 ◦ f1)(x) · (f2 ◦ f1)(y).
• Inverse: if f is an automorphism on G, then f−1 is a bijection from G to G because

this is a general result for bijections. We now show that the inverse satisfies the
homomorphism condition. For any x, y ∈ G, there exist u, v ∈ G, such that x = f(u)
and y = f(v) because the bijection f is a surjection. We then have

f−1(x · y) = f−1[f(u) · f(v)] = f−1[f(u · v)] = u · v = f−1(x) · f−1(y),

where we have used the homomorphic property of f in the second equality above.
□

Definition 2.51 (Isomorphic Groups). Two groups (G, ·) and (G′, ∗) are said to be
isomorphic if there exists an isomorphism from one to the other (and thus vice-versa). We
denote such isomorphic groups as

(G, ·) ∼= (G′, ∗)

Example. The exponential function is a group isomorphism from (R,+) to (R+ \ {0}, ·), as
it is a homomorphism and is also bijective.

Theorem 2.52 (Properties of Isomorphisms). We state, and they are straightforward
to prove, a few important properties of isomorphisms. Let f : (G, ·) → (G′, ∗) be a group
isomorphism, and let eG and eG′ be the identity elements of G and G′, respectively. We then
have

• f(eG) = eG′.
• G is Abelian if and only if G′ is Abelian.
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• f(g−1) = [f(g)]−1, ∀ g ∈ G.
• f(gm) = [f(g)]m.
• The order of g ∈ G is equal to the order of f(g) ∈ G′.
• The kernel of f is eG, i.e., eG is the one and only element in G whose image by f is
eG′.

Theorem 2.53 (Equivalence Classes of Isomorphic Groups). The relation of being
isomorphic between groups (G, ·) ∼= (G′, ∗), as defined in Definition 2.51, is an equivalence
relation.

Proof. The relation is clearly reflexive as any group is isomorphic to itself with the isomor-
phism being the identity function.
It is symmetric because if f is an operation-preserving bijection from (G, ·) to (G′, ∗), then
its inverse f−1 is an operation-preserving bijection from (G′, ∗) to (G, ·).
It is transitive because if f1 : (G, ·) → (G′, ∗) is an isomorphism and f2 : (G′, ∗) → (G′′,×)
is an isomorphism, then f2 ◦ f1 : (G, ·) → (G′′,×) is a composition of bijections, therefore a
bijection. And it is operation-preserving because if g, g′ ∈ G, then we have

(f2◦f1)(g·g′) = f2[f1(g·g′)] = f2[f1(g)∗f1(g′)] = f2[f1(g)]×f2[f1(g
′)] = (f2◦f1)(g)×(f2◦f1)(g′).

□

We end this section with a result for all homomorphisms, which we will show in the context
of groups. The result will be useful when discussing modular forms in its form for linear
transformations between vector spaces, and in fact this result has versions that apply to
many algebraic structures, including groups, rings, and others. We will re-state the result in
the vector space context that will be of interest to us for modular forms.

Theorem 2.54 (Isomorphism Theorem). Let (G, ·) and (G′, ∗) be two groups, and let
f : G → G′ be a group homomorphism. We then have the following results:

• The kernel ker(f) of f is a normal subgroup of G.
• The image im(f) of f is a subgroup of G′.
• The image im(f) of f is isomorphic to the quotient group G/ ker(f).

Proof. • Recalling from Definition 2.25 that a normal subgroup is a subset of the group
such that its elements conjugated with any element of G remain in the subset in
question. We want to show that this is the case for ker(f), so we suppose k ∈ ker(f),
and let g be any element of G. We want to show that g−1 · k · g ∈ ker(f). We have

f(g−1 · k · g) = f(g−1) ∗ f(k) ∗ f(g)
= f(g−1) ∗ eG′ ∗ f(g)
= f(g−1 ∗ f(g)
= f(g−1 · g)
= f(eG)

= eG′ .

The kernel ker(f) is therefore a normal subgroup of G.
• Since f(eG) = eG′ , we have established that eG′ ∈ im(f). We now verify that inverses

of elements of im(f) are also in im(f): we let i ∈ im(f) be such an element, then



12 ALEXANDRE ACRA

there exists g ∈ G such that f(g) = i. We now have

eG′ = f(eG) = f(g−1 · g) = f(g−1) ∗ f(g) = f(g−1) ∗ i
=⇒ i−1 = f(g−1)

=⇒ i−1 ∈ im(f).

Lastly, we show closure of im(f) under the group operation ∗. Let i1 and i2 be two
elements of im(f), so there are two elements g1, g2 ∈ G such that i1 = f(g1) and
i2 = f(g2). We then have

f(g1 · g2) = f(g1) ∗ f(g2) = i1 ∗ i2,

so we have found an element g1 · g2 ∈ G such that i1 ∗ i2 = f(g1 · g2), which shows
closure of im(f) under the operation of the group G′.
We have threfore shown that im(f) is closed under the group operation, contains the
identity element eG′ , and contains the inverse of any of its elements. It is therefore a
subgroup of G′.

• To show that (im(f), ∗) ∼= (G/ ker(f), ·), we define the function

φ : (G/ ker(f), ·) → (im(f), ∗)

φ(g) = f(g)

and we show that it is a well-defined function, that it is homomorphic, and that it is
bijective. We first note that an element in the subgroup G/ ker(f) is an equivalence
class of an element g of G multiplied by all elements k ∈ ker(f).

The function φ is well-defined because if k1, k2 ∈ ker(f), then f(k1) = f(k2) = eG′

and f(g · k1) = f(g) ∗ f(k1) = f(g) ∗ eG′ = f(g) and f(g · k2) = f(g) ∗ f(k2) =
f(g) ∗ eG′ = f(g), therefore the function φ defined on a coset g · ker(f) as f(g) is
well-defined.

The function φ is homomorphic because it is derived from f which is homomor-
phic from (G, ·) to (G′, ∗), and since group structure is preserved by f , then group
structure is also preserved by φ since for any two elements g1, g2 ∈ G, and the two
corresponding cosets g1 · ker(f) and g2 · ker(f), we have φ[g1 · ker(f)] = f(g1) and
φ[g2 · ker(f)] = f(g2), therefore

φ[(g1 · g2) · ker(f)] = f(g1 · g2) = f(g1) ∗ f(g2) = φ[g1 · ker(f)] ∗ φ[g2 · ker(f)],

which proves that we have a homomorphism.

We now prove that φ is a bijection. It is clearly a surjection because by defini-
tion of im(f), every element is the image by f of some element g of G, which means
that it is the image by φ of this element's coset g · ker(f) which is an element of
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G/ ker(f). It is also an injection because
φ[g1 · ker(f)] = φ[g2 · ker(f)] ⇐⇒ f(g1) = f(g2)

=⇒ f(g1 · g−1
2 ) = f(g1) ∗ f(g−1

2 ) = f(g2) ∗ f(g−1
2 ) = f(g2 · g−1

2 ) = f(eG) = eG′

=⇒ g1 · g−1
2 ∈ ker(f)

⇐⇒ ∃k ∈ ker(f) such that g1 · g−1
2 = k

⇐⇒ g1 = k · g2
⇐⇒ g1 is in the right coset ker(f) · g2
=⇒ g1 is in the left coset g2 · ker(f) because ker(f) is a normal subgroup
=⇒ g1 · ker(f) = g2 · ker(f).

This completes the proof of the isomorphism
im(f) ∼= G/ ker(f).

□

2.2. Group Actions.

Definition 2.55 (Transformations). Given a set or a geometric space S, a transformation
on S is a bijective function from S to S.

Theorem 2.56 (Transformation Group). The set of transformations on a space forms a
group with the function composition operation, with the identity element of the group being
the identity function.

Proof. Composition of functions is associative, the identity function acts as the identity for
function composition, the composition of bijective functions from a set to itself results in a
bijective function from that set to itself, and each bijective function from a set to itself has
an inverse which is also a bijection from that set to itself. We therefore have a group. □
Definition 2.57 (Group Action). A group action of a group G on a space S is a group
homomorphism from the group G to the group of transformations of S (which we know to
be a group from Theorem 2.56). A group action of a group G on an algebraic structure is
a group homomorphism from the group G to the group of automorphisms of the structure
(which we have shown to be a group when the structure is a group, in Theorem 2.50). More
generally, a group action of a group G on a set X is a group homomorphism from G to the
group of all bijections of X onto itself, i.e., to the symmetric group of X.

Definition 2.58 (Representation). When the target structure of the group action is a
finite-dimensional vector space (e.g., Rn), the group action is called a representation of the
group G.

Remark 2.59. We will see in the following sections that a frequent use of such a group action
is to allow the identification of the group G with subgroups of the so-called linear group of
invertible square matrices of some given finite dimension over a ring such as Z or a field such
as R.

Definition 2.60 (Orbit of an Element). In the context of a group action, each element
g of a group G induces a bijection fg : X → X or an automorphism on the target set X.
Given an element x ∈ X, each of the induced bijections maps x to some image fg(x) that is
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also in X. The set of all images of the element x by all the bijections on X induced by the
elements g of G is called the orbit of the element x. The orbit of x ∈ X is therefore the set
denoted as

G · x = {fg(x) : g ∈ G}.

Theorem 2.61 (Orbits as Equivalence Classes). The relation on elements of X
xRy ⇐⇒ G · x = G · y

is an equivalence relation.

Proof. The relation is defined by equality of sets, so it is trivially easy to see that it is
reflexive, symmetric, and transitive. □
Notation. The set of all orbits of elements of X by a group action of a group G is denoted
by X/G or also G\X.

Definition 2.62 (Fundamental Domain). In the context of a group action (homomor-
phism) from a group G into the group of transformations on a set or space X, a Fundamental
Domain for this action is a set D of representatives of all the orbits of all elements x ∈ X
(i.e., the set of images fg(x) of x by all the induced actions fg : X → X by all the elements
g ∈ G).
As an important note, fundamental domains are often considered in the context of X being
a Topological Space (i.e., endowed with a distance and where concepts of open and closed
sets and convergence of sequences are well-defined). In those cases, fundamental domains
are particularly useful when they exhibit "good" properties such as being open, connected
sets, for instance.
The key benefit of fundamental domains is that they enable the study of the behavior of the
induced transformations fg : X → X over their entire domain X by reducing the study to
the behavior over the fundamental domain, as all such behaviors will be exhibited on points
in the fundamental domain due to the fact that the fundamental domain contains a (usually
unique) representative from all orbits of all elements of X.

Example. Let (Z,+) be the additive group of integers, and let X = R. We consider the
group action as the homomorphism that maps an element n ∈ Z to the function

fn : R → R
fn(x) = n+ x

It is easy to see that this is a homomorphism as
fn+m(x) = (n+m) + x = n+ (m+ x) = n+ fm(x) = fn(fm(x)) = (fn ◦ fm)(x).

And it is also clear that each of the functions fn(x) as defined is a bijection from R to R, so
we have a group action. The orbit O(x) of a given element x ∈ R is the set of reals

O(x) = {n+ x : n ∈ Z}.
A fundamental domain for this group action would be the real semi-open interval

D = [0, 1).

Indeed, every orbit O(x), for any x ∈ R, has one and only one representative in D because
for any real x, we have x− ⌊x⌋ ∈ [0, 1) and x− ⌊x⌋ ∈ O(x) since it is the image of x by the
function f−⌊x⌋(y) = −⌊x⌋+ y, for y ∈ R.

We can see that studying the behavior of the functions {fn(x) = n + x}n∈Z on the fun-
damental domain [0, 1) reveals their behavior over the entire original set R.
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2.3. Rings and Fields. We end this section with a reminder of the definition of a ring,
as we will use this definition further down when discussing groups of matrices defined over
rings, i.e., matrices whose entries are ring elements.

Definition 2.63 (Ring). A ring is an Abelian group whose operation is called addition,
with a secondary binary operation called multiplication that is associative, distributive over
the addition operation, and that has a multiplicative identity element.

Example. The algebraic structure (Z,+, ·) of the integers endowed with addition and multi-
plication is a ring.

Definition 2.64 (Field). A field is a ring in which, additionally to the ring conditions,
multiplication is commutative, and every element except the additive identity element has a
multiplicative inverse in the field.

Example. The structure (Q,+, ·) of the rationals with addition and multiplication is a field.

Example. The structure (R,+, ·) of real numbers with real addition and real multiplication
is a field.

Definition 2.65 (Vector Space). Given a field F , a vector space over the field F is a
set V endowed with two operations that satisfy the eight axioms below. In the context of
vector spaces, elements of F are called scalars and elements of V are called vectors. The first
operation is vector addition + : V ×V → V and the second operation is scalar multiplication
· : F × V → V . Scalar multiplication is frequently represented without the · (dot) symbol.

• Associativity of addition: ∀ u, v, w ∈ V, u+ (v + w) = (u+ v) + w.
• Commutativity of addition: ∀ u, v ∈ V, u+ v = v + u.
• Identity element of addition: ∃ 0 ∈ V such that ∀ v ∈ V, v + 0 = 0 + v = v. This

vector 0 is called the zero vector.
• Inverse elements of addition: ∀ v ∈ V, ∃ − v ∈ V such that v+(−v) = 0. This vector
−v is called the additive inverse of v.

• item Compatibility between scalar multiplication and field multiplication: ∀ a, b ∈ F
and ∀ v ∈ V , we have a · (b · v) = (a · b) · v, i.e., a(bv) = (ab)v.

• Identity element of scalar multiplication: with 1 denoting the multiplicative identity
in the field F , we have ∀ v ∈ V, 1v = v.

• Distributivity of scalar multiplication with respect to vector addition: ∀ a ∈ F and
∀ u, v ∈ V , we have a(u+ v) = au+ av.

• Distributivity of scalar multiplication with respect to field addition: ∀ a, b ∈ F and
∀ v ∈ V , we have (a+ b)v = av + bv.

Example. Given any field F , the set of ordered n-tuples (a1, a2, . . . , an) with a1, a2, . . . , an ∈ F
is a vector space usually denoted by F n and called a coordinate space. A common example
is with F = R or F = C and V = Rn or V = Cn, respectively.

Definition 2.66 (Linear Subspace). A non-empty subset U of a vector space V is called
a linear subspace or a vector subspace (or simply subspace) of V if it is closed under vector
addition and scalar multiplication, and therefore linear combination operations, and as a
consequence of which it contains the 0 vector in particular.
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Theorem 2.67 (A Subspace is a Vector Space). A linear subspace of a vector space is
itself a vector space.

Proof. It is easy to prove all eight conditions defining a vector space for a subspace, in that
the vector addition identity element is in the subspace, it has the required closure conditions,
and it carries over the other conditions related to scalar multiplication with elements of the
field over which these vector spaces are defined. □
Definition 2.68 (Quotient Space). Similarly to quotient groups being cosets attached to
a subgroup of a group, if U is a subspace of a vector space V , then the quotient space V/U
is defined as

V/U = {v + U : v ∈ V },
i.e., it is the set of cosets of each element of V with the subspace U . An element in that
quotient space is an equivalence class of vectors whose difference is an element of the subspace
U .

Theorem 2.69 (A Quotient Space is a Subspace). The quotient space of a vector space
by one of its subspaces is itself a linear subspace of the vector space.

Proof. We omit the proof because it is very similar structure to the proof we gave for the
equivalent result of quotient groups being subgroups of a group. □
Definition 2.70 (Linear Combination). For any set of scalars {λi}i∈I indexed by some
set I and for any similarly indexed set of vectors {vi}i∈I , a sum of the form#

i∈I

λivi = λ1v1 + λ2v2 + . . .

is called a linear combinations of the vectors {vi}i∈I .

Definition 2.71 (Basis). A set of vectors {bi}i∈I , where bi ∈ V and I is some set of indices,
is a basis of the vector space V if

∀ v ∈ V, ∃ {λi}i∈I with all λi ∈ F, such that v =
#

i∈I

λibi.

This means that a basis is a set of vectors from V such that any vector in V can be obtained
by a linear combination of the vectors in the basis. The basis {bi}i∈I is said to span the
vector space V .

Remark 2.72. The choice of a basis allows the unique decomposition of any vector into its
linear combination of the basis vectors, and it allows the representation of any vector as the
ordered n-tuple of the scalars that appear in its linear combination representation. These
scalars are called the coordinates of the vector in the basis.

Remark 2.73. It is important to note that the coordinates of a vector depend on the choice
of the basis for the vector space, and are not invariant with respect to changes of bases.

Proposition 2.74 (Uniqueness of Basis Decomposition). Once a basis {bi}i∈I has been
chosen for a vector space, the decomposition of a vector v ∈ V as a linear combination of
vectors from that basis is unique.

Proposition 2.75 (Dimension). All bases of a vector space V have the same cardinality,
i.e., if {bi}i∈I and {b′j}j∈J are two bases of V , then |I| = |J |. As a result, there is a
well-defined quantity called the dimension of a vector space and denoted by dim(V ) that is
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independent of the choice of basis, and is equal to the cardinality of any basis of the vector
space.

Remark 2.76. A vector space can have finite dimension when |I| = n ∈ N∪ {0} such as with
R3, or it can have a countably infinite dimension when |I| = ℵ0 = |N| such as with the space
of all real polynomials of any degree, or it can have a dimension that is uncountable when
|I| = 2ℵ0 = c such as with the space of all functions on real variables.

Definition 2.77 (Linear Transformation or Map). A function f : V → V ′ from a vector
space to another is a linear map or linear transformation if it satisfies

∀ {λi ∈ F}i∈I , ∀ {vi ∈ V }i∈I , we have f(
#

i∈I

λivi) =
#

i∈I

λif(vi).

We note that this is really a homomorphism that preserves the algebraic structure of a vector
space, in that the image by the function of a linear combination of vectors is equal to the
corresponding linear combination of images by the function of the individual vectors.

Definition 2.78 (Endomorphism). When V = V ′, a linear transformation from V to
itself is called an endomorphism.

Definition 2.79 (Eigenvectors and Eigenvalues). Given an endomorphism f on a vector
space V over a field F , a vector v ∈ V is an eigenvector with associated eigenvalue λ ∈ F if

f(v) = λv.

Theorem 2.80 (Eigen-subspace). The set of vectors in V associated with a common
eigenvalue λ for en endomorphism f on V is a linear subspace of V . Its dimension is called
the multiplicity of the eigenvalue λ, and as a consequence there is a basis of eigenvectors for
that subspace, and their number is equal to the multiplicity of λ.

Proof. The vector 0 satisfies f(0) = 0 = λ0, so our set satisfies the first condition of a
subspace, i.e., being non-empty. Furthermore, if u, v ∈ V are such that f(u) = λu and
f(v) = λv, then for any a, b ∈ F , we have

f(au+ bv) = af(u) + bf(v) = aλu+ bλv = λ(au+ bv),

which shows that our set is closed under linear combinations. □

Definition 2.81 (Automorphism). When an endomorphism is also bijective, i.e., it is also
an isomorphism, then it is called an automorphism of the vector space V . Any eigenvalue λ
of an automorphism f must satisfy λ ∕= 0.

Definition 2.82 (Linear Operator). When V ′ = F , i.e., the linear map is from a vector
space V over the field F to the field F , then it is called a linear operator on V .

Definition 2.83 (Kernel). The kernel of a linear map f : V → V ′ is the set ker(f) ⊆ V
defined as the set of elements in V whose image by f is the 0 vector in V ′, i.e.,

ker(f) = {v ∈ V : f(v) = 0V ′}.

Definition 2.84 (Image). The image of a linear map f : V → V ′ is the set im(f) ⊆ V ′

defined as the set of elements in V ′ that are images by f of vectors of V , i.e.,

im(f) = {v′ ∈ V ′ : ∃ v ∈ V such that f(v) = v′}.
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Theorem 2.85 (Kernel, Image, Dimension). An equivalent theorem to Theorem 2.54
that we introduced in the context of group homomorphisms is the following in the context of
linear maps (i.e., homomorphisms) between vector spaces. If f : V → V ′ is a linear map,
then we have

• ker(f) is a linear subspace of V .
• im(f) is a linear subspace of V ′.
• V/ ker(f) ∼= im(f) and, when all dimensions are finite, we also have

dim(V ) = dim[ker(f)] + dim[im(f)].

Proof. We omit the proof because it is very similar in structure to the proof of the equivalent
result for group homomorphisms that we gave for Theorem 2.54. □
Definition 2.86 (Matrix). A matrix with entries from a ring R or a field F is a rectangular
array of scalars from the ring or field. Although infinite dimension matrices exist, we will
restrict our attention to finite-dimension matrices where the number of (horizontal) rows
and of (vertical) columns are both finite positive integers.

Definition 2.87 (Matrix Dimensions). A matrix of finite dimensions is said to be n×m,
with n,m ∈ N, if it has n rows and m columns.

Definition 2.88 (Matrices and Linear Maps). Given a linear map f : V → V ′ between
two vector spaces, with dim(V ) = n and dim(V ′) = m, and given a choice of a basis for V
and a basis for V ′, vectors in V can be represented by their coordinates in the chosen basis of
V as n× 1 matrices and vectors in V ′ can be represented by their coordinates in the chosen
basis of V ′ as m× 1 matrices, and the linear map f can be represented as an n×m matrix.

Theorem 2.89 (Bijective Linear Maps Isomorphic to Invertible Matrices). The
following propositions are important results in linear algebra.

• The set of invertible linear maps from a vector space V with dim(V ) = n to itself,
and with V defined over a field F , is a group with the function composition operation,
and with the identity function as the identity element. This group is the group of
automorphisms of the vector space V .

• The set of invertible square n × n matrices with entries in a field F is a group with
the matrix multiplication operation, and with the identity matrix In×n as the identity
element, where the identity matrix has the 1 element of the field F as its main diagonal
entries and the 0 element of the field F as its off-diagonal entrie.

• For each choice of a basis for the space V , there is an isomorphism between the group
of automorphisms of a vector space V over a field F and with dim(V ) = n, and the
group of invertible square n× n matrices with entries in F .

• If an automorphism fV→V corresponds to a matrix Mn×n, then the entry mij in the
ith row and jth column of Mn×n is the jth coordinate (in the chosen basis) of the
image by f of ith basis vector of V .

Theorem 2.90 (Vector Space Generated by Vectors). Given a set of n vectors {v1, . . . , vn}
with entries in a field K, all with equal number of entries greater than or equal to n, the
set of all linear combinations with scalars in K of the vectors in {v1, . . . , vn} is a vector
space designated as the vector space generated by these vectors. Furthermore, if the vectors
are linearly independent, then the dimension of the generated vector space is equal to the
cardinality of the set of generating vectors, in this case n.
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Proof. The proof is very straightforward as it is easy to see that the 0 vector can be gener-
ated by a linear combination with all scalar coefficients equal to the 0 of the field K, and
closure under linear combinations is evident from the definition of the set being all linear
combinations of vectors from the initial set. □
Notation (Generation of Vector Space from Subspaces). Given a set of vectors
{v1, . . . , vn} on a field K that generate a vector space by their linear combinations with
scalars in K, we denote the vector space generated by the set of vectors as follows

Kv1 ⊕ · · ·⊕Kvn.

Similarly, if a vector space is generated by the linear combinations of a given vector v and a
subspace W (i.e., by all linear combinations of the vector v and of all vectors in W ), then
the generated vector space is denoted as follows

Kv ⊕W.

Example. As an example, if we designate by P2 the vector space of polynomials with com-
plex coefficients of degree less than or equal to 2, then it is generated by the subspace of
polynomials of degree less than or equal to 1, i.e., P1 and the monomial X2, so we can denote
this result as

P2(X) = CX2 ⊕ P1(X)

Definition 2.91 (Direct Sum). When generating a vector space over a field K from linear
combinations of all vectors in some subspaces or of a specific set of vectors, then we say that
the generated vector space is the direct sum of the subspaces (or vectors) that generate it by
all linear combinations with coefficients in K.

3. Matrix Groups

Definition 3.1 (Matrix Group). A matrix group is a group consisting of invertible ma-
trices over a given ring R or field F (as defined in Definition 2.63 and Definition 2.64), with
the matrix multiplication operation.
Example. The group of n× n real matrices with non-zero determinant form a matrix group
with the matrix multiplication operation.
Definition 3.2 (General Linear Group). The General Linear Group of degree n over a
ring R or a field F , denoted as GLn(R) or GLn(F ), respectively (or sometimes also GL(n,R)
or GL(n, F )), is the set of n × n invertible matrices, whose entries are from the ring R or
the field F , respectively, together with the matrix multiplication operation.
Remark 3.3. This forms a group because such matrix multiplication is associative, the iden-
tity matrix In×n is the identity element, the product of two invertible matrices is also invert-
ible, and an invertible matrix has an inverse which is also invertible.
Remark 3.4. In the case of a matrix with entries from a field, a matrix is invertible whenever
its determinant is non-zero. However, in the case of a matrix with entries from a ring, a
matrix is invertible whenever its determinant is a unit in that ring, i.e., the determinant
must be equal to an element x of the ring such that there exists an inverse x−1 in the ring,
and the product x · x−1 = x−1 · x = 1.
Example. When considering n×n matrices with entries from the ring (Z,+, ·) , invertibility
requires the determinant to be equal to 1 or −1 because these are the only two units in Z.
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Example. On the other hand, when considering matrices with entries from the ring (Z/nZ,+, ·),
invertibility requires the determinant to be equal to one of the units in the multiplicative
group of integers modulo n, i.e., Z×

n . Such units are those integers in {1, . . . , n− 1} that are
relatively prime with n. If n = p prime, then all non-zero integers in Z/pZ are units.

Remark 3.5. For a vector space V over a field F , there is a definition of general linear group
for that vector space, defined as the group of all automorphisms of V , i.e., all bijective linear
transformations from V to V , together with function composition as the operation. It is
denoted as GL(V ).

Remark 3.6. When the vector space V is finite-dimensional of, e.g., degree n, then this
general linear group of the vector space can become isomorphic to the general linear group
GLn(F ) as defined in Definition 3.2, once a basis for the vector space V has been chosen.

Definition 3.7 (Special Linear Group). The Special Linear Group of degree n over a
ring R or a field F , respectively denoted as SLn(R) or SLn(F ), is the set of n× n invertible
matrices whose entries are from the ring R or the field K, respectively, and whose determinant
is equal to 1.

Example. SL2(Z) is the group of 2× 2 matrices with integer entries and whose determinant
is equal to 1., with matrix multiplication as the group operation. We note that this group
is sometimes denoted Γ in the context of modular forms.

Definition 3.8 (Projective General Linear Group). The Projective General Linear
Group of degree n over a ring R or a field F , respectively denoted as PGLn(R) and PGLn(F ),
is the quotient group of GLn(R) or GLn(F ) by their centers (recalling from Definition 2.28
that the center of a group is the subgroup of elements that commute with all elements of
the group).

Example. The center of GLn(R) is the subgroup made of n× n invertible matrices with real
coefficients and that commute with all other n × n invertible real matrices. This set is in
fact composed of all non-zero multiples of the identity matrix, i.e., it is the set

{λIn×n : λ ∈ R,λ ∕= 0}.
Therefore, PGLn(R) is the quotient of GLn(R) by these multiples-of-identity matrices. Two
matrices are equivalent in this context if they are non-zero real multiples of one another.

Definition 3.9 (Projective Special Linear Group). The Projective Special Linear Group
of degree n over a ring R or a field F , respectively denoted as PSLn(R) and PSLn(F ), is the
quotient group of SLn(R) or SLn(F ) by their centers (recalling from Definition 2.28 that the
center of a group is the subgroup of elements that commute with all elements of the group).

Example. The center of SLn(Z) is made of just the two matrices In×n and −In×n as these
are the only invertible matrices with integer coefficients that commute with all invertible
integer matrices. Therefore, PSLn(Z) is made of equivalence classes each of size 2, with a
class having an integer matrix of determinant 1 and its additive inverse (i.e., "its negative").

Remark 3.10 (Matrices in Γ = SL2(Z)). In the introduction of modular forms, we will be
referring to matrices of SL2(Z) and PSL2(Z). Recalling that

Γ = SL2(Z) =
$%

a b
c d

&
: a, b, c, d ∈ Z, ad− bc = 1

'
,
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we note that such matrices can be constructed by choosing two non-zero and relatively
prime integers a and b, then running Euclid's algorithm to arrive at the Bézout identity of
gcd(a, b) = 1, i.e.,

gcd(a, b) = 1 =⇒ ∃ c, d,∈ Z | ad− bc = 1.

We now introduce the concept of congruence subgroups and illustrate a few of the impor-
tant ones in the group Γ = SL2(Z), as these will play an important role in the development
of modular forms on subgroups.

Definition 3.11 (Congruence Subgroups). A congruence subgroup of a matrix group
with integer entries is a subgroup defined by congruence conditions on the entries.

Definition 3.12 (Reduction Modulo n). For n ∈ N, there is a homomorphism
πn : Γ = SL2(Z) → SL2(Z/nZ)

πn[

%
a b
c d

&
] =

%
a (mod n) b (mod n)
c (mod n) d (mod n)

&
.

Theorem 3.13 (πn is a Homomorphism). The mapping πn introduced in Definition 3.12 is
a group homomorphism from the multiplicative matrix group Γ = SL2(Z) to the multiplicative
matrix group SL2(Z/nZ).

Proof. This is the case because modular multiplication and addition are well-defined over
the integers Z for any modulus n, so the result of the mapping by πn of a product of two
matrices in Γ = SL2(Z) is equal to the matrix product of the mappings of each matrix. If

γ1 =

%
a1 b1
c1 d1

&
and γ2 =

%
a2 b2
c2 d2

&
, then we have

πn(γ1γ2) =

%
a1a2 + b1c2 (mod n) a1b2 + c1d2 (mod n)
c1a2 + d1c2 (mod n) c1b2 + d1d2 (mod n)

&

=

%
a1 (mod n)a2 (mod n) + b1 (mod n)c2 (mod n) ...

... ...

&

= πn(γ1)πn(γ2).

□
Definition 3.14 (Principal Congruence Subgroup of Level n). The principal congru-
ence subgroup of level n in Γ = SL2(Z) is the kernel of πn and is denoted by Γ(n), i.e., it
is

Γ(n) = ker(πn) =

$%
a b
c d

&
∈ Γ = SL2(Z) : a, d ≡ 1 (mod n), b, c ≡ 0 (mod n)

'
,

so it is the set of matrices whose image by πn (entry-wise reduction modulo n) is the con-
gruence class of the identity matrix I2×2 in SL2(Z/nZ).

Theorem 3.15 (Γ(n) is a Finite Index Normal Subgroup). Γ(n) is a normal subgroup.
Furthermore, it is a finite index subgroup in Γ, i.e.,

[SL2(Z) : Γ(n)] = [Γ : Γ(n)] < ∞.

Proof. By the isomorphism theorem proven in Theorem 2.54, the kernel of a group homo-
morphism is a normal subgroup, therefore Γ(n) = ker(πn) is a normal subgroup. In addition,
and by that same theorem, the image subgroup im(πn) is isomorphic to the quotient group
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SL2(Z/ ker(πn)).

Since the cardinality of Z/nZ is finite (with n elements), the cardinality of SL2(Z/nZ)
is also finite, therefore the cardinality of im(πn) is finite since it is a subgroup of SL2(Z/nZ).
Since this image is isomorphic to the quotient group SL2(Z)/ ker(πn), we deduce that
SL2(Z)/ ker(πn) = SL2(Z)/Γ(n) has finite cardinality (equal to the cardinality of im(πn)).
But this cardinality is the index of the subgroup Γ(n) in SL2(Z). □
Remark 3.16 (Index of Γ(n)). It can be shown -- but we won't prove it here -- that the
actual (finite) index of Γ(n) is:

[SL2(Z) : Γ(n)] = [Γ : Γ(n)] = n3 ·
(

p|n
p prime

%
1− 1

p2

&
.

Definition 3.17 (Congruence Subgroup of Level n). If H is a subgroup of Γ = SL2(Z),
then it is a congruence subgroup of level n if H contains the principal congruence subgroup
Γ(n) and if n is the smallest integer -- therefore leading to the largest subgroup Γ(n) -- for
which Γ(n) ⊂ H.

Definition 3.18 (Hecke Congruence Subgroup Γ0(n)). The pre-image by πn of the
group of upper triangular matrices in SL2(Z/nZ) is called the Hecke congruence subgroup
Γ0(n) and is therefore

Γ0(n) =

$%
a b
c d

&
∈ Γ : c ≡ 0 (mod n)

'

Example. An example which we will use when we explore modular forms on subgroups of
SL2(Z) is the group of matrices with an even lower left entry, i.e.,

Γ0(2) =

$%
a b
c d

&
∈ SL2(Z) : c ≡ 0 (mod 2)

'

Theorem 3.19 (Γ0(n) Finite Index Subgroup). Γ0(n) is a finite index subgroup of
SL2(Z).

Proof. In short, it is a subgroup because the identity matrix I2×2 is in Γ0(n) and it is closed

under matrix multiplication and inversion. Indeed, if γ1 =

%
a1 b1
c1 d1

&
and γ2 =

%
a2 b2
c2 d2

&
,

with c1 ≡ 0 (mod n) and c2 ≡ 0 (mod n), then the lower left entry of the matrix product
γ1γ2 is c1a2 + d1c2 ≡ 0 (mod n), which shows closure under matrix multiplication. In addi-

tion, if γ =

%
a b
c d

&
∈ Γ0(n), then c ≡ 0 (mod n). And we have the following, noting that

ad− bc = 1 because γ ∈ SL2(Z)

γ−1 =
1

ad− bc

%
d −b
−c a

&
=

%
d −b
−c a

&
,

and c ≡ 0 (mod n) =⇒ −c ≡ 0 (mod n) =⇒ γ−1 ∈ Γ0(n). Γ0(n) is therefore a subgroup.

To show that Γ0(n) has finite index, we note that Γ(n) ⊂ Γ0(n) because the conditions

on γ =

%
a b
c d

&
being in Γ(n) are a, d ≡ 1 (mod n) and b, c ≡ 0 (mod n) which are a
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superset of the condition c ≡ 0 (mod n) which defines Γ0(n). Therefore the cardinality of
SL2(Z)/Γ0(n), which is the index of Γ0(n), is less than the cardinality of SL2(Z)/Γ(n) which
is the index of Γ(n). And we have proven in Theorem 3.15 that Γ(n) had finite index in
SL2(Z). □
Remark 3.20 (Index of Γ0(n)). It can be shown -- but we won't prove it here -- that the
index of Γ0(n) is

[SL2(Z) : Γ0(n)] = [Γ : Γ0(n)] = n ·
(

p|n
p prime

%
1 +

1

p

&
.

We now move our focus back to the group Γ = SL2(Z) and we examine a generating
subgroup of that group, which will simplify our work on modular forms when we get to that
point in the paper.

Definition 3.21 (S and T in SL2(Z)). We introduce the following two matrices, and we will
subsequently prove that they generate SL2(Z), and play a fundamental role in understanding
modular forms.

S =

%
0 1
−1 0

&
, T =

%
1 1
0 1

&
.

Theorem 3.22. The matrices S and T as introduced in Definition 3.21 satisfy the following
properties

S2 = −I2×2, (ST )3 = I2×2.

Proof. This can be verified by simple matrix multiplication. □
Theorem 3.23 (S and T Generate SL2(Z)). The group 〈S, T 〉 generated by S and T is
all of SL2(Z).

Proof. We show that every integral (i.e., with integer entries) matrix with determinant 1,
i.e.,

γ =

%
a b
c d

&
with ad− bc = 1

can be expressed as a product of the matrices S and T or their inverses, i.e., γ ∈ 〈S, T 〉. We
first examine the effects of each of S and T on the matrix γ, and we have

Sγ =

%
0 1
−1 0

&%
a b
c d

&
=

%
c d
−a −b

&
,

and we verify that, as expected, we have
det(Sγ) = c(−b)− (−a)d = ad− bc = 1.

We then have
Tγ =

%
1 1
0 1

&%
a b
c d

&
=

%
a+ c b+ d
c d

&
,

which by a trivial induction implies for n ∈ Z,

T nγ =

%
1 n
0 1

&%
a b
c d

&
=

%
a+ nc b+ nd

c d

&
,
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and we verify that, as expected, we have
det(T nγ) = (a+ nc)d− c(b+ nd) = ad− bc = 1.

Choosing γ = I2×2 we see in particular that

T n =

%
1 n
0 1

&
.

We now show that any matrix γ =

%
a b
c d

&
∈ PSL2(Z) can be transformed into another

matrix with lower-left diagonal element equal to 0 by repeated left-multiplication by S and
powers of T (which can be of either algebraic sign).

If c = 0, we are done. Otherwise, if |c| > |a|, then by left-applying S once, a gets replaced
with c and c gets replaced with −a such that we can bring things back to the higher-left
diagonal element being greater or equal in absolute value to the lower-left diagonal element,
i.e., |a| ≥ |c|. With this in place, we can write a in the form of its division with remainder
by c, so we have

a = cq + r, with q, r ∈ Z and 0 ≤ r < |c|.
By now left-multiplying by T−q, we have a matrix T−qγ with an upper left entry a− qc = r
which is now smaller in absolute value than the lower left entry that remained unchanged
and equal to c in T−qγ. Left-multiplying by S places c in the upper left position and
−r = −(a− qc) in the lower left position, with |c| > |− r|. If r = 0, then we are done.

Otherwise, we can repeat the process by applying the integer division algorithm to c di-
vided by r which gives us a remainder strictly less than |r| in absolute value. This means
that we have a procedure that yields (by repeated applications of S and the right powers of
T ) a monotonous, strictly decreasing sequence of positive integers in the lower left entry of
the resulting matrix.

A strictly decreasing monotonous sequence of positive integers must eventually reach 0 in a
finite number of steps, so we have proven our intermediate result that we can transform our
initial matrix γ into a matrix with a lower left entry equal to 0, and this transformed matrix
has a determinant of 1. But now that the lower left entry is 0, and with the entries of the
matrix being integers, the only possibility is that the main diagonal elements of this matrix
are either both 1 or both −1, i.e., we have transformed our initial matrix γ into a matrix of
the form %

1 k
0 1

&
= T k or

%
−1 −k
0 −1

&
= −T k for some k ∈ Z,

and we note that two such matrices are indistinguishable in the quotient group PSL2(Z
which is the quotient group of SL2(Z) by the subgroup 〈I2×2,−I2×2〉 in which a matrix and
its opposite (additive inverse) are in the same equivalence class.

Therefore, by left-multiplying one more time the matrix T−k, we arrive at the identity
matrix I2×2. If we summarize what we have done, we have found a matrix α ∈ 〈S, T 〉 (the
subgroup of SL2(Z) generated by the matrices S and T ), such that αγ = I2×2. Equivalently,
we have a found a matrix α ∈ 〈S, T 〉 such that γ = α−1 which is itself in 〈S, T 〉 because a
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subgroup is closed under taking the inverse of any of its elements.

We have therefore shown that the subgroup 〈S, T 〉 generates the entire group LS2(Z) be-
cause we have shown that for any matrix γ ∈ SL2(Z), we also have γ ∈ 〈S, T 〉, i.e.,
SL2(Z) ⊆ 〈S, T 〉 ⊆ SL2(Z). This shows that

PSL2(Z) = 〈S, T 〉.
□

Corollary 3.24 (Presentation of SL2(Z)). A presentation of SL2(Z) is

PSL2(Z) = 〈S, T |S2 = −I2×2, (ST )
3 = I2×2〉.

Corollary 3.25 (Presentation of PSL2(Z)). A presentation of PSL2(Z) is

PSL2(Z) = 〈S, T |S4 = I2×2, (ST )
3 = I2×2〉.

Remark 3.26. As a matter of notation, since −I2×2 is indistinguishable from I2×2 in the
quotient group PSL2(Z) which is the quotient of the group SL2(Z) by the group generated
by I2×2 and −I2×2, i.e., the quotient by 〈I2×2,−I2×2〉, it is appropriate to turn the relation
S2 = −I2×2 into the relation S4 = I2×2 since there is no existence of an element −I2×2

distinctly from I2×2 in the quotient group PSL2(Z).

4. Group Action of PSL2(Z) on H

Definition 4.1 (Fractional Linear Transformation). We define a fractional linear trans-
formation to be an invertible transformation (FLT) on C which can be expressed as a ratio
(fraction) of two linear functions on C. More formally, we define a fractional linear trans-
formation as

z → az + b

cz + d
, with a, b, c, d ∈ C and ad− bc ∕= 0.

In the context of Modular Forms, we will be interested in the FLTs where a, b, c, d ∈ Z and
ad− bc = 1. In addition, we will be interested in the effect of these transformations on the
half-plane H = {z ∈ C : I(z) > 0}. We show our first result in the following theorem.

Theorem 4.2. For any a, b, c, d ∈ Z, with ad− bc > 0, the function
f : H → H

f(z) =
az + b

cz + d

is a bijection, i.e., a transformation of H.

Proof. We must prove that the image of any element of H is also in H, which is equivalent to
proving that the imaginary part fo the image is positive. With c, d being integers, therefore
reals and invariant by complex conjugation, we first note that

cz + d = cz + d =⇒ (cz + d)(cz + d) = |cz + d|2.
and therefore we have

f(z) =
az + b

cz + d
=

(az + b)(cz + d)

|cz + d|2 =
(ac|z|2 + bd) + (adz + bcz)

|cz + d|2 .
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Since the denominator is evidently real, and the part (ac|z|2 + bd) of the numerator is also
real (|z|2 ∈ R and a, b, c, d ∈ Z ⊂ R) is also real, we now can write

I[f(z)] = I

)
adz + bcz

|cz + d|2

*
=

I(adz − bcz)

|cz + d|2 =
ad− bc

|cz + d|2I(z).

We note that the only possibility for |cz + d| to be zero would be for cz = −d ∈ Z which
would necessarily imply that c = 0 because I(z) > 0, and this would imply that d = 0. But
then c = d = 0 would prevent the assumption ad−bc > 0, so we are certain that |cz+d| > 0.

With I(z) > 0 by assumption, and |cz + d|2 > 0, and ad − bc > 0 by assumption, we
see that I[f(z)] > 0, i.e., that f(z) ∈ H.

We now show that f is injective

f(z) = f(z′) =⇒ az + b

cz + d
=

az′ + b

cz′ + d
=⇒ aczz′ + adz + bcz′ + bd = aczz′ + adz′ + bcz + bd

=⇒ (ad− bc)z = (ad− bc)z′

=⇒ z = z′ because ad− bc > 0.

We finally show that f is surjective by showing that for every z ∈ H, there is a w = dz−b
−cz+a

such that f(w) = z. This is an easy verification:

f(w) =
a dz−b
−cz+a

+ b

c dz−b
−cz+a

+ d
=

(ad− bc)z

ad− bc
= z.

□
We now show the important result that we have a group action, i.e., an isomorphism from

PSL2(Z) to H by mapping a matrix to a fractional linear transformation on H.

Theorem 4.3 (Group Action of PSL2(Z) on H). The map

PSL2(Z) → Aut(H)

γ =

%
a b
c d

&
→ fγ(z) =

az + b

cz + d

is a group action on H, i.e., it is an isomorphism from the multiplicative group PSL2(Z)
to the group of automorphisms on H with composition of functions. We say that the group
PSL2(Z) acts on the upper half plane H via fractional linear transformations.

Proof. We must show that the map is a bijection, and that it is an isomorphism, i.e., that the
fractional linear transformation induced by a product of matrices from PSL2(Z) is equal to
the composition of the two fractional linear transformations induced by each of the matrices,
respectively.

The proof of the surjection will be skipped, as we have developed it in Complex Analy-
sis theory by way of mappings from the upper half plane H to the unit disk D and back.
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The proof of the injection amounts to equating two fractional linear transformations for
all z ∈ H, then asserting the equality at z = i, and at z = iN with N ∈ N and letting
N → ∞ and at z = iε with ε ∈ R+ and letting ε → 0+. The calculations lead us to the
interesting result that the fractional linear transformations are identical if and only if they
are respectively induced by a matrix γ and another matrix γ′ = ±γ. But then since we are
considering the matrices γ in the quotient group PSL2(Z (i.e., the projective special linear
group as opposed to the special linear group), this is precisely the case where two elements
of the same equivalence class are indistinguishable, so that −γ ≡ γ in this quotient group.

We now show the homomorphism property by examining the action induced by the product
of two matrices, and showing that it is equal to the composition of the induced actions by

each of the matrices. Let γ1 =

%
a1 b1
c1 d1

&
and let γ2 =

%
a2 b2
c2 d2

&
be both from PSL2(Z), so

we have
γ2γ1 =

%
a2 b2
c2 d2

&%
a1 b1
c1 d1

&
=

%
a2a1 + b2c1 a2b1 + b2d1
c2a1 + d2c1 c2b1 + d2d1

&
,

so that this resulting matrix induces the fractional linear transformation

fγ2γ1(z) =
(a2a1 + b2c1)z + (a2b1 + b2d1)

(c2a1 + d2c1)z + (c2b1 + d2d1)
.

Meanwhile, if we compose the two FLTs (fγ2 ◦ fγ1), we get
(fγ2 ◦ fγ1)(z) = fγ2(fγ1(z))

= fγ2

%
a1z + b1
c1z + d1

&

=
a2

a1z+b1
c1z+d1

+ b2

c2
a1z+b1
c1z+d1

+ d2

=
(a2a1 + b2c1)z + (a2b1 + b2d1)

(c2a1 + d2c1)z + (c2b1 + d2d1)

= fγ2γ1(z).

We have therefore shown the homomorphic property and this, along with the sketch of the
proof of bijection, shows that we have a group isomorphism, and therefore a group action. □
Proposition 4.4 (Actions of S and T on H). The action induced on the half-plane H by

the matrix S =

%
0 1
−1 0

&
is

fS : H → H

fS(τ) = −1

τ

and the action on H induced by the matrix T =

%
1 1
0 1

&
is

fT : H → T
fT (τ) = τ + 1
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Proof. From the general case that a matrix γ =

%
a b
c d

&
∈ PSL2(Z) induces the fractional

linear transformation
fγ : H → H

fγ(τ) =
aτ + b

cτ + d
,

we easily see that the fractional linear transformation corresponding to S is
fS(τ) =

0 · τ + 1

(−1) · τ + 0
= −1

τ
.

Similarly, we have
fT (τ) =

1 · τ + 1

0 · τ + 1
= τ + 1.

□
Remark 4.5 (Interpreting the Effects of T and S Actions). We note that the trans-
formation induced by T (i.e., the action of T ) makes it such that the orbit of a given point
τ ∈ H has translates of τ with a period of 1 in the "real" (horizontal) direction of the complex
upper half plane. In particular, this transformation leaves the imaginary part of τ intact.
In addition, the transformation induced by S (i.e., the action of S) sends points in H that are
outside the upper half of the unit circle into the upper half of the unit circle, and vice-versa.

Proof. The first statement about the effect of T is obvious, so we focus on proving the second
statement, relative to S. Let τ = x+ iy ∈ H. We have

fS(τ) = −1

τ
= − 1

x+ iy
=

−x+ iy

x2 + y2
=⇒ |fS(τ)| =

1+
x2 + y2

=
1

|τ | .

This shows that if |τ | < 1, then |fS(τ)| > 1, and if |τ | > 1, then |fS(τ)| < 1. □
Theorem 4.6 (Fundamental Domain of Action of PSL2(Z) on H). The region of H
defined by

F =

$
τ ∈ H : |R(τ)| ≤ 1

2
, |τ | ≥ 1

'

is a Fundamental Domain (by Definition 2.62) of the group action of PSL2(Z) on H, recalling
that a fundamental domain is a set in which the orbit by actions of PSL2(Z) of every element
of H is represented.
Said otherwise, for every τ ∈ H, there is some γ ∈ PSL2(Z) such that fγ(τ) ∈ F . And since
we have proven that 〈S, T 〉 = PSL2(Z), i.e., the subgroup generated by S and T generates
all of PSL2(Z), a corollary is that there exists some composition of actions of S, T , their
powers, and the powers of their inverses, which brings the image of τ by that composition
into F .

Proof. For any τ ∈ H, if τ is not already in the vertical strip {z ∈ H : |R(z)| ≤ 1
2
}, we can

first have an image of τ in that vertical strip as follows.

Let fT−⌊R(τ)⌋ be the action that iterates T−1 a number of times equal to the floor (i.e., integer
part) of the real part of τ . This action produces an image of τ that is in the vertical strip
{z ∈ H : 0 ≤ R(z) < 1}. If this image has a real part less than or equal to 1

2
, then we are done
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because this image is in the vertical strip {z ∈ H : 0 ≤ R(z) ≤ 1
2
} ⊂ {z ∈ Z : |R(z) ≤ 1

2
}.

Otherwise, the real part of this image is greater than 1
2
, so by applying the action of T−1 one

more time, the resulting image will be in {z ∈ Z : −1
2
< R(z) < 0} ⊂ {z ∈ Z : |R(z) ≤ 1

2
}.

So we can assume that for every τ ∈ H, its orbit has a representative in the vertical strip
{z ∈ Z : |R(z) ≤ 1

2
}. We now seek to show that there is a representative of the orbit in

F . If the representative of the orbit that is in the vertical strip {z ∈ Z : |R(z) ≤ 1
2
} also

satisfies |z| ≥ 1, then we are done as the combination of these two conditions define F .

Otherwise, this representative of the orbit of τ that we have on hand is in the upper half of
the unit disk and satisfies |R(z)| ≤ 1

2
, so it is of the form ρeiθ with π

3
≤ θ ≤ 2π

3
and ρ < 1.

We then apply to it the action of S which transforms z to −1
z
, so that the new image

becomes − 1
ρeiθ

= − e−iθ

ρ
= ei(π−θ)

ρ
, with 1

ρ
> 1 and π

3
≤ π − θ ≤ 2π

3
, i.e., with a modulus

greater than 1 and a real part less than or equal to 1
2

in absolute value. This is the definition
of F , so we have a representative of the orbit of τ in F . □

5. Modular Forms Introduction

The main idea behind modular forms is that they are holomorphic functions over the
upper half of the complex plane that exhibit a certain invariance under composition with
fractional linear transformations (modularity conditions), in addition to having certain reg-
ularity regularity conditions. We formally introduce them now.

Definition 5.1 (Modular Form). For k ∈ Z, a Modular Form of weight k for SL2(Z) is a
function f : H → C satisfying the following three conditions:

• f is holomorphic on H.

• Modularity: f
!
aτ+b
cτ+d

"
= (cτ + d)kf(τ) for all matrices

%
a b
c d

&
∈ SL2(Z) and all

τ ∈ H.
• f(τ) is bounded as τ → i∞, i.e., as τ = α + iβ and β → ∞.

Remark 5.2. We note that the modularity condition amounts to an infinite set of conditions
since the equality must be true for all matrices in SL2(Z). However, we have shown in

Theorem 3.23 that the two matrices S =

%
0 −1
1 0

&
and T =

%
1 1
0 1

&
generate the entire

multiplicative group SL2(Z). We also recall from Theorem 4.3 that we have a group action
from PSL2(Z) to H by way of induced fractional linear transformations on H.

The modularity condition applied to these two group-generating matrices yields the fol-
lowing two conditions

Condition on S : f(−1

τ
) = τ kf(τ),

Condition on T : f(τ + 1) = f(τ).

Remark 5.3 (Defining with SL2(Z) vs PSL2(Z)). It is worth noting a subtle difference
between defining the modular forms for the group SL2(Z) as opposed to doing the same for
the group PSL2(Z). The group PSL2(Z) is the quotient group of SL2(Z) by the subgroup
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〈I2×2, −I2×2〉 generated by the identity matrix and its additive inverse.

The advantage of defining modular forms for the main group SL2(Z) is that we get an easy
proof that there are no modular forms of odd weight, and this is straightforward to prove
(see Theorem 5.5 below) by singling out the modularity condition on the matrix −I2×2. A
disadvantage, however, is that the matrix I2×2 and the matrix −I2×2 are distinguishable in
SL2(Z) even though their induced fractional linear transformations are identical as trans-

formations on H. This is generally true for any pair of opposite matrices γ =

%
a b
c d

&
and

−γ =

%
−a −b
−c −d

&
due to the fact that aτ+b

cτ+d
= (−a)τ+(−b)

(−c)τ+(−d)
for all τ ∈ H. This choice of matrix

group gives us a non-injective mapping from the matrix group to the group of frational linear
transformations that is induced by it.

On the other hand, the advantage of using the quotient group is that there is an isomorphic
relationship (i.e., both bijective and homomorphic map), and therefore a group action, from
PSL2(Z) (with matrix left-multiplication) to the fractional linear transforms on H (with
function composition). A matrix γ ∈ PSL2(Z) is in fact an equivalence class of a matrix
from SL2(Z) together with its additive inverse, and this uniquely corresponds to a fractional
linear transformation on H induced by it.

We now verify that the modularity condition is preserved under matrix multiplication and
matrix inversion, and this lets us reduce the modularity condition to being met on the two
generating matrices of SL2(Z), i.e., S and T .

Theorem 5.4 (Modularity Satisfied for Products, Inverses). Let γ1 =
%
a1 b1
c1 d1

&
and

γ2 =

%
a2 b2
c2 d2

&
be two matrices in SL2(Z) and let fγ1 and fγ2 be the induced fractional linear

transformations, respectively. If a function g : H → C satisfies the modularity condition with
weight k for fγ1 and fγ2, then it satisfies the modularity condition with weight k for fγ1 ◦ fγ2
which is induced by γ1γ2 and for fγ−1

1
which is induced by γ−1

1 .

Proof. We start by proving the result for the action induced by the matrix product γ1γ2. We
have

%
a1 b1
c1 d1

&%
a2 b2
c2 d2

&
=

%
a1a2 + b1c2 a1b2 + b1d2
c1a2 + d1c2 c1b2 + d1d2

&
,

so that satisfying the modularity condition with weight k for the action of the product matrix
γ1γ2 would mean satisfying

g(fγ1γ2)(τ) = [(c1a2 + d1c2)τ + (c1b2 + d1d2)]
kg(τ). (!)
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We know from the group action being an isomorphism, and from the assumption that g
satisfies the modularity condition with weight k for γ1 and γ2, that we have

fγ1γ2(τ) = (fγ1 ◦ fγ2)(τ)
= fγ1(fγ2(τ))

= (c1fγ2(τ) + d1)
k(c2τ + d2)

kg(τ)

=

%
c1
a2τ + b2
c2τ + d2

+ d1

&k

(c2τ + d2)
kg(τ)

= (c1a2τ + c1b2 + d1c2τ + d1d2)
kg(τ)

= [(c1a2 + d1c2)τ + (c1b2 + d1d2)]
kg(τ).

We see that the last expression in the series of equalities above matches exactly the ex-
pression (!) for satisfying the modularity condition with weight k for the fractional linear
transformation induced by γ1γ2.

We now show the result for the inverse, and we start by noting that the inverse of γ1
is

γ−1
1 =

%
d1 −b1
−c1 a1

&
.

We apply the modularity condition for fγ1 to fγ−1
1
(τ) and we get

g(τ) = g(fγ1(fγ−1
1
(τ))) = (c1fγ−1

1
(τ) + d1)

kg(fγ−1
1
(τ)),

which implies by dividing both sides that

g(fγ−1
1
(τ)) =

1

(c1fγ−1
1
(τ) + d1)k

g(τ). (!!)

We now calculate the expression in the denominator and we have

(c1fγ−1
1
(τ) + d1)

k =

%
c1

d1τ − b1
−c1τ + a1

+ d1

&k

=

%
a1d1 − b1c1
−c1τ + a1

&k

=
1

(−c1τ + a1)k
.

We plug this expression back into (!!) and we get
g(fγ−1

1
(τ)) = (−c1τ + a1)

kg(τ).

But this is exactly the modularity condition with weight k for the action of the matrix γ−1
1 ,

so we have completed the proof of our theorem. □

Theorem 5.5 (No Non-Zero Odd Weight Modular Form). There are no non-trivial
modular forms with odd weight for SL2(Z).

Proof. We note that since the modularity condition must be true for all matrices in SL2(Z),

it must also be true for the matrix −I2×2 =

%
−1 0
0 −1

&
. But the modularity condition then

becomes
f(τ) = (−1)kf(τ).

This is only possible if k is even, or if the function f(τ) is the constant zero function, which
is a trivial case. □
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Remark 5.6. We note that it is possible to define modular forms on other groups than
PSL2(Z) or SL2(Z), and in particular it is possible to define modular forms on subgroups of
SL2(Z) or of PSL2(Z). In those cases, it is possible to have modular forms with odd weight,
as long as these subgroups do not include the matrix −I2×2. We will such examples further
in the paper.

Given that the matrices S and T generate the groups SL2(Z) and PSL2(Z), and given
that the modularity condition is preserved under matrix multiplication and inverse, we can
state an alternative formulation of the definition of modular forms. We also present an
alternative formulation to the third condition in the alternative definition below

Definition 5.7 (Alternative Definition). For k ∈ Z, a Modular Form of weight k for
SL2(Z) is a function f : H → C satisfying the following three conditions:

• f is holomorphic on H.
• Modularity: f(τ + 1) = f(τ) and f(− 1

τ
) = τ kf(τ) for all τ ∈ H.

• f(τ) converges to a limit as τ → i∞, i.e., as τ = α + iβ and β → ∞.

Theorem 5.8 (Vector Spaces of Modular Forms). The set of modular forms for SL2(Z)
and of weight k ∈ N is a vector space on the field C.

Proof. It is clear that for any choice of weight k, the constant function equal to 0 on all of H
satisfies all the conditions of a modular form, as it is holomorphic, it is bounded as τ → i∞,
and the modularity conditions are satisfied. These sets are therefore non-empty.

We now prove closure under linear combinations: if f and g are two modular forms of
weight k, then it is easy to see that any of their linear combinations would be holomorphic
(as the two functions are), and any linear combination is also bounded as τ → i∞ (as the
two functions are). As to the modularity conditions, we can see that if λf + µg is a linear
combination of f and g (with λ, µ ∈ C), then

f(−1

τ
) = τ kf(τ) and g(−1

τ
) = τ kg(τ) =⇒ (λf + µf)(−1

τ
) = τ k[λf(τ) + µg(τ)],

and
(λf + µg)(τ + 1) = (λf + µg)(τ).

Therefore each set of modular functions of weight k is either a trivial vector space with only
0 as its element, or a vector space on the field C. □

We cite and prove one additional result that will be important in developing the results
on dimensionality of the vector spaces of modular forms of given weight.

Theorem 5.9 (Product of Modular Forms). Let f be a modular form on H of weight
k for SL2(Z) and g be a modular form on H of weight l for SL2(Z). Then the point-wise
product function

fg : H → C

(fg)(τ) = f(τ)g(τ)

is a modular form on H of weight k + l for SL2(Z).
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Proof. It is clear that the product of two holomorphic functions on H is also holomorphic on
H. It is also clear that if f(τ) and g(τ) are both bounded as τ → i∞, then (fg)(τ) = f(τ)g(τ)
is bounded as τ → i∞.

Moving on to the modularity conditions, we have

(fg)(τ + 1) = f(τ + 1)g(τ + 1) = f(τ)g(τ) = (fg)(τ),

and we have
(fg)

%
−1

τ

&
= f

%
−1

τ

&
g

%
−1

τ

&
= τ kf(τ)τ lg(τ) = τ k+l(fg)(τ).

This completes the proof that (fg) is a modular form of weight k + l for SL2(Z). □
Corollary 5.10 (Ratio of Modular Forms). Let f be a modular form of weight k for
SL2(Z), and let g be a modular form of weight l for SL2(Z), such that g does not vanish
anywhere on H (no zeros). If the point-wise ration function

,
f
g

-
(τ) = f(τ)

g(τ)
is bounded as

τ → i∞, then the point-wise ratio function
,

f
g

-
is a modular form of weight k−l for SL2(Z).

Proof. The proof is similar throughout with the proof of Theorem 5.9 so we omit laying out
all of its details again for this corollary. The important difference from the previous theorem
about products is the added condition that the ratio must be bounded as τ → i∞ in order
to satisfy the modular form conditions, and this boundedness condition cannot be always
assumed for the ratio. □

We now proceed to introduce actual examples of modular form, by defining the Eisenstein
Series. In the next section, we are assuming familiarity with lattices on the complex plane
and more generally with the main concepts of complex analysis, including elliptic functions
and holomorphic functions.

6. Eisenstein Series

Definition 6.1 (Eisenstein Series). Let k ∈ N be even and k ≥ 4. We define the Eisen-
stein Series of weight k as the function expressed in elliptic function form

Gk : H → C

Gk(τ) =
#

(m,n)∈Z×Z
(m,n) ∕=(0,0)

1

(mτ + n)k
.

Theorem 6.2 (Eisenstein Series as Modular Form). The Eisenstein series of weight
k ≥ 4 is a modular form of weight k for the group SL2(Z).

Proof. We must first show that the function is well-defined (i.e., convergent). The function is
in fact absolutely convergent and this can be shown by way of a Lemma that proves that for
any τ ∈ H, there is a δτ ∈ (0, 1), such that |mτ + n| ≥ δτ |mi+ n| for all m,n ∈ Z. (In fact,
we can find a uniform value δ that does not depend on τ if we consider τ in a vertical strip
of H with finite width for the real part and a strictly positive lower bound for the imaginary
part, i.e., {z ∈ H : |R(z)| ≤ α, I(τ) ≥ β}, for some α > 0, β > 0.)
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The lemma lets us bracket the terms of the Eisenstein series
0 <

1

|mτ + n|k ≤ 1

δkτ |mi+ n|k =
1

δkτ (m
2 + n2)

k
2

.

The exponent k
2

on n and m is greater than or equal to 2, so absolute convergence of Gk(τ)

is a result of convergence of the the series
.

(m,n)∈Z×Z
(m,n) ∕=(0,0)

1

(m2+n2)
k
2

when k ≥ 4 > 2. This is an

instance in 2 dimensions of a broader result on convergence of lattice sums in any number
of dimensions.

We must them prove that the Eisenstein series is holomorphic on H. We know that each
of its terms is clearly holomorphic as it has no poles or singularities in H. We recall a
result from complex analysis about limits of holomorphic functions: if a sequence {hn} of
holomorphic functions on a common open set Ω ⊆ C converges uniformly on all compact
subsets of Ω, then the pointwise limit h(z) = limn→∞ hn(z) is also holomorphic on Ω. The
region Ω that lets us invoke this result for the Eisenstein series is a vertical strip of the sort
{z ∈ H : |R(z)| ≤ α, I(τ) ≥ β}, for some α > 0, β > 0 that we invoked in parentheses above,
and applying the Weierstra M -test (proof not detailed here).

We now prove that Gk satisfies two modularity conditions. For the first condition, we have

Gk(τ + 1) =
#

(m,n) ∕=(0,0)

1

(m(τ + 1) + n)k
=

#

(m,n) ∕=(0,0)

1

(mτ + (m+ n))k
.

If we reindex the double sum by setting m′ = m and n′ = m+n, then the condition (m,n) ∕=
(0, 0) is equivalent to (m′, n′ − m′) ∕= (0, 0) which is also equivalent to (m′, n′) ∕= (0, 0), so
our double sum becomes

Gk(τ + 1) =
#

(m′,n′) ∕=(0,0)

1

(m′τ + n′)k
= Gk(τ).

For the second condition, we have

Gk(−
1

τ
) =

#

(m,n) ∕=(0,0)

1

[(−m
τ
) + n]k

=
#

(m,n) ∕=(0,0)

τ k

(nτ −m)k
= τ k

#

(m,n) ∕=(0,0)

1

(nτ −m)k
.

If we reindex the double sum by setting m′ = n and n′ = −m, then the condition (m,n) ∕=
(0, 0) is equivalent to (−n′,m′) ∕= (0, 0) which is equivalent to (m′, n′) ∕= (0, 0), so our double
sum becomes

Gk(−
1

τ
) = τ k

#

(m′,n′) ∕=(0,0)

1

(m′τ + n′)k
= τ kGk(τ).

The last condition to verify is bounded behavior of Gk(τ) as τ → i∞. Since we are inter-
ested in the limit at infinity in the imaginary direction, we can assume that I(τ) ≥ L > 0
for some L > 0 (say L = 1), and with the periodicity Gk(τ + 1) = Gk(τ), we can assume
that |R(τ)| ≤ 1

2
. We are therefore in the situation of the vertical half-strip with bounded

width that we described in the earlier part of this proof when sketching proof of absolute
convergence of Gk(τ). So there is some δ > 0 such that |mτ +n| ≥ δ|mi+n| for all τ in this
strip and all m,n ∈ Z.
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Since Gk(τ) is absolutely convergent, we can rearrange its terms without altering the re-
sult of the sum, so we can separate the terms m = 0 from the terms m ∕= 0 and write

Gk(τ) =
#

n ∕=0

1

nk
+

#

m ∕=0

#

n∈Z

1

(mτ + n)k
= 2

#

n∈N

1

nk
+ 2

#

m∈N

#

n∈Z

1

(mτ + n)k
,

where we were able to convert sums over non-zero integers into twice the sums over the
natural numbers because k is even therefore (−mτ − n)k = (mτ + n)k. We then note that
the first sum 2

.
n∈N

1
nk does not depend on τ so it is a constant, and therefore bounded

as τ → i∞. As to the second term 2
.

m∈N
.

n∈Z
1

(mτ+n)k
, we note that it is bounded in

absolute value by 2
.

m∈N
.

n∈Z
1

|mτ+n|k ≥ 1
δk

.
1

|mi+n|k and the right-hand side converges
independently of τ , so the entire sum is bounded as τ → i∞. □

We now introduce the q-series, also known as the Fourier series representation of Gk(τ), as
this representation will be very fruitful in deriving results around spaces of modular forms,
their dimensions, relations between modular forms, as well as results in Number Theory.

The first intuition in the following result which leads to the Fourier representation is that if
a function is periodic in the sense that f(τ +1) = f(τ), then it is reminiscent of the function
e2πiτ which also satisfies this periodicity.

Theorem 6.3 (First q Representation Result). Let f : H → C be holomorphic, and
satisfying f(τ + 1) = f(τ) for all τ ∈ H, and with f bounded as τ → i∞. Then there is a
sequence an ∈ C such that for all τ ∈ H

f(τ) =
#

n∈Z+

ane
2πinτ .

In addition, f(τ) has a limit as τ → i∞.

Proof. We will only sketch the proof to convey the idea of how the coefficients an are derived.
If we let q = e2πiτ , with τ = x + iy ∈ H (i.e., y > 0), then q = e−2πye2πix, and we have
0 < |q| = e−2πy < 1 because y > 0, therefore the image of H by the function q(τ) is the
punctured unit disk D∗ = {q ∈ C : 0 < |q| < 1}. Also, we have

e2πiτ = e2πiτ
′ if and ony if τ ′ = τ + n, with n ∈ Z,

so if we define the function
f̃(q) = f(τ) for q = e2πiτ ,

then this function f̃ is well-defined on the punctured unit disk.

Since f is bounded as τ → i∞ which corresponds to y → ∞ and to q → 0, then f̃(q)
which is holomorphic on D∗ can be analytically continued at q = 0 (by the Riemann sin-
gularity removal theorem), so that f̃ becomes holomorphic on the unit disk D. We can
therefore write f̃ as a power series around the point q = 0, so let this power series be

f̃(q) =
∞#

n=0

anq
n =

∞#

n=0

ane
2πinτ , with a0 = f̃(0) = f(i∞).

□
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Since the result above is true even before considering the other weight-k modularity condi-
tion, it is evidently also true whenever f is a modular form because a modular form certainly
satisfies the conditions of Theorem 6.3. We therefore given the definition in the context of
a modular form.

Definition 6.4 (q-expansion and Fourier Coefficients). The q-expansion of a modular
form f(τ) is the series

∞#

n=0

anq
n for which f(τ) =

∞#

n=0

ane
2πinτ .

The coefficients an are the Fourier coefficients of f .

Remark 6.5. It is frequent to see the abuse of notation in the writing f(q) when writing
the q-expansion for f(τ), instead of always distinguishing the variable change with a f̃(q)
notation.

Remark 6.6 (Second Modularity Condition Hidden from View). We note that while
the first modularity condition f(τ+1) = f(τ) is well encoded in the q-expansion of a modular
form, the second condition f(− 1

τ
) = τ kf(τ) is not visible at all in the q-expansion. In fact,

by looking at a q-expansion, it is not apparent at all whether it is the q-expansion of a
modular form or not.

We now state and sketch the proof of an explicit expression for the q-expansion of the
Eisenstein series. On the way to doing so, we state two beautiful definitions and results
from Fourier analysis, namely the introduction of the Fourier transform of a function and
the Poisson summation formula that relates a function and its Fourier transform.

Definition 6.7 (Fourier Transform). For an absolutely integrable function f : R → C,
i.e., such that

/∞
−∞ |f(x) dx < ∞, we define its Fourier Transform as the function (which is

a continuous function)
f̂ : R → C

f̂(ξ) =

0 ∞

−∞
f(x)e2πixξ dx.

Lemma 6.8 (Poisson Summation Formula). If a function f : R → C as well as its
Fourier transform f̂ : R → C are both continuous and absolutely integrable, then the Poisson
summation formula gives the remarkable result#

n∈Z

f(n) =
#

n∈Z

f̂(n).

Remark 6.9. We will not provide the proof of the Poisson summation formula but we note
that it is a very powerful result (which we will use in the next theorem), that equates the
sum from sampling one function over all the integers to the sum from sampling its Fourier
transform over all the integers.

Lemma 6.10. For z ∈ H and k ≥ 3, the following equality holds as a result of the Poisson
summation formula

#

n∈Z

1

(z + n)k
=

(−2πi)k

(k − 1)!

#

n∈N

nk−1e2πinz.
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Proof. We will not give the detailed proofs but mention that the right-hand side is obtained
as a result of calculating the Fourier transform of the function fz(x) = 1

(z+x)k
using the

Cauchy residue theorem on a proper contour, then summing the samples of fz(x) and of its
Fourier transform over all the integers. □
Theorem 6.11. For even k ≥ 4, the q-expansion of Gk(τ) is

Gk(τ) = G̃k(q) = 2ζ(k) +
2(2πi)k

(k − 1)!

#

n∈N

σk−1(n)q
n,

where σk−1(n) =
.

d|n d
k−1 is the sum of the kth powers of the divisors of n.

Proof. We only sketch the proof in its main outline, and we start from an expression of
Gk(τ) that we had derived at the end of the proof of Theorem 6.2 on Eisenstein series being
modular forms. We have

Gk(τ) = 2
#

n∈N

1

nk
+ 2

#

m∈N

#

n∈Z

1

(mτ + n)k
= 2ζ(k) + 2

#

m∈N

1
#

n∈Z

1

(mτ + n)k

2
.

By Lemma 6.10, the rightmost term in parentheses in the equation above can be expressed
as

#

n∈Z

1

(mτ + n)k
=

(−2πi)k

(k − 1)!

#

n∈N

nk−1e2πinmτ ,

where we replaced the parameter z from Lemma 6.10 with mτ .
We therefore have

Gk(τ) = G̃k(q) = 2ζ(k) +
2(−2πi)k

(k − 1)!

#

m∈N

#

n∈N

nk−1e2πinmτ .

We can now reindex the double sum over the natural numbers with a single sum over the
values that the product r = nm of the indices can take, and regroup terms so that a term in
the series has exponent e2πirτ with r = nm. It becomes clear that this term will be multiplied
by a sum of terms that came from nk−1 where n | nm, i.e., a sum over d | r of terms dk−1.
More specifically, we have

Gk(τ) = G̃k(q) = 2ζ(k) +
2(−2πi)k

(k − 1)!

#

r∈N

3

445
#

d|r
d∈N

dk−1

6

778 e2πirτ

= 2ζ(k) +
2(−2πi)k

(k − 1)!

#

r∈N

σk−1(r)
!
e2πiτ

"r

= 2ζ(k) +
2(−2πi)k

(k − 1)!

#

r∈N

σk−1(r)q
r.

□
Remark 6.12. Euler had already found a formula for ζ(k) when k ≥ 2 is even, by way of
Bernoulli numbers, and it is

ζ(k) =
(2π)k(−1)

k
2
+1

k!

Bk

2
= − (2πi)k

(k − 1)!

Bk

2k
,
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where Bk is the kth Bernoulli number, i.e., it is one of the rationals appearing in the power
series

x

ex − 1
=

#

k≥0

Bk

k!
xk = 1− 1

2
x+

1

12
x2 − 1

720
x4 + . . .

The Bernoulli numbers are 0 for odd k > 1 and early values of Bernoulli numbers are the
following:

k : 0 1 2 4 6 8 10 12

Bk : 1 − 1

2

1

6
− 1

30

1

42
− 1

30

5

66
− 691

2730

We therefore have another expression for the Eisenstein series, using the Bernoulli num-
bers, which we state in the next theorem.

Theorem 6.13 (Eisenstein Series and Bernoulli Numbers). We have the following

Gk(τ) = G̃k(q) = 2ζ(k)− 4kζ(k)

Bk

#

n∈N

σk−1(n)q
n

= 2ζ(k)

9
1− 2k

Bk

#

n∈N

σk−1(n)q
n

:
.

Since it is often convenient to have the constant term equal to 1, we add a definition for
the normalized Eisenstein series of weight k

Definition 6.14 (Normalized Eisenstein Series). Foe even k ≥ 4, we define the normal-
ized Eisenstein series of weight k to be

Ek(τ) = Ẽk(q) =
G̃k(q)

2ζ(k)
= 1− 2k

Bk

#

n∈N

σk−1(n)q
n.

Example. Some examples of starting terms of q-expansions of standardized Eisenstein series
are:

• E4(τ) = Ẽ4(q) = 1 + 240
.

n∈N σ3(n)q
n = 1 + 240q + 2160q2 + 6720q3 + . . .

• E6(τ) = Ẽ6(q) = 1− 504
.

n∈N σ5(n)q
n = 1− 504q − 16632q2 − 122976q3 − . . .

• E8(τ) = Ẽ8(q) = 1 + 480
.

n∈N σ7(n)q
n = 1 + 480q + 61920q2 + 1050240q3 + . . .

• E10(τ) = Ẽ10(q) = 1− 264
.

n∈N σ9(n)q
n = 1− 264q − 135432q2 − 5196576q3 − . . .

• E12(τ) = Ẽ12(q) = 1+ 65520
691

.
n∈N σ11(n)q

n = 1+ 65520
691

q+ 134250480
691

q2+ 11606736960
691

q3+. . .

• E14(τ) = Ẽ14(q) = 1− 24
.

n∈N σ13(n)q
n = 1− 24q − 196632q2 − 38263776q3 − . . .

Remark 6.15. We note that for some q-expansions of standardized Eisenstein series, the an
coefficients are integers. This is the case for k = 4, 6, 8, 10, 14, and is consistent with the fact
that the ratio 2k

Bk
is an integer for these values of k. This is not the case for all values of k,

however, as can be seen with the case k = 12.

We have seen in Theorem 5.9 the result that the product (in the sense of pointwise prod-
uct of functions) of a modular form of weight k with a modular form of weight l is in fact a
modular form of weight k + l. We will see in the next section an illustration of this result
in the form of some normalized Eisenstein series being the product of two others of lower
weight, but this result is spurious and depends in very interesting ways on the dimensions
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of the vector spaces of modular forms of a given weight, which is the subject of the following
section after next.

Having introduced Eisenstein series, and derived results for their q-expansions and associated
Fourier coefficients, we end this section with a question relative to whether the expression
we have derived for the q-expansion of normalized Eisenstein series for k ≥ 4 could also work
for k = 2 and give us a modular form for SL2(Z) of weight 2. We show that "we can come
close" to having one, but we will have a more definitive result about the existence (or lack)
of modular forms of weight 2 for SL2(Z) in the next section.

Lemma 6.16. For all τ ∈ H, we have the equality
1

I
!
− 1

τ

" = τ 2
1

I(τ)
− 2iτ.

Proof. Let τ = x+ iy, x, y,∈ R, so that y = I(τ). We have

−1

τ
= − 1

x+ iy
= − x− iy

x2 + y2
=

−x+ iy

x2 + y2
.

This implies that

I

%
−1

τ

&
=

y

x2 + y2
,

and
1

I
!
− 1

τ

" =
x2 + y2

y
.

We now calculate the right-hand side of our desired equality and we have

τ 2
1

I(τ)
− 2iτ =

x2 − y2 + 2ixy

y
− 2i(x+ iy)

=
x2 − y2 + 2ixy − 2ixy + 2y2

y

=
x2 + y2

y
.

We have therefore shown equality. □
Corollary 6.17. A corollary of the result above is that

3

π
· 1

I
!
− 1

τ

" = τ 2
%
3

π
· 1

I(τ)

&
− 6i

π
τ.

Proof. All we need is multiply the equality from Lemma 6.16 by 3
π
∕= 0 on both sides. □

Corollary 6.18. The function
φ : H → C

φ(τ) =
3

π
· 1

I(τ)

satisfies the condition
φ

%
−1

τ

&
= τ 2φ(τ)− 6i

π
τ.
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In other words, this function almost exhibits the second modularity condition of weight 2 for
SL2(Z), except for the extra term −6i

π
τ .

Proof. This is a direct consequence of the definition of the second modularity condition with
weight 2 and of the result of Corollary 6.17. □
Definition 6.19 (Eisenstein Series of Weight 2). From the general expressions that
we have previously derived for Eisenstein series and normalized Eisenstein series for even
weights k ≥ 4, we extend these expressions to the case k = 2 and we will then assess what
properties these Eisenstein series still exhibit from the relevant standpoint to modular forms.
We define

G2(τ) = G̃2(q) = 2ζ(2) +
2(2πi)2

(2− 1)!

#

n∈N

σ1(n)q
n =

π2

3
− 8π2

#

n∈N

σ1(n)q
n,

and
E2(τ) = Ẽ2(q) =

G2(τ)

2ζ(2)
=

G̃2(q)

2ζ(2)
= 1− 24

#

n∈N

σ1(n)q
n.

Theorem 6.20 (Properties of G2(τ) and E2(τ)). We state, without fully proving, the
following facts about these Eisenstein series of weight 2 for SL2(Z): these functions satisfy
all of the conditions of being modular forms for SL2(Z) with weight k = 2 except for the
second modularity condition.
Proof. The series G̃2(q) converges for all q ∈ D because σ1(n) ≤

.n
m=1 m = n(n−1)

2
≤ n2

2
,

therefore
.

n∈N σ1(n)q
n is dominated as a non-negative series by the series with terms n2qn

whose radius of convergence is the unit disk D. It is also holomorphic in q as any power
series is within its radius of convergence. By the inverse transformation of q = e2πiτ , i.e., by
choice of a proper logarithm branch for τ as a function of q, the functions G2(τ) and E2(τ)
are also convergent and holomorphic in τ on H.

Also, G2(τ) → π2

3
and E2(τ) → 1 as τ → i∞, because with τ = x + iy and y > 0, we

have
qn = e2πinτ = e−2πnye2πinx,

and this implies
|
#

n∈N

σ1(n)q
n| ≤

#

n∈N

|σ1(n)|e−2πny ≤ e−2πy
#

n∈N

n2e−2π(n−1)y ≤ Me−2πy,

where M can be a constant that uniformly bounds the series
.

n∈N n
2e−2π(n−1)y for all values

of y above a certain positive threshold (say, y > 1), which is the case when we're examining
behavior as y → ∞, i.e., as τ → i∞. Therefore the series

.
n∈N n

2e−2π(n−1)y is dominated in
absolute terms by a constant (that does not depend on y) times the term e−2πy which goes
to 0 as y → ∞.

In addition, G2(τ + 1) = G2(τ) and correspondingly E2(τ + 1) = E2(τ), because the terms
of their q-expansion series qn = e2πinτ clearly satisfy e2πin(τ+1) = e2πinτ · e2πi = e2πinτ .

So the last question is does G2(τ) satisfy the second modularity condition with k = 2
for SL2(Z), i.e., is it the case that G2

!
− 1

τ

"
= τ 2G2(τ)? The answer is in fact "no", but there

is an alternative result, which we state without proving in the next theorem. □
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Theorem 6.21 (Not Quite Modular G2 and E2). The functions G2(τ) and E2(τ) satisfy
the following equivalent equalities. For all τ ∈ H, we have

G2

%
−1

τ

&
= τ 2G2(τ)− 2πiτ,

and

E2

%
−1

τ

&
= τ 2E2(τ)−

6i

π
τ.

Remark 6.22. We notice that the function E2(τ) satisfies the exact same functional equality
as the function φ(τ) = 3

π
· 1
I(τ)

that we introduced in Corollary 6.18, so we ask what happens
if we consider the function that is equal to their difference.

Definition 6.23 (E∗
2(τ)). We define the function on H

E∗
2(τ) = E2(τ)− φ(τ) = E2(τ)−

3

π

1

I(τ)
.

Proposition 6.24 (E∗
2(τ) Not Holomorphic). The function E∗

2(τ) is bounded as τ → i∞,
and it satisfies the two modularity conditions for being a modular form of weight 2 for LS2(Z).
However, it is not holomorphic.

Proof. It is easy to verify that the function satisfies the two modularity conditions. Also, it
has a limit of 1 as τ → i∞ because E2(τ) → 1 and 3

π
1

I(τ)
→ 0 as τ → i∞. However, it is not

holomorphic because the term 1
I(τ)

is real, and a function that only takes values in R cannot
be holomorphic by the Open Mapping Theorem which states that a holomorphic function
must map an open set to an open set (and there is no open set in C that can be a subset of
R as an open set in C must contain some open ball and R doesn't). □

7. Mock Modular Forms and Modular Forms on Subgroups

We have found in the previous section that we could construct a function that met all
the conditions of being a modular form on SL2(Z) of weight 2, except that it was not a
holomorphic function on H. We introduce a definition to represent the holomorphic part
of such functions, which turn out to have a very useful set of applications, in particular in
the direction of quantifying the cardinality of some of the Finite Simple Groups (introduced
in Definition 2.38), and of the dimensions of the vector spaces towards which they have
isomorphisms, i.e., the dimensions of their representations (as introduced in Definition 2.58).

Definition 7.1 (Mock Modular Form). When a function on H satisfies the conditions
of modular forms, except for the condition of being holomorphic, then if the function has a
holomorphic part (e.g., a subset of its terms), then the holomorphic part of such a function
is called a mock modular form.

Example. The function E∗
2(τ) introduced in Definition 6.23 and discussed as being non-holo-

morphic in Proposition 6.24 gives us a mock modular form by taking the holomorphic part
which is E2(τ) and letting go of the non-holomorphic part which is the term 3

π
1

I(τ)
.

We know define a few concepts that set the stage for defining modular forms on finite-index
subgroups of SL2(Z).



42 ALEXANDRE ACRA

Definition 7.2 (Compactification). The compactification of a topological set (a set armed
with a distance, so that limits and convergence have a meaning) is the process of adding to
that set the points that it needs to become a compact set. We recall that a compact set is a
set such that from any cover of that set made of open sets, there is a cover of that compact
set by a finite subset of the open sets that gave the cover.

Example. As an example that is relevant to our context, we have described in Theorem 4.6 the
Fundamental Domain F of the group action of SL2(Z) on H. This set has closed boundaries
on three of its sides (an arc of the unit circle and two vertical lines), but it is not compact
in the direction i∞. So we compactify it by taking its union with {∞}.

Definition 7.3 (Cusp). A cusp is an element in the set that is added to compactify a given
set. Referring to Definition 7.2, we say that the set is compactified by adding a set of cusps
to it, such that the union of the original set with the set of cusps becomes a compact set.

Example. The only cusp of the fundamental domain of the group action of SL2(Z) (or of
PSL2(Z)) on H is the point at i∞, i.e., τ = i∞. In the q-representation, it is the point
q = 0, which corresponds to the τ = i∞.

Definition 7.4 (Cusp of Group Action). When we have a group action from a group G
on a space S, we define the cusp of the group action to be the cusp that compactifies the
orbits of the elements of S by the action of the elements of G.

Example. The cusp of the group action of Γ = SL2(Z) on H is the set of points needed to
compactify the orbits of all the points in H. These orbits each have one representative in
the Fundamental Domain, but they each also have an infinity of points within H under the
action of elements of Γ = SL2(Z). We have the following theorem.

Theorem 7.5 (Cusps of Group Actions of Γ = SL2(Z) on H). The cusps of the action
by Γ on the points in H is made of all rational points as well as the point at infinity. It is
denoted as

P1(Q) = Q ∪ {∞}.

Remark 7.6. While we don't give the proof of Theorem 7.5, we note the importance of cusps
to the upcoming definition of modular forms for subgroups of SL2(Z), especially due to the
fact that their fundamental domains will have additional cusps to the single cusp of the
fundamental domain of Γ = SL2(Z).

We saw in Theorem 6.21 that the Eisenstein series E2 was not quite a modular form be-
cause it failed to satisfy the modularity condition under all transformations of Γ = SL2(Z).
We also saw at the start of this section one approach to relax the conditions by defining a
mock modular form which we extracted as the holomorphic part of E∗

2 which satisfied the
modularity conditions with weight 2 but was not holomorphic.

In the next definition, we will explore a different direction of relaxing the conditions of
a modular form, by requiring the modularity conditions to be met for all transformations by
matrices from a subgroup of SL2(Z) instead of the entire Γ = SL2(Z). This is motivated by
the following observation.

Theorem 7.7. The function F (τ) = 2E2(2τ) − E2(τ) is holomorphic, bounded at i∞, and
it also satisfies the modularity condition with weight 2 for the Hecke congruence subgroup
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Γ0(2) of Γ = SL2(Z), which -- recalling Definition 3.18 -- is the subgroup of SL2(Z) with an
even lower left entry, i.e.,

Γ0(2) =

$%
a b
c d

&
: c ≡ 0 (mod 2)

'
.

Remark 7.8. We note that the matrix S =

%
0 −1
1 0

&
is not an element of Γ0(2) because its

lower left entry is odd. This is the intuitive explanation to why the function F (τ) is able to
satisfy the modularity condition of weight 2 for this particular subgroup of SL2(Z).

Theorem 7.9 (Finite Index 3 of Γ0(2)). The subgroup Γ0(2) has finite index of 3, and is
generated by three matrices

Γ0(2) =

;%
−1 0
0 −1

&
,

%
1 1
0 1

&
,

%
1 0
2 1

&<
.

We now proceed to define modular forms on subgroups. We will see that we will place a
higher requirement than simply translating all conditions of a modular form for SL2(Z) to
similar conditions for a subgroup of SL2(Z). In particular, we will introduce a condition of
being holomorphic at the cusps.

Definition 7.10 (Modular Form for Finite Index Subgroup). A modular form of
weight k for a finite index subgroup G ⊆ SL2(Z) is a function f : H → C satisfying the
following three conditions:

• f is holomorphic on H.
• Modularity of weight k for the finite-index subgroup G:

f

%
aτ + b

cτ + d

&
= (cτ + d)kf(τ) for all τ ∈ H and all

%
a b
c d

&
∈ G.

• Holomorphicity at the cusps:
1

(cτ + d)k
f

%
aτ + b

cτ + d

&
is bounded as τ → i∞ for all

%
a b
c d

&
∈ SL2(Z).

Remark 7.11. We note that the third condition of holomorphicity at the cusps requires the
product (cτ + d)−kf

!
aτ+b
cτ+d

"
to be bounded at τ → i∞ not only for actions of matrices in

the finite index subgroup G, but in fact for actions of all matrices in SL2(Z). It is the
modularity condition with weight k which is relaxed to only apply for actions of the finite
index subgroup G.

Remark 7.12. The fundamental domain of the group action of a finite index subgroup of
SL2(Z) is a superset of the fundamental domain of the group action of the entire SL2(Z).

For instance, the fundamental domain of Γ0(2) consists of F ∪ fS(F)∪ fST (F), where fS(F)
and fST (F) refer to the respective actions of the matrices S and ST on the original funda-
mental domain F of SL2(Z). In particular, this fundamental domain reaches into the unit
circle (which F did not) and has additional cusps at 0, besides the cusp at ∞ that was
already a cusp for F .

Theorem 7.13. The function F1(τ) = 2E2(2τ) − E2(τ) is a modular form of weight 2 for
the finite index subgroup Γ0(2) of SL2(Z).
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Remark 7.14. We don't provide the proof of this theorem but one of its remarkable conse-
quences is a path to the proof of the four-square theorem, which we examine in the next
section.

8. Four-Square Theorem

In 1770, Joseph-Louis Lagrange proved the four-square theorem which states that every
natural number can be written as the sum of four integer squares. The proof given by
Lagrange, while valid, was non-constructive. In 1834, Carl Gustav Jakob Jacobi gave a
constructive proof with a formula for the number of ways that a natural number could be
written as the sum of four squares. We will state the theorem, and proceed to sketch its
proof using modular forms.

Remark 8.1. In the course of the proof sketch, we will use in anticipation a result that will
only be discussed in the following section on dimensions of the vector spaces of modular
forms of a given weight.

Theorem 8.2 (Four-Square Theorem). For n ∈ Z+, let r4(n) designate the number of
ways that n can be written as the sum of four integer squares, where order matters, i.e.,

r4(n) = |{(a, b, c, d) ∈ Z4 : a2 + b2 + c2 + d4 = n}|.
Then we have =

r4(n) = 8σ1(n), if n is odd.
r4(n) = 24

.
d|n

d odd
d, if n is even.

Another way to write the same result is the following:
r4(n) = 8

#

m:4∤m|n

m.

Proof. The rest of this section is a sketch of the proof of the theorem, so we will first define
the Jacobi Θ function, then proceed to outline the proof. □
Example. We have

r4(0) = 1,

r4(1) = 8,

r4(2) = 24.

Definition 8.3 (Jacobi Theta Function). We define the Jacobi Θ function as
Θ : H → C

Θ(τ) =
#

m∈Z

e2πim
2τ , i.e.

Θ̃(q) =
#

m∈Z

qm
2

, with q = e2πiτ .

Another way to also write Θ̃ by regrouping opposite terms in Z is the following:
Θ̃(q) = 1 + 2

#

m∈N

qm
2

= 1 + 2q + 2q4 + 2q9 + 2q16 + . . .

We now consider the function Θ raised to the 4th power, i.e., Θ4 = Θ · Θ · Θ · Θ, and we
have the following result.
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Theorem 8.4.
Θ̃4(q) =

#

n∈Z+

r4(n)q
n.

Proof. We write out Θ̃ as the product of its four factors

Θ̃4(q) =

1
#

m∈Z

qm
2

21
#

m∈Z

qm
2

21
#

m∈Z

qm
2

21
#

m∈Z

qm
2

2
,

so the coefficient of qn for Θ̃4 is exactly the number of ways that 4 integer squares in Z can
add up to the exponent n, since the exponents in each of the four sum-factors are squares
of integers in Z.

We conclude that the Fourier coefficients of Θ4(τ), i.e., the coefficients of Θ̃4(q) are the
quantities r4(n) as we defined them in Theorem 8.2. □

Corollary 8.5. We have
Θ̃4(q) = 1 + 8q + 24q2 + . . .

Claim 8.6 (Θ4 Modular Form for Γ0(4)). The fourth power of the Jacobi Θ function is
a modular form of weight 2 for the finite index subgroup Γ0(4) of SL2(Z), i.e., the subgroup
of matrices whose lower left entry is a multiple of 4.

Proof. We will not give the proof other than mentioning that the proof is derived from the
application of the Poisson summation formula. □

Remark 8.7. It can be said in a certain sense (of the fourth power being a modular form of
weight 2) that the Θ function is "modular of weight 1

2
" for the subgroup Γ0(4).

We cited in Theorem 7.13 the result that F1(τ) = 2E2(2τ) − E2(τ) is a modular form of
weight 2 for the finite index subgroup Γ0(2). Since Γ0(4) ⊂ Γ0(2), this implies that F1(τ)
is also a modular form of weight 2 for the finite index subgroup Γ0(4). This is because
a function that satisfies the modularity condition for all matrices in a larger subgroup will
also satisfy these conditions for the smaller subgroup which is a subset of the larger subgroup.

Another fact that we cite without proving it is that the function
F2(τ) = 2E2(4τ)− E2(2τ) = F1(2τ)

is in fact a modular form of weight 2 for the finite index subgroup Γ0(4) of SL2(Z), although
it is not a modular form of weight 2 for the finite index subgroup Γ0(2). We note that the
function F2(τ) being the same as F1(2τ), its q-expansion F̃2(q) is the same as the q-expansion
F̃1(q) except for the series being expressed in powers of q2 instead of powers of q.

Theorem 8.8 (Expansions of F1 and F2). We have the following q-expansions for the
functions F1(τ) = 2E2(2τ)− E2(τ) and F2(τ) = 2E2(4τ)− E2(2τ):

F1(τ) = F̃1(q) = 1 + 24
#

n∈N

3

45
#

d|n
d odd

d

6

78 qn = 1 + 24q + . . .
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F2(τ) = F̃2(q) = 1 + 24
#

n∈N

3

45
#

d|n
d odd

d

6

78 q2n = 1 + 24q2 + . . .

Proof. We recall from Definition 6.19 that

E2(τ) = Ẽ2(q) = 1− 24
#

n∈N

σ1(n)q
n.

Therefore, we have

F1(τ) = F̃1(q) = 2

1
1− 24

#

n∈N

σ1(n)q
2n

2
−

1
1− 24

#

n∈N

σ1(n)q
n

2

= 1 + 24
#

n∈N

σ1(n)q
n − 2 · 24

#

n∈N

σ1(n)q
2n

= 1 + 24
#

n∈N
n odd

σ1(n)q
n + 24

#

n∈N

[σ1(2n)− 2σ1(n)]q
2n

Now looking at the term 24
.

n∈N
n odd

σ1(n)q
n on the right hand side of the last equality, the

coefficient σ1(n) when n is odd is the sum of the divisors of n, and these are all odd because
n is odd.

And looking at the term 24
.

n∈N[σ1(2n)− 2σ1(n)]q
2n, we note that the difference σ1(2n)−

2σ1(n) only leaves the odd divisors of 2n because the even divisors of 2n get canceled by
twice a divisor of n, term per term.

Our expression for F1 therefore becomes

F1(τ) = F̃1(q) = 1 + 24
#

n∈N
n odd

3

45
#

d|n
d odd

d

6

78 qn + 24
#

n∈N

3

45
#

d|2n
d odd

d

6

78 q2n

= 1 + 24
#

n∈N
n odd

3

45
#

d|n
d odd

d

6

78 qn + 24
#

n∈N
n even

3

45
#

d|n
d odd

d

6

78 qn

= 1 + 24
#

n∈N

3

45
#

d|n
d odd

d

6

78 qn.

This proves the desired result for F1. The proof of the similar result for F2 is identical,
except for the substitution of q2 instead of q in the series, so the result is easily shown to be
as stated in this theorem. □

Theorem 8.9 (F1, F2 Not Linearly Dependent). The funtions F1 and F2 are linearly
independent, i.e., they are not scalar multiples of one another.
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Proof. The Fourier coefficient for the single power of q is non-zero in F̃1(q) but it is zero in
F̃2(q). Just as with polynomials, infinite series cannot be linearly dependent if they non-zero
terms in one are zero terms in the other. □
Claim 8.10 (Space of Weight 2 Modular Forms for Γ0(4)). The modular forms of
weight 2 for the subgroup Γ0(4) form a vector space of dimension 2. As a result of showing
the linear independence of F1 and F2 which were both also claimed to be modular forms of
weight 2 for Γ0(4), the functions F1 and F2 form a basis of this vector space.

Proof. It is fairly easy to see that modular forms of a given weight and for a given subgroup
of SL2(Z form a vector space over the scalar field C, as the 0 function is a modular form
for all weights and all subgroups of SL2(Z), and linear combinations with coefficients in C
of similar weight modular forms are modular forms of the same weight, and all for the same
subgroup.

The next section will be dedicated to showing the dimensions of the spaces of modular
forms, so we will skip the part of the proof relative to the dimension being 2.

And we have proved in Theorem 8.9 that F1 and F2 are linearly independent. Since the
space is of dimension 2, two elements of the space that are linearly independent form a basis
of that space. □

We now proceed to the final step of the proof of the Four-Square Theorem, building on
the last result that F1 and F2 form a basis for the two-dimensional space of modular forms
of weight 2 for Γ0(4), and on the stated claim (not proven here) that Θ4 is itself a modular
form of weight 2 for the subgroup Γ0(4).

Theorem 8.11. We have the following relationship between Θ4 and F1 and F2

Θ4(τ) =
1

3
F1(τ) +

2

3
F2(τ).

Proof. We have shown previously that
Θ̃4(q) = 1 + 8q + 24q2 + . . .

and that
F̃1(q) = 1 + 24q + . . .

and that
F̃2(q) = 1 + 24q2 + . . .

and by virtue of F1 and F2 forming a basis for our two-dimensional vector space of interest,
we can express the vector Θ̃4 as a linear combination of the two vectors of the basis, so there
exist α, β ∈ C such that

Θ̃4 = αF1 + βF2.

Looking at the constant coefficients of all three q-expansions, we have
α + β = 1,

and looking the coefficient of q, we have
8 = 24α.

Our solution is therefore
α =

1

3
, β =

2

3
.
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□

This last result delivers the proof of the Four-Square Theorem, as it now suffices to regroup
the terms of the sum

Θ̃4(q) =
1

3

3

451 + 24
#

n∈N

3

45
#

d|n
d odd

d

6

78 qn

6

78+
2

3

3

451 + 24
#

n∈N

3

45
#

d|n
d odd

d

6

78 q2n

6

78 ,

and to set the coefficient of qn equal to r4(n). We have

Θ̃4(q) =
1

3

3

451 + 24
#

n∈N

3

45
#

d|n
d odd

d

6

78 qn

6

78+
2

3

3

451 + 24
#

n∈N

3

45
#

d|n
d odd

d

6

78 q2n

6

78

= 1 + 8
#

n∈N

3

45
#

d|n
d odd

d

6

78 qn + 16
#

n∈N

3

45
#

d|n
d odd

d

6

78 q2n

= 1 + 8
#

n∈N
n odd

3

45
#

d|n
d odd

d

6

78 qn + 8
#

n∈N
n even

3

45
#

d|n
d odd

d

6

78 qn + 16
#

n∈N

3

45
#

d|n
d odd

d

6

78 q2n

= 1 + 8
#

n∈N
n odd

3

45
#

d|n
d odd

d

6

78 qn + 8
#

n′∈N

3

45
#

d|2n′

d odd

d

6

78 q2n
′
+ 16

#

n∈N

3

45
#

d|n
d odd

d

6

78 q2n,

where we have reindexed the middle term with the sum over the all the even natural numbers
via n = 2n′ with n′ ∈ N.

We now note that the odd divisors of n are the same as the odd divisors of 2n because
for any of these odd divisors d we have gcd(d, 2) = 1, and we use the well-known result that
if an integer divides the product of two others while being relatively prime with one of the
factors of the product, then it must divide the other factor of that product.

So in the next step of simplification of the right-hand side above, we change the condi-
tion on the rightmost term d | n into the equivalent (as argued above) condition d | 2n due
to the fact that we're conditioning this by d being odd. We also simply rename the index n′
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in the middle term on the right-hand side as n, and we get the following:

Θ̃4(q) = 1 + 8
#

n∈N
n odd

3

45
#

d|n
d odd

d

6

78 qn + 8
#

n′∈N

3

45
#

d|2n′

d odd

d

6

78 q2n
′
+ 16

#

n∈N

3

45
#

d|n
d odd

d

6

78 q2n

= 1 + 8
#

n∈N
n odd

3

45
#

d|n
d odd

d

6

78 qn + 8
#

n′∈N

3

45
#

d|2n′

d odd

d

6

78 q2n
′
+ 16

#

n∈N

3

45
#

d|2n
d odd

d

6

78 q2n

= 1 + 8
#

n∈N
n odd

3

45
#

d|n
d odd

d

6

78 qn + 8
#

n∈N

3

45
#

d|2n
d odd

d

6

78 q2n + 16
#

n∈N

3

45
#

d|2n
d odd

d

6

78 q2n

= 1 + 8
#

n∈N
n odd

3

45
#

d|n
d odd

d

6

78 qn + 24
#

n∈N

3

45
#

d|2n
d odd

d

6

78 q2n

We lastly note that when n is odd, all of its divisors are also odd, so we can remove the
extra condition "d odd" that qualifies the sum of its divisors in the right-hand side of the
expression above. We also reindex the rightmost term with n′ = 2n and summing over n′

even natural number, then we reindex it back to n even natural number, so our expression
becomes

Θ̃4(q) = 1 + 8
#

n∈N
n odd

3

45
#

d|n
d odd

d

6

78 qn + 24
#

n∈N

3

45
#

d|2n
d odd

d

6

78 q2n

= 1 + 8
#

n∈N
n odd

3

5
#

d|n

d

6

8 qn + 24
#

n′∈N
n′ even

3

45
#

d|n′

d odd

d

6

78 qn
′

= 1 + 8
#

n∈N
n odd

3

5
#

d|n

d

6

8 qn + 24
#

n∈N
n even

3

45
#

d|n
d odd

d

6

78 qn

= 1
#

n∈N
n odd

8σ1(n)q
n +

#

n∈N
n even

24

3

45
#

d|n
d odd

d

6

78 qn

= 1 +
#

n∈N
n odd

r4(n)q
n +

#

n∈N
n even

r4(n)q
n

Identifying term-wise the last two lines on the right-hand side of the last expression above,
we obtain

r4(n) =

=
8σ1(n) if n is odd
24

.
d|n

d odd
d if n is even ,
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and this completes the proof of the Four-Square Theorem!

9. Dimensions of Spaces of Modular Forms

This section gives a few relative to the structure of modular forms of even weight as vector
spaces over the field C, each of finite dimensions. In fact, the set of conditions that define
modular forms (notably those relative to being bounded at infinity and being holomorphic)
are key to having the vector spaces keep finite dimensions.

In this section we also develop a few results for the dimensions of each space of modular
forms, via a calculation of the first few dimensions followed by a recursion on the dimensions
of modular forms of higher weights from those of lower weights.

We will derive results on bases of some spaces of modular forms, by examining the Eisen-
stein series as well as by introducing the discriminant function ∆ which is a discriminant
of an elliptic curve associated with the solution the Weierstra equation, and which has the
property of not vanishing anywhere on H and having no constant Fourier coefficient.

We start by stating a theorem that the set of modular forms with even weight k is a vector
space.

Theorem 9.1 (Mk Vector Space of Weight k Modular Forms). The modular forms
of weight k with respect to SL2(Z) form a vector space over the field C. We designate this
vector space by Mk.

Proof. Most of the axioms defining a vector space are inherited from the fact that functions
on H are themselves a vector space. The two key conditions to check are the fact that the 0
vector (i.e., the constant 0 function on H) is in Mk, and this is the case, and that modular
forms of weight k for SL2(Z) are closed under linear combinations with coefficients in C,
which is also the case. □

We now proceed to prove that the vector spaces Mk for k < 0 are all reduced to the trivial
vector space {0}. To do so, we start by introducing a lemma about an invariant of modular
forms to SL2(Z).

Lemma 9.2 (SL2(Z) Invariance). For any even integer k, and any modular form f of
weight k for SL2(Z), the expression

|f(τ)| · [I(τ)] k2

is SL2(Z) invariant, i.e., the expression for τ is equal to the expression for the image of τ
by the action induced by a matrix in SL2(Z).

Proof. We have shown in the proof of Theorem 4.2 the equality

I

%
az + b

cz + d

&
=

ad− bc

|cz + d|2I(z),

which, for an action induced by SL2(Z) implies

I

%
aτ + b

cτ + d

&
=

1

|cτ + d|2I(τ).
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Raising this equality to the power k
2

(with k even) gives us
)
I

%
aτ + b

cτ + d

&*k
=

1

|cτ + d|k [I(τ)]
k
2 .

By the modularity of f with weight k, we also have

f

%
aτ + b

cτ + d

&
= (cτ + d)kf(τ) =⇒

>>>>f
%
aτ + b

cτ + d

&>>>> = |cτ + d|k|f(τ)|.

Multiplying our two equalities together, we get>>>>f
%
aτ + b

cτ + d

&>>>> ·
)
I

%
aτ + b

cτ + d

&*k
= |cτ + d|k|f(τ)| · 1

|cτ + d|k [I(τ)]
k
2 = |f(τ)| · [I(τ)] k2 ,

which shows the invariance of the expression |f(τ)|·[I(τ)] k2 under group actions from SL2(Z).
□

Theorem 9.3 (Mk = {0} for k < 0). The vector space of modular forms of weight k < 0
for the group SL2(Z) is the trivial space with just the zero function as an element.

Proof. By Lemma 9.2, the function on H (with real values) |f(τ)| · [I(τ)] k2 is invariant by
actions induced by SL2(Z). It therefore attains all of its values for τ ∈ F , the fundamen-
tal domain of the group actions of SL2(Z), and we recall that this fundamental domain
is bordered by an arc of the unit circle at its bottom end, and by the two verticals lines
{τ ∈ H : R(τ) = ±1

2
} at its lateral ends.

We split F by a horizontal line {z ∈ H : I(z) = I}, for a real value I > 1 which will
shortly determine in this proof. As τ → i∞ with τ ∈ F , |f(τ)| is bounded as this is one of
the conditions of being a modular form, and I(τ) > 1 with k < 0 implies that

[I(τ)]
k
2 → 0 as τ → i∞.

Therefore, the product
|f(τ)| · [I(τ)] k2 → 0 as τ → i∞.

We can therefore now pick a value for I such that
I(τ) > I =⇒ |f(τ)| · [I(τ)] k2 ≤ 1.

And on the remaining part of F where I(τ) ≤ I, we have a compact set (delimited by the
horizontal line at I, the two vertical lines, and the arc of the unit circle). Noting that the
real-valued function |f(τ)[I(τ)] k2 is continuous, it must be bounded on a compact set.

We therefore have an upper bound M > 0 such that

|f(τ)|[I(τ)] k2 = |f(x+ iy)|y k
2 ≤ M =⇒ |f(x+ iy)| ≤ My−

k
2 ,

for all x + iy ∈ F , and by SL2(Z) invariance also for all x + iy ∈ H. We now write the
modular form f using its q-expansion with q = e2πiτ = e−2πye2πix, which is

f(x+ iy) =
#

n∈Z+

anq
n =

#

n∈Z+

ane
−2πnye2πinx.
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Multiplying both sides by e−2πimx for some m ∈ Z+, we get

f(x+ iy)e−2πimx =
#

n∈Z+

ane
−2πnye2πi(n−m)x.

We now fix y > 0, and we integrate the two sides of the last equality above over the range
x going from 0 to 1. We note that thanks to the term e−2πny the series on the right-hand
side is absolutely convergent, so we can bring the integral into the infinite series term-wise,
so we have 0 1

0

f(x+ iy)e−2πimx dx =
#

n∈Z+

ane
−2πny

0 1

0

e2πi(n−m)x dx.

The integral on the right is equal to 0 for n ∕= m, and is equal to 1 for n = m, so we only
have one term from the series contributing, which results in the equality0 1

0

f(x+ iy)e−2πimx dx = ame
−2πmy ⇐⇒ am = e2πmy

0 1

0

f(x+ iy)e−2πimx dx.

We therefore have, taking absolute values,

|am| =
>>>>e

2πmy

0 1

0

f(x+ iy)e−2πimx dx

>>>> ≤ e2πmy

0 1

0

|f(x+ iy)| dx.

Recalling our calculated bound |f(x+ iy)| ≤ My−
k
2 , our inequality above becomes

|am| ≤ e2πmyMy−
k
2

0 1

0

dx =
Me2πmy

y
k
2

,

and this inequality holds for any arbitrary value of y > 0. If we let y → 0+, the numerator
of the last fraction goes to M > 0 and the denominator goes to ∞ because k < 0, therefore
the entire fraction goes to 0. We therefore have |am| = 0 =⇒ am = 0. But this was true
for any arbitrary choice of m ∈ Z+, so we have just shown that every Fourier coefficient of
f is 0, so the function f must be the constant 0 function. □

We will now seek to leverage this result that Mk = {0} for all k < 0, to derive dimensions
of vector spaces Mk for even k > 0. To do this, we will leverage the existence of a modular
form ∆ ∈ M12 (modular form of weight 12) which vanishes nowhere on H and with no con-
stant term in the q-expansion, i.e., its constant Fourier term is a0 = 0.

To construct the modular form ∆, we will need a second Poisson summation result, which
we state together with the first result in one theorem (which we don't prove).
Theorem 9.4 (Two Poisson Summations). For a function f : R → C such that both f

and its Fourier transform f̂(ξ) =
/∞
−∞ f(x)e2πixξ dx are continuous and absolutely integrable,

we have the following two summation equalities:
#

n∈Z

f(n) =
#

n∈Z

f̂(n),

and #

n∈Z
n odd

(−1)
(n−1)

2 f(n) =
i

2

#

n∈Z
n odd

(−1)
(n−1)

2 f̂
,n
4

-
.
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We will apply the second Poisson summation to the function f(x) = xe−πax2 , with a > 0,
whose Fourier transform is f̂(ξ) = (− iξ

a3/2
)e−πξ2/a, noting that both functions are continuous

and absolutely integrable. The result we obtain is stated in the following theorem, which we
do not prove.

Theorem 9.5. We have the following equality between series as a result of applying the
second Poisson formula to the function f(x) = xe−πzx2 for a > 0:

#

n∈N
n odd

(−1)
(n−1)

2 ne−πan2/4 =
1

a3/2

#

n∈N
n odd

(−1)
(n−1)

2 ne−πn2/4a.

From this equality, we define a function inspired by the left hand side replacing the pa-
rameter a with −iτ .

Definition 9.6. We define the function θ (not to be confused with the Jacobi Θ function
discussed earlier), as

θ : H → C

θ(τ) =
#

n∈Z
n odd

(−1)
(n−1)

2 neπin
2τ/4,

which can also be written as
θ(x+ iy) =

#

n∈Z
n odd

(−1)
(n−1)

2 ne−πn2y/4eπin
2x/4,

Theorem 9.7 (Properties of θ). The function θ defined in Definition 9.6 is holomorphic
on H and it satisfies θ(τ) → 0 as τ → i∞. In addition, θ satisfies the property

θ

%
− 1

iy

&
= y3/2θ(iy).

Proof. We only prove the equality, starting from the definition of θ and leveraging the second
Poisson summation that we obtained in Theorem 9.5. We look at the value of θ for τ = iy
on the imaginary axis, and we have

θ(iy) =
#

n∈Z
n odd

(−1)
(n−1)

2 ne−πn2y/4

=
1

y3/2

#

n∈N
n odd

(−1)
(n−1)

2 ne−πn2/4y

=
1

y3/2
θ

%
i

y

&

=
1

y3/2
θ

%
− 1

iy

&

We therefore have, by swapping 1
y

instead of y,

θ

%
− 1

iy

&
= y3/2θ(iy).
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□
We are now ready to define our function ∆, which we do by raising the function θ to the

8th power which turns the 3/2 exponent in the expression of Theorem 9.7 into a 12 exponent
and makes it a modular form of weight 12. We will cite its properties without proving them.

Definition 9.8 (The ∆ Function). We define the function
∆(τ) = [θ(τ)]8.

Theorem 9.9 (∆ Modular Form in M12). The function ∆ is holomorphic, it converges to
0 as τ → i∞, and it is modular of weight 12 for SL2(Z). In addition, ∆ is non-vanishing over
H, its constant Fourier coefficient is 0. Lastly, its Fourier coefficient a1 for the monomial q
is non-zero, i.e., its q-expansion ∆̃(q) has a simple zero at q = 0, which is equivalent to ∆
having a simple zero as τ → i∞.

With the existence of such a function ∆ in hand, we can now proceed to deriving results
on the dimensions of the vector spaces Mk for even k > 0.

Theorem 9.10 (M0 Vector Space of Dimension 1). The vector space M0 of modular
forms of weight 0 has dimension 1.

Proof. It is clear that the constant function equal to 1 everywhere on H satisfies all the
conditions of being in M0. Now we let f be another modular form in M0, and let a0 ∈ C be
the constant term of it q-expansion f̃ , i.e., a0 = f̃(0). Then the function

f − a0 · 1
∆

is a modular form in M−12 by Corollary 5.10 about ratios of modular forms with the denom-
inator function vanishing nowhere on H. And we have shown in Theorem 9.3 that for k < 0,
Mk = {0}, which is clearly also true for k = −12. We therefore have

f − a0 · 1
∆

= 0 =⇒ f = a0 · 1 = a0.

The function f is therefore the constant function equal to a0 everywhere on H, which is a
scalar multiple of the constant function 1 on H. We have therefore shown that M0 = C · 1,
i.e., it is a vector space of dimension 1 with the constant function 1 being a basis for the
space. □
Theorem 9.11 (M4,M6,M8,M10 Vector Spaces of Dimension 1). The vector spaces
M4,M6,M8,M10 are all of dimension 1. Since we have shown the existence of Eisenstein
series Ek for even k ≥ 4, each of these vector spaces Mk for k ∈ {4, 6, 8, 10} has an Eisenstein
series Ek as its basis.

Proof. Let f ∈ Mk, and let a0 ∈ C be a0 = f̃(0) = limτ→i∞ f(τ). We then consider the
function

f − a0Ek

∆

which we now show satisfies all the conditions of Corollary 5.10. Since ∆ does not vanish n
H, it is clear that the ratio f−a0Ek

∆
is holomorphic on H. It is also the case that this ratio

satisfies the modularity conditions of weight −12.
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However, we must check the important condition of the ratio being bounded as tau → i∞
or equivalently the q expansion of the ratio being bounded as q → 0. The q-expansion
(f̃ − a0Ẽk)(q) has a zero constant term by construction, since the constant term of Ẽk is
equal to 1 by construction of these normalized Eisenstein series.

Crucially, the q-expansion ∆̃(q) has a simple zero at q = 0, such that the ratio under
consideration

,
f̃−a0Ẽk

∆

-
(q) not only has no constant term, but also the series in the numer-

ator has first non-zero term q to an exponent greater than or equal to 1 whereas the series
in the denominator has first non-zero term q (to the power 1) because we stated that ∆̃ has
a simple zero at q = 0. The ratio

,
f̃−a0Ẽk

∆

-
(q) therefore has a finite limit at q = 0, which

equivalently means that the ratio f−a0Ek

∆
has a finite limit as τ → i∞. This shows that the

boundedness condition of being a modular form is satisfied.

By Corollary 5.10, the ratio f−a0Ek

∆
is therefore a modular form in the vector space M−12

of modular forms of weight −12 and which is the trivial space equal to the constant zero
function {0}, so this ratio is the constant 0 function everywhere on H. This implies that

f = a0Ek

or equivalently that
Mk = C · Ek, for k = 4, 6, 8, 10.

□

Theorem 9.12 (M2 Vector Space of Dimension 0). The space M2 of modular forms of
weight 2 has dimension zero, i.e., it is reduced to a single element being the constant zero
function {0} on H.

Proof. Let f ∈ M12, then the modularity condition with weight 2 implies f(− 1
τ
) = τ 2f(τ).

We apply the equality to τ = i, and we get

f(−1

i
) = i2f(i) = −f(i),

but since −1
i
= i, the equality above becomes

f(i) = f(−1

i
) = i2f(i) = −f(i) =⇒ f(i) = 0.

By Theorem 5.9, the function f 2 = f · f is a modular form in M4, and we have shown in
Theorem 9.11 that M4 = C · E4. We can therefore express f 2 as

f 2 = αE4, for some α ∈ C.

Recalling that
E4(τ) = Ẽ4(q) = 1 + 240

#

n∈N

σ3(n)q
n,
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we derive the equality

f 2(τ) = f̃ 2(q) = α

1
1 + 240

#

n∈N

σ3(n)q
n

2
.

We now set τ = i, i.e., q = e2πi·i = e−2π, and we get

0 = f 2(i) = f̃ 2(e−2π) = α

1
1 + 240

#

n∈N

σ3(n)e
−2πn

2
.

Since the parenthesized term on the right-hand side above is strictly positive, and the left-
-hand side is 0, we must have α = 0. The function f must therefore be the constant 0
function on H. This proves that M2 = {0} and its dimension is 0. □

Recapitulating the results achieved so far from the previous three theorems, we have the
following for spaces of modular forms and their dimensions:

k : 0 2 4 6 8 10

dim(Mk) : 1 0 1 1 1 1

We now state and prove a very powerful result on a recursion that links the dimensionalities
of Mk for all even k ≥ 0.

Theorem 9.13 (Mk Finite Dimensional and dim(Mk) = 1 + dim(Mk−12). For all even
k ≥ 0, the vector space Mk has finite dimension. Furthermore, we have the recurrence
relation

dim(Mk) = 1 + dim(Mk−12), for all even k ≥ 0.

Proof. □
Theorem 9.14 (Explicit Dimension of Mk). For even k ≥ 0, the dimension of the vector
space Mk is given by

dim(Mk) =

=
⌊k/12⌋+ 1, if k ∕≡ 2 (mod 12),

⌊k/12⌋, if k ≡ 2 (mod 12).

Proof. We have shown in Theorem 9.10, Theorem 9.11, and Theorem 9.12 the result to be
true for k = 0, 2, 4, 6, 8, 10, so we now focus on the cases of even k ≥ 12. We consider a
modular form f ∈ Mk, and we let a0 be its constant Fourier coefficient.

As with the previous cases, we consider the function g = f−a0Ek

∆
which is a modular form of

weight k − 12 per Corollary 5.10, i.e., g ∈ Mk−12 and f = a0Ek + g∆.

We now define the function ψ as follows:
ψ : C ⊕ Mk−12 → Mk

ψ

)%
α
g

&*
= αEk + g∆,

where we recall that an element in the direct sum C ⊕ Mk−12 is a vector with its first coor-
dinate being a complex scalar and its second coordinate being a complex scalar multiple of
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a modular form g ∈ Mk−12.

We now argue that ψ is a linear mapping, i.e., it is a homomorphism of vector spaces
over the field C, and it is a bijection. As a result, we will prove that ψ is an isomorphism
between its domain and its co-domain.

• ψ is a linear mapping: we verify the C-linear mapping property of ψ by verifying its
linearity for multiplication of a vector by a scalar in C and for summation of vectors
in C ⊕ Ek−12. We have

ψ

)
λ

%
α
g

&*
= ψ

)%
λα
λg

&*
= (λα)Ek + (λg)∆ = λ(αEk + g∆) = λψ

)%
α
g

&*
,

for all λ ∈ C and
%
α
g

&
∈ C ⊕ Mk−12. And we have

ψ

)%
α
g

&
+

%
β
h

&*
= αEk + g∆+ βEk + h∆ = (α + β)Ek + (g + h)∆ = ψ

)%
α + β
g + h

&*
,

for all
%
α
g

&
∈ C ⊕ Mk−12 and

%
β
h

&
∈ C ⊕ Mk−12.

So ψ is a linear mapping.

• ψ is surjective: for any modular form h ∈ Mk with constant Fourier coefficient a0, we
know that we can express it as h = a0Ek +

!
f−a0Ek

∆

"
∆, where a0 ∈ C and f−a0Ek

∆
∈

Mk−12. This shows that h is the image by ψ of a vector
%

a0
f−a0Ek

∆

&
∈ C ⊕ Mk − 12.

Since h was an arbitrary modular form in Mk, this shows that ψ is surjective.

• ψ is injective: to show that a linear map is injective, we can either show as we would
for any injective function that if two elements have the same image, then the two ele-
ments are the same, or we can take advantage of the fact that ψ is a linear mapping,
in which case injectivity can be shown by showing that its kernel is {0}, i.e., only the
0 vector has an image of 0. We do the latter:

If
%
α
g

&
∈ C ⊕ Mk−12 is such that ψ

)%
α
g

&*
= 0, then this implies that αEk+g∆ = 0

as a constant 0 function on H. As a result, the Fourier series for αEk + g∆ = 0
should have all coefficients equal to 0. We recall that the normalized Eisenstein se-
ries Ek has a constant Fourier coefficient equal to 1 and that the ∆ function has
a constant Fourier coefficient equal to 0 (no constant term in its q-expansion). We
must therefore have

α · 1 + 0 = 0 =⇒ α = 0.

So we are now left with
0 · Ek + g∆ = g∆ = 0.

But ∆ is the function that vanishes nowhere on H, and its product by the function
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g produces the constant 0 function on H. Therefore the function g must be the con-
stant 0 function on H. We have therefore shown that

ψ

)%
α
g

&*
= 0 =⇒

%
α
g

&
=

%
0
0

&
,

which is equivalent to showing that

ker(ψ) = {0} =

%
0
0

&
∈ C ⊕ Ek−12.

We have therefore shown that the vector spaces are isomorphic, i.e.,

C ⊕ Mk−12
∼= Mk.

This implies that
1 + dim(Mk−12) = dim(C ⊕ Mk−12) = dim(Mk),

and this proves that Mk with even k ≥ 12 is finite dimensional, and that its dimension is
dim(Mk) = 1 + dim(Mk−12).

Lastly, we have the sequence of dimensions {dim(Mk)} for even k ≥ 0 which is fully described
by the recursion dim(Mk) = 1+dim(Mk−12) and by the first six terms of the sequence being
1, 0, 1, 1, 1, 1.

And we have the sequence described for even k ≥ 0 by

=
⌊k/12⌋+ 1, if k ∕≡ 2 (mod 12)

⌊k/12⌋, if k ≡ 2 (mod 12)
,

and this sequence starts with the same first six terms as {dim(Mk)}, and satisfies the same
recursion. The two sequences are therefore equal. This achieves the proof that for even
k ≥ 0,

dim(Mk) =

=
⌊k/12⌋+ 1, if k ∕≡ 2 (mod 12),

⌊k/12⌋, if k ≡ 2 (mod 12).

□
Remark 9.15 (Dimensions of some Mk). We leverage the recursion and the first values
that we have already calculated for dimensions of Mk to show a few more values in the
sequence.

k 0 2 4 6 8 10 12 14 16 18 20 22 24
dim(Mk) 1 0 1 1 1 1 2 1 2 2 2 3 2

Remark 9.16. Another remark is that given the low dimensionality of many of these vector
spaces, it becomes quite easy to relate two or more modular forms of same weight, by com-
paring just one or a couple of their Fourier coefficients.

For instance, when a space Mk is of dimension 1, then any modular form of weight k must
be a scalar multiple of any other modular form of weight k. A simple comparison of their
constant Fourier coefficients yields the scalar factor relating the first form to the second.

Similarly, if a space Mk is of dimension 2, then any two linearly independent pair of modular
forms of weight k would form a basis for the space. Determination of linear independence is
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often very easy and can be achieved by simple comparison of the first few Fourier coefficients.
In this case too, a third modular form can be expressed as a linear combination of the first
two that form a basis, and the scalar coefficients of the linear combination can be determined
by equating the q-expansions forms and solving a small system of linear equations.

In fact, we can state a theorem (which we won't prove) to this effect. The important
insight to derive from this theorem is that since modular forms of given weights fall within
low-dimensional vector spaces, yet each such modular form has an infinite number of Fourier
coefficients, there must be a large amount of redundancy among these Fourier coefficients.

Theorem 9.17 (Form Determined by First R Fourier Coefficients). For each even
k ≥ 0, there is an R ∈ Z+, such that the first R Fourier coefficients of any weight k modular
form for SL2(Z) completely determine the modular form.

Example. A first example takes advantage of the fact that dim(M8) = 1, so all modular
forms of weight 8 for SL2(Z) are (complex) scalar multiples of each other. We know that
E8 ∈ M8, so E8 is a basis for it too, and the constant coefficient of E8 is equal to 1 (by
construction of the normalized Eisenstein series).

We also know by Theorem 5.9 that since E4 ∈ M4, then E2
4 ∈ M8. Therefore, there

must be some complex constant α such that E2
4 = αE8. But both modular forms have,

by constructions, constant coefficients equal to 1. Therefore α = 1, and we derived the
result

E2
4 = E8.

Example. Similarly, from dim(M10) = 1 , we know that E10 is a basis for M10. We also know
from Theorem 5.9 that E4E6 ∈ M10, so we know that E4E6 is a complex scalar multiple
of E10. But all three modular forms have a constant Fourier coefficient equal to 1, so the
constant is 1, and we have derived another result

E4E6 = E10.

Example. With dim(M12) = 2, and with the knowledge from Theorem 5.9 that E3
4 ∈ M12

and E2
6 ∈ M12, we can verify linear independence of E3

4 and E2
6 by a quick look at their

q-expansions which easily shows that they are not scalar multiples of one another. We there-
fore have a basis for M12 composed of E3

4 and E2
6 . Any other modular form of weight 12 for

SL2(Z) must therefore be expressible as a complex linear combination of E3
4 and E2

6 .

Since E12 ∈ M12, E12 must be a complex linear combination of the vectors E3
4 and E2

6

of the basis of M12. Looking at the constant and degree-1 Fourier coefficients of the three
functions gives us a system of two linear equations in two unknowns, and its solution reveals
another relation

E12 =
441

691
E3

4 +
250

691
E2

6 .

We end this section with a result that illustrates the central role played by Eisenstein
series in providing bases for all vector spaces Mk of modular forms for SL2(Z). In particular,
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we will show that just two specific Eisenstein series, raised to the right powers and properly
multiplied, deliver a basis for each Mk for even k ≥ 0.

Lemma 9.18. Every even integer k ≥ 4 can be written in the form

k = 4m+ 6n, for some m,n ∈ Z+.

Proof. Let k ≥ 4 be an even integer , then either k ≡ 0 (mod 4) or k ≡ 2 (mod 4).

If k ≡ 0 (mod 4), and with k ≥ 4, then there exists m ∈ N such that k = 4m = 4m + 0 · 6,
so we have found a pair of non-negative integers (m ≥ 1, n = 0) such that k = 4m+ 6n.

If k ≡ 2 (mod 4), and with k ≥ 4, then there exists some q ∈ N (i.e., q ≥ 1) such that
k = 4q + 2. If k = 6, then we are done with 6 = 0 · 4 + 1 · 6.

Otherwise, with k ≥ 10 and k ≡ 2 (mod 4), we have the following with q ≥ 2:
k = 4q + 2 = 4(q − 1)4 + 6 · 1,

so that (m = q − 1 ≥ 1, n = 1 ≥ 1) is a solution.
□

Remark 9.19. We note that the pair of solutions (m,n) may well not be unique -- in fact
there will typically be several solutions as the values of k get larger.

Corollary 9.20 (Em
4 En

6 ∈ Mk). For even k with k ≥ 4, we let (m,n) be a pair of non-negative
integers such that k = 4m + 6n. Then Em

4 En
6 ∈ Mk and has constant Fourier coefficient

equal to 1.

Proof. First off, it is easy to see that Em
4 En

6 has constant Fourier coefficient equal to 1 since
both E4 and E6 have constant Fourier coefficients equal to 1 by construction of the normal-
ized Eisenstein series.

We also know by iteratively invoking Theorem 5.9 that Em
4 ∈ M4m and En

6 ∈ M6n and
therefore the product Em

4 En
6 ∈ M4m+6n = Mk. □

Theorem 9.21 (Em
4 En

6 Basis for Mk). For k ≥ 0, the set

{Em
4 En

6 : m,n ∈ Z+, 4m+ 6n = k}
is a basis for Mk.

Proof. Let S(k) be the number of solutions in non-negative integers (m,n) to the equality
4m+ 6n = k. We check the first seven values of S(k), and we have:

• k = 0: 0 = 4 · 0 + 6 · 0 =⇒ S(0) = 1.
• k = 2: 2 ∕= 4m+ 6n, ∀m,n ∈ Z+ =⇒ S(2) = 0.
• k = 4: 4 = 4 · 1 + 6 · 0 =⇒ S(4) = 1.
• k = 6: 6 = 4 · 0 + 6 · 1 =⇒ S(6) = 1.
• k = 8: 8 = 4 · 2 + 6 · 0 =⇒ S(8) = 1.
• k = 10: 10 = 4 · 1 + 6 · 1 =⇒ S(10) = 1.
• k = 12: 12 = 4 · 3 + 6 · 0 = 4 · 0 + 6 · 2 =⇒ S(12) = 2.
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We see that S(k) = dim(Mk) for all k : 0 ≤ k ≤ 12.
We now sketch the proof that S(k) satisfies the following induction for k ≥ 12, and we will
see that the result comes from the fact that 12 = lcm(4, 6):

S(k) = 1 + S(k − 12).

We note that the number of solutions S(k) to 4m + 6n = k is the same as the number of
solutions to 2m+3n = k

2
, since we are focusing on even values of k, where the modular form

spaces are not trivially equal to {0} as is the case for k odd. We let h = k
2

for simplification
of notation.

The number of non-negative integer solutions (m,n) to 2m + 3n = h, which we denote
by S ′(h), is given by the coefficient of the term xh in the generating function

1

1− x2
· 1

1− x3
= (1 + x2 + x4 + x6 · · ·+ x2i + . . . )(1 + x3 + x6 + · · ·+ x3j + . . . )

We first note that there is only a single positive integer value h which cannot be realized
with non-negative (m,n) and 2m+3n = h is 1, and this is a result of the "Chicken McNugget
Theorem" that states that the largest such number is (2)(3)− 2− 3 = 1. So the product of
the two series above produces every power of xh for h ∈ N \ {1}.

We now observe that for N ∈ N such that 6(N − 1) ≤ h < 6N , we have

S ′(h) = 1 + S ′(h− 6) = · · · = (N − 1) + S ′[h− 6(N − 1)].

Indeed, we see from the expansion of the product of the two series above that the powers
of x less than 6 (with the exception of x1 which cannot be realized) can only be realized
in a single way, e.g., x2 · x3 = x5 is the only way to realize x5, and this corresponds to the
equation 2 + 3 = 5, i.e., to (m,n) = (1, 1). Then we arrive at x6 which -- because it is the
LCM of 2 and 3 -- appears in both of the series, so we get 2 ways to realize it, one from the
x6 which came from (x3)2 in the second series multiplying 1 from the first series, and one
from the x6 which came from (x2)3 in the first series multiplying 1 from the second series.
This corresponds to 3 · 2 + 0 = 0 + 2 · 3 = 6.

This pattern continues for 6 ≤ h < 12, e.g., the term x7 can be obtained in one way,
i.e., as x4 from the first series multiplying x3 from the second series and this corresponds
to 2 · 2 + 1 · 3 = 7. And this is one more than the number of ways of realizing x7−6 = x,
which was 0. On the other hand, x9 can be realized in two ways, which is one more than
for x9−6 = x3, and this is done by the product of 1 from the series with x9 from the second,
plus the product of x6 from the first series with x3 from the second.

And when we arrive at x12, which is double the LCM of 2 and 3, and therefore appears
in both series, we have 3 ways of realizing x12: 1 from the first series times x12 from the
second, or x12 from the first series times 1 from the second, or x6 from the first series times
x6 from the second. These correspond, respectively, to the three solutions to our integer
linear equation 2m+ 3n = 12 being 2 · 6 + 0 = 12, 0 + 3 · 4 = 12, and 2 · 3 + 3 · 2 = 12. And
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this is 1 more than the 2 ways there were of realizing x12−6 = x6.

We now argue that in order to prove our desired result for all h, it is sufficient to prove
it for the multiples of 6 = lcm(2, 3) values of h and for these multiples plus 1, i.e., it is
sufficient to prove it for h ≡ 0 (mod 6) and h ≡ 1 (mod 6).

This is because if we have a solution (m,n) that satisfies 2m+ 3n = h with h ≡ 0 (mod 6),
then it uniquely induces a solution for h + 2 by way of (m + 1, n), and a solution for h + 3
by way of (m,n+ 1), and a solution for h+ 4 by way of (m+ 2, n), and a solution for h+ 5
by way of (m + 1, n + 1). Due to this 1 : 1 relationship between solutions, the number of
solutions (m,n) to 2m+ 3n = h with h ≡ 0 (mod 6) is equal to the number of solutions for
h+ 2, h+ 3, h+ 4, and h+ 5.

This leaves out just h ≡ 1 (mod 6), but for this case we have a 1 : 1 association between
the solutions to 2m + 3n = 6(N + 1) + 1 and the number of solutions to 2m + 3n = 6N .
Indeed, there is a unique way to go from 6N to 6(N + 1) + 1 = 6N + 7, and it is the fol-
lowing: (m,n) is a solution for 2m + 3n = 6N if and only if (m + 2, n + 1) is a solution for
2m+ 3n = 6N + 7 = 6(N + 1) + 1, since 2(m+ 2) + 3(n+ 1) = 2m+ 3n+ 7 = h+ 7.

So we are down to only needing to prove the result that if h = 6N , then

S ′(h) = 1 + S ′(h− 6) = · · · = N + S ′(h− 6N) = N + 1.

To prove this equality, one way to proceed is by considering this as a "stars and bars" prob-
lem where the contributions of the multiple of 2 and of the multiple of 3 must each be a
multiple of 6, and there are N + 1 multiples of 6 when considering the set {0, 6, . . . , 6N},
so the number of choices for two non-negative numbers adding up to 6N while each is a
non-negative multiple of 6 is equal to

!
n+k−1
k−1

"
, where k = 2 and n = N , i.e., it is

%
N + 2− 1

2− 1

&
=

%
N + 1

1

&
= N + 1.

So we have now proven the result for all values of h by proving it for the multiples of 6, and
we recall that this result is equivalent to the result that if 12(N − 1) ≤ k < 12N , then

S(k) = 1 + S(k − 12) = · · · = (N − 1) + S[k − 12(N − 1)].

Since all we needed was the first equality S(k) = 1+S(k−12), we have obtained our desired
result.

We have therefore shown that the two sequences S(k) and dim(Mk) satisfy the same re-
currence relation and start with the same initial values, so they are equal. We have therefore
shown that we have the right number of elements in the set to form a basis of Mk.

We must now verify that these are linearly independent vectors in Mk, or else they could
generate only a lower dimension strict subspace of Mk. So we suppose
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#

4m+6n=k
m,n∈Z+

αm,nE
m
4 (τ)En

6 (τ) = 0, for all τ ∈ H.

If there is a term in the sum with the exponent n of E6 equal to 0, then setting τ = i
forces all the other terms with n ≥ 1 to be zero because E6(i) = 0. The last assertion is
because E6 satisfies the modularity condition of weight 6, and this implies, since −1

i
= i, then

E6(i) = E6(−
1

i
) = i6E6(i) = −E6(i) =⇒ E6(i) = 0.

So this leaves us with that single term αm,0E
m
4 (i) = 0. But E4(i) ∕= 0, so this forces αm,0 = 0.

We can therefore assume that all terms have an exponent n ≥ 1 on E6.

Since the function E6 is not identically 0, we can divide by it and we now have a new
linear relation but with the sum of the exponents equal to k − 6 instead of k. This gives a
path to a proof by strong induction in which we suppose the elements of the set are linearly
independent for lower weights, and we prove the result for a higher weight.

We have therefore identified a set of dim(Ek) linearly independent vectors in Ek, so we
have a basis of Ek. □

Definition 9.22 (Eisenstein Basis). The basis {Em
4 En

6 : m,n ∈ Z+, 4m + 6n = k} is
called the Eisenstein basis of the vector space Mk of modular forms of weight k for SL2(Z).

10. Hecke Operators

To give some historical perspective to this section, we start by mentioning that the ∆
function that we discussed in the previous section arose during the study of elliptic curves
by the likes of Jacobi and Klein in the 19th century. Indeed, for any τ ∈ H, the Weierstra
equation gives an elliptic polynomial, and the discriminant of this polynomial is ∆(τ) for
the τ that we started from.

In 1916, Ramanujan had the idea of exploring this ∆ function under the aspect of its
q-expansion and the associated Fourier coefficients. By some unfortunate collision of nota-
tion, it has been customary to refer to the Fourier coefficients of ∆(τ), i.e., to the coefficients
of the power series ∆̃(q) as τ(n), where we normally would generically call them an. This
is despite τ(n) here being an arithmetic function (i.e., a function on natural numbers n)
instead of a complex number in H.

In order to avoid confusion from this notational collision, we choose a different notation
and will refer to these Fourier coefficients of ∆ as δ(n) instead of τ(n), breaking with the
most prevalent convention denoting these coefficients. We must insist, however, that the lit-
erature refers to these as τ(n), and in fact this arithmetic function is known as Ramanujan's
Tau Function.

Ramanujan observed for n up to 30 (and conjectured the generality of) three properties
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of these Fourier coefficients. Shortly after Ramanujan published his conjectures, Mordell
proved the first two, then Hecke re-proved these two conjectures after developing a new
framework of linear operators on modular forms. It is this framework of Hecke Operators
that we will introduce in this section.

We mention for good historical measure that the third Ramamujan conjecture was only
settled in the 1970's by Deligne, as part of settling the Weil conjecture about the Riemann
Hypothesis on Finite Fields (and which earned a Fields Medal!).

We will start by introducing Ramanujan's conjectures, then will proceed to describe the
Hecke Operators and how proofs can be derived from them.

Remark 10.1 (First Explicit ∆ Coefficients). Just for purposes of illustration, we show
here the first few Fourier coefficients of the ∆ function. We have

∆(τ) = ∆̃(q) = q − 24q2 + 252q3 − 1472q4 + 4830q5 − 6048q6 + . . .

so that what was conventionally denoted as τ(n) and we will denote instead as δ(n) start as
δ(0) = 0, δ(1) = 1, δ(2) = −24, δ(3) = 252, δ(4) = −1472, and so on.

Conjecture 10.2 (Ramanujan's Conjectures). Since they have all been proved by now,
these conjectures can now be more accurately designated as theorems, but we describe them
as conjectures only for purposes of their historical context and the state they were in at the
time the theory of Hecke Operators was developed.

• Claim #1: the arithmetic function δ(n) is multiplicative, i.e.,

gcd(m,n) = 1 =⇒ δ(m · n) = δ(m) · δ(n).

We can see an illustration of this with

δ(6) = −6048 = (−24)(252) = δ(2)δ(3), and gcd(2, 3) = 1,

and we note that this implies that it is sufficient to determine the values of δ(p) for
p prime, in order to derive the values for all composite natural numbers.

• Claim #2: For p prime and for r ∈ N, there is a 3-term recursion in the exponent r
for the values of δ() for powers of the prime p, as follows:

δ(pr+1) = δ(p) · δ(pr)− p11 · δ(pr−1).

• Claim #3: We have the following inequalities as bounds on the absolute values of the
δ(n) coefficients:

|δ(p)| ≤ 2 · p 11
2 = 2 · p5.5, for p prime,
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and equivalently,
|δ(n)| ≤ d(n) · n 11

2 = d(n) · n5.5,

where d(n) is the usual arithmetic function counting the number of divisors of n.
Remark 10.3. We relay the historical anecdote that Hecke was not only able to prove the
first two conjectures above, but he was also able to prove that |δ(p)| ≤ 2 ·p6, as partial result
towards proving the third conjecture.
Definition 10.4 (Hecke Linear Operators). We first note that, as linear operators, the
Hecke operators act on modular forms and map them to other modular form of same weight,
i.e., they are linear maps from Mk to Mk.

We also highlight that the Hecke Operators are parameterized by prime numbers p, so we
define the Hecke Operator Tp as

Tp : Mk → Mk

(Tpf) (τ) = pk−1f(pτ) +
1

p

p−1#

b=0

f

%
τ + b

p

&
, for all τ ∈ H.

So a Hecke Operator maps a modular form f(τ) ∈ Mk to a linear combination of terms
f(pτ), f

,
τ
p

-
, f

,
τ+1
p

-
, . . . , f

,
τ+p−1

p

-
.

Theorem 10.5 (Heck Operators Map from Mk to Mk). The image by a Hecke Operator
Tp of a modular form f ∈ Mk of weight k for SL2(Z) is itself a modular form of weight k
for SL2(Z), i.e., we have

f ∈ Mk =⇒ (Tpf) ∈ Mk.

Proof. We show that the conditions of being a modular form of weight k are satisfied by
(Tpf) if they are satisfied by f in the first place.

• Since (Tpf) is a finite sum of modular forms which are all holomorphic, then (Tpf)
is holomorphic.

• Also, since (Tpf) is a finite sum of terms which are all bounded as τ → i∞, then so
is (Tpf).

• We now examine invariance to integer translations in the direction of the real axis,
and we have

(Tpf)(τ + 1) = pk−1f(pτ + p) +
1

p

p−1#

b=0

f

%
τ + 1 + b

p

&
.

For the first term on the right-hand side, we have

pk−1f(pτ + p) = pk−1f(pτ),

because f itself is modular so it is invariant to any integer translation of τ 's real part.

As for the sum that makes the second term on the right-hand side, we have a sum
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that now runs over f
,

τ+1
p

-
, f

,
τ+2
p

-
, . . . , f

,
τ+p−1

p

-
, f

,
τ
p

-
, so it is simply a cyclic

permutation of the terms that were originally in the sum defining (Tpf)(τ).

We have therefore shown that (Tpf)(τ + 1) = (Tpf)(τ), which is the condition of
invariance to translation of the real part by an integer (i.e., invariance to action of
matrix T ∈ SL2(Z)).

• We now examine the modularity condition of weight k, i.e., we determine the effect
of swapping

!
− 1

τ

"
for τ in the expression of (Tpf). We have

(Tpf)

%
−1

τ

&
= pk−1f

,
−p

τ

-
+

1

p

p−1#

b=0

f

%− 1
τ
+ b

p

&

= pk−1f

3

5− 1,
τ
p

-

6

8+
1

p
f

%
− 1

pτ

&
+

1

p

p−1#

b=1

f

%− 1
τ
+ b

p

&

= pk−1

%
τ

p

&k

f

%
τ

p

&
+

1

p
(pτ)kf(pτ) +

1

p

p−1#

b=1

f

%− 1
τ
+ b

p

&

= τ k
)
1

p
f

%
τ

p

&*
+ τ k

?
pk−1f(pτ)

@
+

1

p

p−1#

b=1

f

%− 1
τ
+ b

p

&

We note that if we break out the first term corresponding to b = 0 of the rightmost
sum in the expression of (Tpf)(τ), we can write it as

(Tpf)(τ) = pk−1f(pτ) +
1

p
f

%
τ

p

&
+

1

p

p−1#

b=1

f

%
τ + b

p

&
.

So we see that the sum of the first two terms in the last expression for (Tpf)
!
− 1

τ

"

above is equal to τ k times the sum of the first two terms in the expression of (Tpf)(τ)
once we have rewritten by breaking out the term corresponding to b = 0 from the
rightmost sum.

We now compare the remaining terms from b = 1, . . . , p − 1 in the rightmost sums,
and we will exploit the following property: since p is a prime, all integers 1, . . . , p− 1
are units in the multiplicative group (Z/pZ)×, in the sense that they all have inverses
because they are all relatively prime to p. In particular, for every b ∈ {1, . . . , p− 1},
there is another b′ ∈ {1, . . . , p− 1}, such that bb′ ≡ −1 (mod p).

This ability to group all remaining terms in the sum over b = 1, . . . , p − 1 into
pairs b, b′ that are multiplicative inverses (mod p) of one another, is the key to the
manipulation of the expressions towards showing that the remaining sum in the ex-
pression of (Tpf)

!
− 1

τ

"
is equal to τ k times the corresponding sum in the expression

of (Tpf)(τ).

In other words, the change τ → − 1
τ

results in a permutation of the terms for a
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given b and for its inverse b′ = −1
b
(mod p) in the sum 1

p

.p−1
b=1 f

,
τ+b
p

-
, and this

leads to the sums of all terms becoming a factor of τ k of one another.

This achieves the goal of proving the modularity condition with weight k for (Tpf),
and by consequence the proof that f ∈ Mk =⇒ (Tpf) ∈ Mk.

□

Theorem 10.6 (Properties of Hecke Operators). We highlight the following important
properties of the Hecke Operators.

• They commute, i.e., TmTn = TnTm.
• They are multiplicative, i.e., Tmn = TmTn when gcd(m,n) = 1.
• They satisfy the recurrence

Tpr+1 = TpTpr − pk−1Tpr−1 for prime p, and r ∈ N

Theorem 10.7 (q-Expansion of Tpf). If f(τ) = f̃(q) =
.

n∈Z+ anq
n, then we have

(Tpf) =
#

n∈Z+

apnq
n +

#

n∈Z+

pk−1anq
pn.

We now look at how to leverage the properties of the Hecke Operators, notably those
in Theorem 10.6 and Theorem 10.7 to sketch proofs of the first and second Ramanujan
conjectures.

Theorem 10.8 (The First Ramanujan Conjecture is a Theorem). The Ramanujan
tau function is multiplicative. We will use the δ(n) instead of τ(n) for the same reasons as
above, but we are talking about the Ramanujan tau nevertheless.

Proof. We start from the observation that M12 which is two-dimensional is realized as the
direct sum of the scalar multiples of the Eisenstein series E12 and the scalar multiples of the
∆ function (which, we recall, has a 0 constant Fourier coefficient and a 1 for the Fourier
coefficient of degree 1), i.e., we have

M12 = C · E12 ⊕ C ·∆.

From Theorem 10.7, and focusing on constant Fourier terms, we see that if a0 is the constant
Fourier term for a modular form f , then the constant Fourier term for (Tpf) is

ap·0 + pk−1a0 = a0 + pk−1a0 = (1 + pk−1)a0

Recalling that ∆ has a 0 constant term, we know that the subspace C ·∆ of scalar multiples
of ∆ all modular forms have constant term a0 = 0. This implies that the constant Fourier
term for their images by Hecke operators are all (1 + pk−1) · 0 = 0. This means that the
Tp Hecke operator sends the C ·∆ subspace of M12 to itself. But this is a one-dimensional
subspace with ∆ as an eigenvector. We therefore have the result

Tp∆ = λp∆, for some λp ∈ C.
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We now turn to the coefficient of q (first degree monomial) in (Tpf) as given to us by The-
orem 10.7, and we have a term ap coming from

.
n∈Z+ apnq

n with n = 1, and there is no
term with q to the power 1 in the sum

.
n∈Z+ pk−1anq

pn because all terms have a qp factor or
other exponents of q that are all multiples of p. We therefore have, noting that the Fourier
coefficient of q in the q-expansion of ∆ is equal to 1

δ(p) = λp · 1 = λp.

Therefore, δ(p) is the eigenvalue associated with the subspace C · ∆ ⊂ M12 for the linear
operator Tp. So we have shown that

Tp∆ = δ(p)∆,

where δ(p) is the way we are designating the Ramanujan tau function evaluated at the prime
integer p. But we know from Theorem 10.6 that Tp is multiplicative, i.e., if gcd(m,n) = 1,
then Tmn = TmTn. This means that if gcd(m,n) = 1, then δ(mn) = δ(m)δ(n), i.e., the
Ramanujan tau function is also multiplicative. This proves the first Ramanujan conjecture.

□
Theorem 10.9 (The Second Ramanujan Conjecture s a Theorem). For prime p and
exponent r ∈ N, we have the following recursion for the Ramanujan tau function

δ(pr+1) = δ(p) · δ(pr)− p11 · δ(pr−1).

Proof. We first prove the result for r = 1, and we want to show that

δ(p2) = δ(p) · δ(p)− p11 · δ(1) = [δ(p)]2 − p11,

because δ(1) is the Fourier coefficient for degree 1 of the q-expansion for ∆, which we know
to be equal to 1. We now examine the coefficient of qp from the q-expansion given in Theo-
rem 10.7, and we have:

- One component comes from apnq
n for n = p, therefore ap2 , i.e., δ(p2) in this case of

the function being ∆.

- One component comes from n = 1 in pk−1anq
pn, so in this case of M12 we have k =

12 =⇒ k − 1 = 11 and with n = 1, this becomes p11δ(1).

Since we have shown in Theorem 10.8 that Tp∆ = δ(p)∆, we have that the coefficient
of qp in (Tp∆) which is δ(p)∆ is therefore δ(p) multiplied by the coefficient of qp in the
q-expansion of ∆, but that is δ(p) too, by definition. So the product is equal to [δ(p)]2, and
it is equal to the sum of the two components that we have identified above, so we have

[δ(p)]2 = δ(p2) + p11 · δ(1),
or, equivalently,

δ(p2) = [δ(p)]2 − p11 · δ(1).
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So we have proven the stated claim for r = 1.

The proof for the recursion proceeds similarly by equating the coefficients of the terms
qp

2
, qp

3
, . . . , and this delivers the proof of the second Ramanujan conjecture.

□
Remark 10.10. On a final historical note, it is interesting to realize that the reason Ra-
manujan was studying these series is that he was interested in analogs of the Riemann zeta
function by studying the Dirichlet series associated with his tau coefficients, i.e., he was
interested in

L(s,∆) =
#

n∈N

δ(n)

ns
.

It turns out that the recursions which Ramanujan had identified imply an Euler product
similar to the case for the Riemann zeta function, and in the case of ∆ the product is the
following:

L(s,∆) =
#

n∈N

δ(n)

ns
=

(

p prime

1

1− δ(p)
ps

+ p11

p2s

This series converges for R(s) > 6.5 but it can be analytically continued to all of C. The
functional equation resulting from the last equality above related s to k − s which is 12− s
in this case of M12, and we note that the midpoint of s and 12− s is 6.

Expecting the Riemann Hypothesis to be true, all the non-trivial zeros would be on the
line R(s) = 6. However, for modular forms that are not eigenvectors of the Hecke Operator,
there is no Euler product for their Dirichlet L-series, and consequently they can have zeros in
the half-plane where their L-series converges, rather than only on a line of constant real value.

11. Summary

The goal of this paper was to introduce modular forms to an audience that is already fa-
miliar with Complex Analysis, with a view to illustrating the impact of the field of modular
forms on number theory. In particular, we have found it interesting to demonstrate the low
dimensionality of many relevant vector spaces of modular forms. Following this path has
allowed us to relate some key modular forms either by scalar proportionality factors or by
simple linear combinations, from which number theory results could be derived, such as the
Four Squares Theorem.

We have also introduced the concept of Hecke Operators which act linearly on vector spaces
of modular forms, and which have been very instrumental in proving results such as a few fa-
mous Ramanujan Conjectures. We also mentioned, although in passing, the notion of mock
modular forms which open very fruitful paths towards characterizing orders of the Sporadic
Finite Simple Groups (such as Mathieu Groups and The Monster) and of dimensionality of
their (vector space) representations. In an attempt to control the length of this expository
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paper, we had to refrain from detailing this path via mock modular forms, despite its very
stimulating rewards.

Lastly, we have attempted to make the paper self-contained when it comes to its reliance
on domains external to Complex Analysis, including Group Theory, Linear Algebra, Matrix
Groups, and Group Actions. This has lengthened the paper by a significant extent, but we
hope to have made the paper self-contained as a result.
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