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ALEXANDER MIGRDITCHIAN

Abstract. By parameterizing their isomorphism classes, modular curves – closely related
to modular forms – provide additional structure to elliptic curves. In this paper, we introduce
the topological and algebraic properties of modular curves (and their compactifications)
and subsequently proceed to introduce the modular j-function and Hauptmoduln. In doing
so, we provide an exposition of the notion of modularity, which we use to discuss further
interesting group-theoretic properties of modular curves.

1. Preliminary Definitions

We assume basic knowledge of group theory (in particular, the modular group SL2(Z),
sporadic groups, and normalizers) and familiarity with elliptic curves. As such, we begin by
presenting the definition of modular curves:

Definition 1.1. A modular curve is defined to be a quotient of the upper-half plane H by
the action of a congruence subgroup Γ(N) of SL2(Z) with finite index (that is, H\Γ(N)).

We have that two points are the same if they can be mapped to each other by Γ. Now,
we require the definition of congruence subgroups before we can extract further results with
respect to modular curves:

Definition 1.2. The principal congruence subgroup of level N is defined to be

Γ(N) =

{(
a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡
(

1 0
0 1

)
(mod N)

}
.

Note that Γ(1) = SL2(Z). There are congruence subgroups other than the principle
congruence subgroup, the most important of which are Γ0(N) and Γ1(N) as they satisfy
the relation Γ(N) ⊂ Γ1(N) ⊂ Γ0(N) ⊂ SL2(Z). We define these congruence subgroups as
follows:

Definition 1.3. A congruence subgroup Γ of SL2(Z) satisfies Γ(N) ⊂ Γ for a positive integer
N . In particular, Γ is a congruence subgroup of level N .

Definition 1.4. The congruence subgroup Γ0(N) is defined as

Γ0(N) =

{(
a b
c d

)
∈ SL2(Z) : c ≡ 0 (mod N)

}
.

Definition 1.5. The congruence subgroup Γ1(N) is defined as

Γ1(N) =

{(
a b
c d

)
∈ SL2(Z) : c ≡ 0 (mod N), a ≡ d ≡ 1 (mod N)

}
.
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We may now begin our exposition of modular curves. We have that the modular curve
Y (Γ) is the quotient space of orbits under the action of Γ, namely

Y (Γ) = Γ\H = {Γτ : τ ∈ H}.
This quotient intuitively makes sense because of the compactification of Γ, which we will

explain later. Indeed, we have that the modular curves for the aforementioned congruence
subgroups are Y0(N) = Γ0(N)\H, Y1(N) = Γ1(N)\H, and Y (N) = Γ(N)\H. This set
of orbits has an interesting topological interpretation: that is, the notion that a Riemann
surface can be compactified. We denote a compactified Riemann surface Y (Γ) by X(Γ).

2. Topological Notions: Modular Curves as Riemann Surfaces

Firstly, we consider the surjection π : H 7→ Y (Γ) with π(τ) = Γτ , because this gives Y (Γ)
a quotient topology: that is, a subset of Y (Γ) is open if its inverse image π−1[Y (Γ)] under
π in H is also open. In particular, this is the weakest topology (i.e., the topology with the
minimal number of open sets) such that π : H 7→ Y (Γ) is continuous.

Thus, it is evident that π is an open mapping, from which we present the following
proposition, which in turn allows for us to conclude that the quotient Y (Γ) is connected for
continuous π (and since H is connected):

Proposition 2.1. π(U1) ∩ π(U2) = ∅ in Y (Γ) if and only if Γ(U1) ∩ U2 = ∅ in H for
U1, U2 ⊂ C.

Perhaps the most interesting property of Y (Γ) is that it is Hausdorff, from which we have
the following definition:

Definition 2.2. A Hausdorff (T2) space is a topological space in which any two distinct
points have neighborhoods that are disjoint from each other.

We show this result by taking sufficiently small neighborhoods of H under charts on Y (Γ)
for which every SL2(Z) transformation on H is properly discontinuous. To this end, we
present the following lemma:

Lemma 2.3. Take τ1, τ2 ∈ H and U1, U2 ⊂ C that are neighborhoods of τ1 and τ2, respec-
tively, in H. Then if we take γ ∈ SL2(Z), we have that

γ(U1) ∩ U2 6= ∅ =⇒ γ(τ1) = τ2.

In turn, this allows for us to prove our result by considering such neighborhoods and points
π(τ1) and π(τ2) in Y (Γ).

Theorem 2.4. The modular curve Y (Γ) is a Hausdorff space for any congruence subgroup
Γ of SL2(Z).

Proof. Take the aforementioned distinct points in Y (Γ) as well as their neighborhoods. For
any choice of γ ∈ Γ, we have that γ(τ1) 6= τ2, and from Lemma 2.3, we have that

γ(U1) ∩ U2 = ∅
in H. In particular, from Proposition 2.1, it is clear that π(U1) and π(U2) are disjoint
supersets of π(τ1) and π(τ2) under Y (Γ). Since π is also an open mapping under H, we
conclude the desired result. �

Since we have shown that Y (Γ) is Hausdorff, we seek to map charts onto the modular
curve Y (Γ), which we in turn do by introducing isotropy subgroups and elliptic points.
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Definition 2.5. The isotropy subgroup of τ fixes τ on some congruence subgroup Γ of
SL2(Z):

Γτ = {γ ∈ Γ : γ(τ) = τ}.

Definition 2.6. An elliptic point τ ∈ H of Γ satisfies a relation with respect to the contain-
ment of matrix groups, namely {±I} ⊂ {±I}Γτ for the identity matrix I. We must have
that Γτ is nontrivial as a group of transformations. In particular, we also have that the point
π(τ) ∈ Y (Γ) is elliptic.

One important result is that Y (Γ) only has finitely many elliptic points; we show this by
taking a congruence subgroup Γ of SL2(Z) for which each elliptic point τ ∈ H of Γ has an
isotropy subgroup Γτ that is finite and cyclic. For the sake of brevity, we will not provide
an exposition of this result for all N (we encourage the reader to see [DS05]), but we will
introduce the simple case of Y (1) = SL2(Z)\H. If we define the fundamental domain of
SL2(Z) (see Figure 1) as

D := {τ ∈ H : |<(τ)| ≤ 1/2, |τ | ≥ 1},

we have the following result:

Theorem 2.7. For the natural projection π with π(τ) = SL2(Z)τ , we have that the map
π : D 7→ Y (1) is surjective.

Proof. The result follows from repeated actions of the matrices(
1 ±1
0 1

)
and

(
0 −1
1 0

)
to τ ∈ H, which in turn map τ 7→ τ ± 1 and τ 7→ −1/τ , respectively. Repeatedly applying
these matrices to τ 6∈ D will eventually terminate with τ being contained within the region
D as defined above. �

Figure 1. The fundamental domain of the modular group SL2(Z),
sometimes denoted by RΓ.
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3. Cusps

The basic notion of cusps is as follows: for a congruence subgroup Γ of SL2(Z), we have that
the cusps of Γ are the Γ-equivalence classes of Q∪ {∞}. We can create a compact Riemann
surface X(Γ) by adjoining cusps and charts to the modular curve Y (Γ): in particular, we
also have that the compactified X(Γ) is a modular curve. Motivated by this, we continue
our exposition of compactification of the modular curve Y (Γ) = Γ\H.

Definition 3.1. The extended complex upper-half plane is defined by H∗ := H ∪Q ∪ {∞}.

We may now consider the extended quotient

X(Γ) = Γ\H∗ = Y (Γ) ∪ Γ\(Q ∪ {∞}),

from which we present the formal definition of cusps:

Definition 3.2. The points Γs in Γ\(Q ∪ {∞}) are the cusps of the modular curve X(Γ).

Note that the action of Γ on Q ∪ {∞} decomposes it into orbits, which are precisely the
cusps of X(Γ). The additional case of a transitive action of Γ on Q ∪ {∞} is termed the
Alexandroff compactification of Γ\H and is beyond the scope of this paper, but we encourage
the reader to read up further on the topic.

We correspondingly define the modular curves X0(N), X1(N), and X(N) for the con-
gruence subgroups Γ0(N), Γ1(N), and Γ(N). Now, we will present two important results
pertaining to the number of cusps contained by a modular curve and another important
property of X(Γ). The latter result requires an understanding of topology that is beyond
the scope of this self-contained paper, so we provide brief motivation behind the topology
on X(Γ).

Proposition 3.3. Take a congruence subgroup Γ of SL2(Z). Then, the modular curve
X(Γ) has finitely many cusps, and in particular, the modular curve X(1) is equivalent to
SL2(Z)\H∗.

Take a real M > 0 and correspondingly define the neighborhood

NM := {τ ∈ H : =(τ) > M}.

By adjoining open sets in H to H∗, we generate a basis for the neighborhoods of cusps,
namely sets that take the form

α(NM ∪ {∞}) : α ∈ SL2(Z),M > 0.

In doing such, we are able to define a topology and H∗. Indeed, we have that a basis

B := {τ ∈ H : =(τ) > M} ⊂ H

with M > 0 is a topology on H∗, motivating the following result:

Proposition 3.4. The modular curve X(Γ) is compact, connected, and Hausdorff.

Interestingly, the number of cusps of XN(Γ) is closely related to the totient function ϕ.
For example, we have the following result that quantifies the number of cusps on the modular
curve X1(Γ):
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Proposition 3.5. The number of cusps on X1(Γ) is

1

2

∑
ϕ(d)ϕ(N/d) =

N

2

∏
p|N

(
1− 1/p2 + νp(N)(1− 1/p)2

)
,

where νp(N) :=
∑

k≥1bN/pkc is the p-adic valuation of N .

We refer the reader to [DI95] for an exposition of the proof.
Since we have introduced the basic Riemann surface theory of the compactified modular

curve X(Γ), we could continue further by introducing the dimension formulas, the genus of
X(Γ), and other results, such as the Riemann-Roch Theorem. However, from this point in
the paper, we will focus less on the topological properties of modular curves and more so on
their algebraic properties.

Our discussion of cusps will prove useful later as we introduce cusp forms, from which we
will introduce the j-function through the Eisenstein series, which is closely related to cusp
forms.

4. Modular Curves as Algebraic Curves

We can describe modular curves as algebraic curves by taking advantage of the fact that
curves are characterized by fields. Moreover, we can describe mappings between such curves
by considering field extensions. As such, we make a few preliminary definitions before intro-
ducing the notions of a coordinate ring and a polynomial function on a function field, which
will prove important in characterizing modular curves.

Consider a field k and positive integers m,n. Now, take polynomials ϕ1, . . . , ϕm ∈
k[x1, . . . , xn] and denote by I the ideal generated by ϕ1, . . . , ϕm in k[x1, . . . , xn] (namely,
the ring of polynomials over the algebraic closure of the field). That is, we have

I = 〈ϕ1, . . . , ϕn〉 ⊂ k[x1, . . . , xn].

Moreover, if we denote by C the set of solutions to the polynomials in the ideal, we have
that

C = {P ∈ k
n

: ϕ(P ) = 0 ∀ ϕ ∈ I}.
Now, we may present our definitions:

Definition 4.1. The coordinate ring of a set C over a field k is defined to be the integral
domain

O(C) = k[C] = k[x1, . . . , xn]/I.

In particular, a P ∈ O(C) is a polynomial function on C.

We may further define the notion of function fields:

Definition 4.2. The function field of a set C over the algebraic closure of a field k is the
quotient field of the coordinate ring. That is,

k(C) := {f/g : f, g ∈ k[C], g 6= 0}.

Perhaps the most interesting result of this is the relationship between the function field
C[X(1)] (recall that X(1) = SL2(Z)\H∗) and the j-function (which we will define in the
subsequent section) by direct equivalence: indeed, we can generate C[X(1)] with the field
C[X(j)]. To do so, however, we must first introduce the motivation behind the j-function
through cusps and the Eisenstein series.
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5. More on Cusps: Cusp Forms and Modularity

Recall that the Weirstrauss ℘ function is defined as follows for a choice of lattice Λ and
ω ∈ C:

℘Λ(z) =
1

z
+
∑
ω∈Λ

(
1

(z − ω)2
− 1

ω2

)
.

We now introduce the Eisenstein series, which is the two-dimensional analog of the Riemann
zeta function ζ(s) =

∑∞
n=1 1/ns as follows:

Definition 5.1. For some τ ∈ H, the Eisenstein series of weight k is defined as

Gk(τ) =
∑

(c,d)∈Z2\{(0,0)}

1

(cτ + d)k
.

Now define the functions g2(τ) := 60G4(τ) and g3(τ) = 140G6(τ), as well as the discrimi-
nant function ∆ : H 7→ C by ∆(τ) := g2(τ)3−27g3(τ)2. We may now introduce the modular
j-function, also from H→ C and which is holomorphic on H:

Definition 5.2. The j-function is defined by

j(τ) := 1728
g2(τ)3

∆(τ)
.

One immediate property of the j-function is that for a choice of τ ∈ H and γ ∈ SL2(Z),
we have that j(τ) = j(γ(τ)), i.e. that the j-function is invariant under the action of SL2(Z).
This follows from the numerator and denominator of j(τ) (namely, g2(τ) and ∆(τ)) being
Eisenstein series of the same weight. Additionally, note that

lim
=(τ)→∞

j(τ) =∞.

Brief reasoning for this result can be found in [Sch10]. It follows that j(τ) is a modular
function on SL2(Z), from which it can be shown that j : H 7→ C is surjective. More
generally, the aforementioned functions g2(τ) and g3(τ) can be characterized as cusp forms
of weight k = 2 and 3, respectively, the set of which is denoted by Sk(SL2(Z)):

Definition 5.3. A cusp form of weight k is a modular curve with a Fourier expansion that
takes the following form:

f(τ) =
∞∑
n=1

ane
2πiτn

with a0 = 0.

6. Properties of the j-Function

If we take q = e2πiτ , we have the following q-expansion for j(τ):

j(τ) = 1/q + 744 + 196884q + 21493760q2 + · · · = 1/q +
∞∑
n=0

anq
n,

which turns out to be closely related to the Fischer-Greiss Monster group: the largest spo-
radic simple group, having order

246 · 320 · 59 · 76 · 112 · 133 · 17 · 19 · 23 · 29 · 31 · 41 · 47 · 59 · 71 ≈ 8× 1053.
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Motivated by this, we will introduce and use two results to provide an exposition of the
interesting group theoretic properties of the j-function, namely:

Theorem 6.1. The j-function is a bijection from SL2(Z)\H 7→ C.

The result follows from considering two homothetic lattices Λ and Λ′ := γΛ in H for some
γ ∈ SL2(Z), from which it can be shown that j(Λ) = j(Λ′) if and only if this is the case; a
complete proof can be found in [Sch10].

Theorem 6.2. Additionally, every modular function is a rational function of j(τ).

While the proof of the latter result will be eliminated for brevity, it follows from considering
the Laurent series of the q-expansion of j(τ), which takes the form f(τ) =

∑∞
n=−m anq

n since
f is modular and meromorphic at the cusp i∞. From this, we have that every holomorphic
function for SL2(Z) is a polynomial function in j(τ), and the desired result follows.

The latter result is especially powerful because of how it allows for us to view j(τ) as
the generator of all meromorphic modular functions, termed Hauptmodul. Since formally
introducing Hauptmodul will require us to provide an exposition of further topological def-
initions (such as the definition of a topological genus), we will now begin to introduce the
connections between the j-function and the Monster group.

Firstly, the notion of genus zero refers to function fields with one transcendental function
as a generator. This is particularly relevant in the case of modular function fields, which
are function fields of modular curves. Indeed, as an example, we have the following result
(here, the projective special linear group PSL2(Z) is the analogous action of SL2(Z) on the
associated projective space):

Proposition 6.3. The function field of the modular curve X(1) := PSL2(Z)\H∗ is genus
zero. In particular, it is generated by the modular j-function.

We may now formally define Hauptmodul:

Definition 6.4. A Hauptmodul is a principal modular function that generates a function
field, unique up to a normalizable Möbius transformation.

The connections between modular curves, the j-function, and the Monster group become
particularly evident as one considers modular curves of genus zero and the coefficients of the
q-expansions of their Hauptmoduln. If we take a prime factor of the order of the Monster
group

p ∈ {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 47, 59, 71}
we conclude the following result relating the normalizer of a modular curve in SL2(R) with
its genus:

Theorem 6.5. The normalizer Γ0(p)+ of Γ0(p) in SL2(Z) has genus 0 if and only if p is a
prime factor of the order of the Fischer-Greiss Monster group.
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