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Abstract. This paper will explain the j-function and a few properties related to it. First,
the definition and background is delegated as needed. Next, the concept of a modular
function is introduced, as well as the corresponding q-expansion definition. Finally, the
remainder of the paper is used to prove that j is modular and how its q-expansion is a key

fact necessary to prove that eπ
√
163 is almost an integer.

1. Background

In class, when studying conformal mappings, we were able to touch briefly on linear
fractional transformations - those of the form(

a b
c d

)
· z =

az + b

cz + d
.

However, there are many things we can do beyond just conformal mappings that involve
these transformations, among those being the j-function. To understand the basic idea be-
hind what this “function” is, we need to recall a few background things first.

Definition 1.1. The group SL2(Z) is defined as the multiplicative group of all 2-by-2 integer
matrices with determinant 1.

When we apply an element from SL2(Z) to an element in C, we get a linear fractional
transformation as described above. In order to understand what the j-function represents,
we must now recall the concept of a lattice.

Definition 1.2. A lattice is an additive group generated by two elements in C that are not
real multiples of one another.

In other words, a lattice L generated by w1, w2 ∈ C with w1

w2
6∈ R is written as

L = [w1, w2] = {aw1 + bw2 : a, b ∈ Z}.

Example. The lattice L = [1, i] generated by the imaginary and real units corresponds to the
Gaussian integers (i.e. complex numbers of the form a+ bi where a, b ∈ Z).

For an arbitrary lattice L, we will be interested in the following two functions, both of
which are key parts in the final j-function:

g2(L) = 60
∑

w∈L\{0}

1

w4
,
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g3(L) = 140
∑

w∈L\{0}

1

w6
.

Note that they are simply the 2nd and 3rd Eisenstein series with respect to L, respectively,
just different because they have been multiplied by constants.

2. The j-function

Now we are almost ready to define the j-function, but let us start with the j-invariant.

Definition 2.1. The j-invariant of a lattice L is defined as

j(L) = 123 · g2(L)3

g2(L)3 − 27g3(L)2
.

The denominator in the j-invariant is known as the discriminant of the lattice, denoted by
∆(L). One can show that this discriminant is never 0, which allows for the j-invariant to be
well-defined for any lattice L. The only difference between the j-invariant and the j-function
is that the former accepts a lattice as input while the latter accepts a single complex number.
To fix this discrepancy, we define the following:

Definition 2.2. The j-function j(τ) is defined as

j(τ) = j([1, τ ]),

where the right side represents the j-invariant of the lattice generated by 1 and τ .

Theorem 2.3. The j-function is holomorphic on H.

This is a very important result of the j-function that can be proved by using the fact that
both Eisenstein series of interest are holomorphic on H as well.

3. Modular Functions

Recall from chapter 14 of the notes that there are 6 possible congruences of matrices in
SL2(Z), and that only 2 are needed to generate the entire group. We let these two matrices
be

T =

(
1 1
0 1

)
and

S =

(
0 −1
1 0

)
.

It is easy to see that applying T to any z ∈ H will result in a translation of +1 while
applying S will result in the negative reciprocal, namely −1

z
.

Using the matrices S and T we can limit our analysis on H to a fundamental region F .
We define this region F such that any point outside of F can be translated using our two
matrices such that the image lies in F . Each point in F must also be unique, so that they
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Figure 1. A visualization of our choice of F .

cannot be mapped onto each other after a series of transformations by S and T .

Finding such a region is not hard: the matrix T limits us to finding a single strip of width
1 parallel to the imaginary axis, and matrix S limits us to including points that lie outside
of the unit disc. Our final choice of F can be the unit strip −1

2
≤ <(z) < 1

2
excluding the

unit disk (|z| > 1). As an edge case, we also must include the unit circle from z = −1
2

to
z = 0 inclusive. A visualization of this region is shown in Figure 1.

Now that we have narrowed down the region of analysis for the functions of interest, we
are ready to define a new term.

Definition 3.1. Let f : H→ C be a function which satisfies the following properties:

• f is meromorphic on H.
• f is invariant under any transformation in SL2(Z). In other words, f(γ · τ) = f(τ)

for any γ ∈ SL2(Z).
• f(z) has a Fourier expansion as =(z) goes to infinity, namely in the form of a Laurent

series

f(τ) =
∞∑

n=−m

a(n)qn

where q = e2πiτ .

Then we call f a modular function.

Remark 3.2. The second property is the one that allows us to only look at our region F ,
hence the name “modular”. A more general term called a modular form has a modified

version of this property, where f(γ · τ) = (cτ + d)kf(τ) and γ =

(
a b
c d

)
.
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To show that j is indeed also a modular function, we must prove the second and third
properties of Definition 3.1. We begin with the following theorem:

Theorem 3.3. If L and L′ are lattices in C, then j(L) = j(L′) if and only if L = λL′ for
some λ ∈ C.

Proof. For the forward direction, the basic idea for the reverse direction is the compare the
Weierstrass ℘ functions between the two lattices. Since they are the same, the two have the
same poles. Next, by some casework and manipulation from the original j-function iden-
tity j(L′) = j(L) we can see that the lattices are indeed homothetic. A full proof is given
in [Sch10].

Now we show the simpler reverse direction. Assume that L = λL′ for some λ ∈ C. Then
we can compute

g2(L) = g2(λL
′) = 60

∑
ω∈L′\{0}

1

(λω)4
=

1

λ4
60

∑
ω∈L′\{0}

1

ω4
=
g2(L

′)

λ4
.

Similarly,

g3(L) =
g3(L

′)

λ6
.

Now we can use direct substitution to show what we want. Starting with j(L), we have

j(L) = 1728 · g2(L)3

g2(L)3 − 27g3(L)2

= 1728 ·
g2(L′)3

λ12

g2(L′)3

λ12
− 27 · g3(L′)2

λ12

= 1728 · g2(L
′)3

g2(L′)3 − 27g3(L′)2
= j(L′),

as desired.
�

We now turn to completing the proof of the second property, namely being that j(τ) is
SL2(Z)-invariant.

Theorem 3.4. If τ, τ ′ ∈ H, then j(τ) = j(τ ′) if and only if τ ′ = γτ for some γ ∈ SL2(Z).

Proof. We first prove the forwards direction, assuming that j(τ) = j(τ ′). Using Theorem
3.3, we see that the lattices [1, τ ] and [1, τ ′] must be homothetic to each other, or in other
words, one is a complex multiple of the other. However, that means we should be able to
express the lattice [λ, λτ ] for some λ ∈ C solely using 1 and τ ′, which we do by letting

λ = rτ ′ + s and λτ = pτ ′ + q,

and the 4 coefficients are all integers. Now we use some matrices to express this. We have(
p q
r s

)(
τ ′

1

)
=

(
λτ
λ

)
,
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and conversely, we can also find some a, b, c, d ∈ Z such that(
a b
c d

)(
λτ
τ

)
=

(
τ ′

1

)
.

Combining these two equations gives us

A

(
τ ′

1

)
=

(
τ ′

1

)
where A =

(
a b
c d

)(
p q
r s

)
, so if we let A =

(
a′ b′

c′ d′

)
, we have a′τ ′ + b′ = τ ′, or that

a′ + b′
1

τ ′
= 1.

However, since τ ′ and 1 are not real multiples of each other, we must have a′ = 1 and
b′ = 0. This implies that A is the identity matrix and hence

det(A) = 1 = det

(
a b
c d

)
det

(
p q
r s

)
.

We quickly check that

=(τ) = =
(
pτ ′ + q

rτ ′ + s

)
=
b(ps− qr)
|rτ + s|2

=
=(τ ′)(ps− qr)
|rτ + s|2

,

which implies that ps− qr > 0 since both imaginary parts are positive for τ and τ ′ (this
follows from both being in H).

Recalling the determinant equation from above, since both determinants on the right are

integral, det

(
p q
r s

)
= 1 and hence

(
p q
r s

)
∈ SL2(Z), as claimed.

Now we turn to the other direction of the proof, beginning with the supposition that
τ ′ = pτ+q

rτ+s
for p, q, r, s ∈ Z with ps− qr = 1.

Let λ = rτ + s. Then

λ[1, τ ′] = (rτ + s)

[
1,
pτ + q

rτ + s

]
= [rτ + s, pτ + q].

However, we can express τ = −q(rτ + s) + s(pτ + q) and 1 = p(rτ + s)− r(pτ + q), which
means that each element in [1, τ ] may be expressed in terms of λ and λτ ′. However, we also
know that λ and λτ ′ can also be expressed using just 1 and τ , which means that both lattices
λ[1, τ ′] and [1, τ ] contain each other. As a result, we must have

[rτ + s, pτ + q] = λ[1, τ ′] = [1, τ ].

Using Theorem 3.3, we can see that this implies j(τ) = j(τ ′) so we are done. �

We now turn to proving the third property regarding the existence of a q-expansion for
the j-function. We shall do this by showing that ∆([1, τ ]) = g2(τ)3 − 27g3(τ)2 goes to 0 as
=(τ)→∞.
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We start by considering any number in g2(τ) that includes a nonzero multiple of τ in the
denominator, say 1

(m+nτ)4
. As =(τ)→∞, we see that

1

(m+ nτ)4)
=

1

m2 + 4m3(nτ) + 6m2(nτ)2 + 4m(nτ)3 + (nτ)4

will be dominated by the final (nτ)4 term which will cause it to go to 0. Then, when
computing g2(τ), we only need to consider lattice points that do not include multiples of τ ,
which are namely the nonzero integers. Hence we have

lim
=(τ)→∞

g2(τ) = 60
∑

m∈Z\{0}

1

m4
= 120

∞∑
m=1

1

m4
=

4π4

3
.

Similarly, we only need to consider integer terms for g3(τ) :

lim
=(τ)→∞

g3(τ) = 140
∑

m∈Z\{0}

1

m6
= 280

∞∑
m=1

1

m6
=

8π6

27
.

As a result, we have

lim
=(τ)→∞

(g2(τ)3 − 27g3(τ)2) =

(
4π4

3

)3

− 27

(
8π6

27

)2

= 0.

This implies that ∆([1, τ ]) has a isolated zero at ∞ and hence j(τ) has a pole there as
well. This completes the proof that j(τ) is meromorphic and hence has a q-expansion.

To find the coefficients of this particular expansion, one utilizes the Fourier series of g2(L)
and g3(L). From here, the calculations show that the q-expansion begins as follows:

j(τ) =
1

q
+ 744 + 196884q + 21493760q2 + · · · .

Surprisingly enough, all coefficients in this expansion are integers. Combining this exis-
tence of the q-expansion with SL2(Z)-invariance results in the desired corollary.

Corollary 3.5. The j-function is a modular function.

4. Ramanujan’s Constant

Now we will explore a very interesting result regarding the strange constant eπ
√
163. To do

so, we need the fact that the imaginary quadratic field Q(
√
−163) has class number 1. This

basically means that any number in the ring of integers Z
[
1+
√
−163
2

]
has exactly one unique

factorization in the ring.

Next, we can deduce from some basic properties of elliptic functions the following. Before
doing so, however, let us examine the basic idea behind what we call complex multiplication.

Definition 4.1. Let E be an elliptic curve in C. We say that E has complex multiplication
if it has an endomorphism ring End(E) that is greater than the integers Z.
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The basic idea of complex multiplication that is useful here can be summarized as such:
if K is an imaginary quadratic number field that has a ring of integers denoted by A, and
L is a lattice in C so that L is also an ideal of A, the elliptic curve E = C/L has complex
multiplication. This can be seen because L is an ideal and hence it is preserved by multipli-
cation. As a result, End(E) = A, which is larger than Z.

Due to this correspondence, the conjugates of the j-function j(E) have the form j(E ′),
where E ′ is another elliptic curve that has complex multiplication by the ring A.

This lays the foundation for our main proposition.

Proposition 4.2. j
(
−1+

√
−163

2

)
is an algebraic integer of degree at most 1.

This proposition follows from a much stronger theorem in complex multiplication, which
is documented in [Sur] and [Sil94] but is too complicated to be explained here. Here, note
that an algebraic integer of degree n is a zero of a monic polynomial of degree n with integer
coefficients. Thus, we can deduce that because the degree of j(τ) for any τ ∈ Q(

√
−163) is

equal to the class number of the field, which is 1,

j

(
−1 +

√
−163

2

)
+ a0 = 0

for some integer a0, implying that j
(
−1+

√
−163

2

)
∈ Z.

Now referring to the q-expansion once again, if we plug in a very small q into the expression,
many of the later terms will be very close to 0. We explore what this means for the value

j
(
−1+

√
−163

2

)
in particular, first by computing q in this case:

q = e2πiτ = e
2πi

(
−1+

√
−163

2

)
= e−πi−π

√
163 = −e−π

√
163.

Looking at just a few early terms in the q-expansion, we see that

j

(
−1 +

√
−163

2

)
=

1

−e−π
√
163

+744+196884
(
−e−π

√
163
)

+21493760
(
−e−π

√
163
)2

+· · · ∈ Z.

Only the first two terms, one of which is an integer already, will have a significant impact
on the final number, so we have (to a very accurate degree)

1

−e−π
√
163

+ 744 = integer +O(e−π
√
163).

We do indeed find that eπ
√
163 ≈ 262537412640768743.9999999999992, which is referred to

as Ramanujan’s constant.

While this is a number very close to an integer, there are also a few more numbers which
are close to integers for similar reasons. For example, the next two imaginary quadratic

fields with class number 1 are Q(
√
−67) and Q(

√
−43). As one would expect, both eπ

√
67 =

147197952743.9999987 and eπ
√
43 = 884736743.999777 are both relatively close to whole

numbers as well, albeit to a larger difference than Ramanujan’s constant (we can credit this
to the fact that the later terms in the q-expansion do not vanish as quickly).
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