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Abstract. The j-function is a modular function with many fascinating properties and
is responsible for several surprising phenomena in mathematics. In this expository paper,
we discuss a few topics related to the j-function. We first see how the j-function can be
expressed with Eisenstein series and show how the j-function is, in a way, the simplest
modular function. We also introduce elliptic curves and their relation with lattices and

make use of a theorem of complex multiplication to show why j( 1+
√
−163
2 ) is an integer.

Using this and the Fourier expansion of the j-function, we explain why eπ
√
163 and some

other similar expressions are near-integers. Finally, we briefly discuss the rapidly converging

Chudnovsky formula for π, which also relies on j( 1+
√
−163
2 ) and complex multiplication. We

assume the reader has some knowledge of abstract algebra and complex analysis.

1. Modular Functions

Definition 1.1. The modular group SL2(Z) is the multiplicative group of 2 × 2 matrices
over Z with determinant 1:

SL2(Z) =

{(
a b
c d

)
: a, b, c, d ∈ Z and ad− bc = 1

}
.

The modular group SL2(Z) acts on H so that for some matrix A =

(
a b
c d

)
∈ SL2(Z) and

some τ ∈ H, we have

Aτ =
aτ + b

cτ + d
.

One can also check that Aτ ∈ H.

Definition 1.2. Given two complex numbers ω1 and ω2 with ratio ω1

ω2
6∈ R, we define a lattice

L = [ω1, ω2] as the set of all linear combinations mω1 + nω2, where m and n are integers.

A lattice can be pictured as a parallelogram tiling of the complex plane with periods ω1

and ω2. The ratio of ω1 and ω2 being nonreal guarantees that the periods are R-linearly
independent.

Defined with lattices are modular functions, which are functions from lattices to the com-
plex numbers, but before defining what modular functions actually are, we first give some
motivation. It turns out that we do not really care about the actual values of ω1 and ω2, but
instead their ratio, which we call τ = ω2

ω1
. This is because the lattice defined by λω1 and λω2

is homothetic to the original lattice, and they should be considered the same. Furthermore,
any lattice defined by linear combinations of these periods, aω1 + bω2 and cω1 + dω2, should
also be considered the same as the first. Therefore, we let f(τ) = f(1, τ) = f(ω1, ω2) = f(L)
and we can rewrite the invariance

f(ω1, ω2) = f(aω1 + bω2, cω1 + dω2)

with our redefined function of just one variable τ to form our definition of a modular function.
1
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Definition 1.3. A modular function is a meromorphic function f : H→ C invariant under
the action of SL2(Z). That is, for any matrix α ∈ SL2(Z), we have

f(ατ) = f

(
aτ + b

cτ + d

)
= f(τ)

for every τ ∈ H.

Remark 1.4. Modular functions are actually a special case of modular forms, which are
alone quite interesting. Modular forms f(τ) of weight k satisfy f(aτ+b

bτ+d
) = (cτ + d)kf(τ) for(

a b
c d

)
∈ SL2(Z), so modular functions are just modular forms of weight 0.

Also closely related to modular functions are elliptic functions and elliptic curves. An
elliptic function f is a meromorphic function of z such that f(z) = f(z + ω1) = f(z + ω2),
and elliptic curves will be introduced in Section 5, which will also lead to another way of
viewing modular functions. While elliptic functions are functions on z assuming a particular
lattice, or elliptic curve, modular functions can be viewed as functions on the space of lattices,
or the space of elliptic curves.

However, for now we are not concerned with elliptic curves or elliptic functions on z, but
instead on functions of τ, the ratio of the pair of periods ω1 and ω2.

2. Eisenstein Series

Definition 2.1. For integers n ≥ 3, the Eisenstein series of weight n is given by

Gn =
∑

(a,b)∈Z2

(a,b)6=(0,0)

1

(a+ bτ)n
.

We now present a proof that Eisenstein series are absolutely convergent.

Lemma 2.2. Einsenstein series of even weight converge absolutely.

Proof. We will reduce this to showing the result for just τ = i with some bounding of |a+bτ |.
Specifically, for each τ ∈ H, we first show that there is a positive real number cτ such that

cτ ≥
∣∣∣∣ a+ bi

a+ bτ

∣∣∣∣
for all integers a and b.

For b = 0, this is true if we use any cτ ≥ 1. Since the upper half plane does not include
the real axis, a+ bτ 6= 0. Now, consider b 6= 0. We have∣∣∣∣ a+ bi

a+ bτ

∣∣∣∣ =

∣∣∣∣ i+ a/b

τ + a/b

∣∣∣∣ .
As the ratio a/b approaches ±∞, the expression

∣∣∣ i+a/bτ+a/b

∣∣∣ approaches 1. Hence the expression

is bounded for each τ by some constant cτ .
Now, we can examine a term of the Eisenstein series, 1

(a+bτ)n
. Using our earlier bound, we

have ∣∣∣∣ 1

(a+ bτ)n

∣∣∣∣ ≤ cnτ
|a+ bi|n

=
1

(a2 + b2)n/2
cnτ .
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All that is left is to prove that this lattice sum is convergent for n > 2, which we do using
the integral test:

Gn ≤ cnτ ·
∑

(a,b)∈Z2

(a,b)6=(0,0)

1

(a2 + b2)n/2

≤ cnτ

∫∫
x2+y2≥1

1

(
√
x2 + y2)n

dx dy

= cnτ

∫ ∞
r=1

∫ θ=2π

θ=0

1

rn
· r dθ dr

= cnτ

∫ ∞
1

2π

rn−1
dr,

which converges for n > 2.
�

We now present some basic facts about Eisenstein series.

Proposition 2.3. We have

(i) Gn(τ) = 0 for all odd n ≥ 3.
(ii) Gn(τ + 1) = Gn(τ).

(iii) Gn(−1/τ) = τ kGn(τ).
(iv)

Gn

(
aτ + b

cτ + d

)
= (cτ + d)kGn(τ)

for

(
a b
c d

)
∈ SL2(Z).

Proof. (i) For odd n,

1

(a+ bτ)n
+

1

(−a− bτ)n
= 0.

If we sum this over all lattice points except (0, 0), we can group each term (a, b) with
its inverse (−a,−b). Since every term has an inverse and the sum of each pair cancels
out as above, the total sum is 0.

(ii) Plugging in τ + 1,

Gn(τ + 1) =
∑

(a,b)∈Z2

(a,b)6=(0,0)

1

(a+ b(τ + 1))n
=

∑
(a,b)∈Z2

(a,b)6=(0,0)

1

((a+ b) + bτ)n
.

Now, using the change of variables c = a+ b, we have

Gn(τ + 1) =
∑

(c,b)∈Z2

(c,b)6=(0,0)

1

(c+ bτ)n
= Gn(τ).
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(iii) Plugging in −1/τ,

Gn(−1/τ) =
∑

(a,b)∈Z2

(a,b) 6=(0,0)

1

(a+ b(−1/τ))n
=

∑
(a,b)∈Z2

(a,b) 6=(0,0)

1

(a− b/τ)n

=
∑

(a,b)∈Z2

(a,b) 6=(0,0)

τn

(aτ − b)n
= τn

∑
(a,b)∈Z2

(a,b)6=(0,0)

1

(b+ aτ)n
= τnGn(τ).

(iv) Notice that SL2(Z) is generated by the matrices(
1 1
0 1

)
and (

0 −1
1 0

)
.

A full proof of this can be found in [5]. Since these two matrices correspond to the
two operations from parts b and c, we need only prove the result for those two group
actions, which we have already done. Thus Gn is a modular form of weight n.

�

3. The j-function

We are now ready to give the definition of the j-function and then show some interesting
properties of the j-function, especially related to modular functions.

Definition 3.1. Define the modular invariants g2 and g3 to be g2(τ) = 60G4 and g3(τ) =
140G6.

Definition 3.2. The j-function j : H→ C is defined by

j(τ) =
1728g2(τ)3

g2(τ)3 − 27g3(τ)2
=

(12g2(τ))3

∆(τ)
.

It can be shown that the denominator ∆(τ) = g2(τ)3 − 27g3(τ)2, known as the modular
discriminant, is nonzero for τ ∈ H. Now, we show that j is a modular function, and see how
it actually classifies all modular functions.

Proposition 3.3. The j-function is a modular function.

Proof. It turns out that the j-function is holomorphic on the upper half plane. We will
not prove this in this paper, but we recommend [1] for a good proof using the uniform
convergence of the modular invariants. Now, the main property of modular functions is the
invariance under actions of SL2(Z). To prove this part, we use Proposition 2.3. Consider

some arbitrary
aτ + b

cτ + d
for

(
a b
c d

)
∈ SL2(Z). Applying our previous results,

j

(
aτ + b

cτ + d

)
=

1728((cτ + d)4g2(τ))3

((cτ + d)4g2(τ))3 − 27((cτ + d)6g3(τ))2
=

1728g2(τ)3

g2(τ)3 − 27g3(τ)2
= j(τ).

The modular forms of weight 12 in the numerator and denominator cancel, thus we get
that the j-function is invariant under the action of SL2(Z).

�
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Theorem 3.4. The set of modular functions is the same as the set of rational functions of
j(τ).

Proof. This is equivalent to proving that all rational functions of j(τ) are modular functions,
and all modular functions are rational functions of j(τ). However, this first part is trivial

because for any function f(τ) = P (j(τ))
Q(j(τ))

, f is meromorphic and f(Aτ) = f(τ) for A ∈ SL2(Z).

To show that all modular functions are rational functions of j(τ), we can first manipulate
some arbitrary modular function f(τ) to get rid of its poles. Notice that j(τ)−j(τ0) has a zero
at τ0. Multiplying this function by f at its poles with the correct multiplicity will effectively
get rid of all of the finite number of poles of f in the fundamental domain. Specifically, let
each pole τk in the fundamental domain of j have multiplicity mk. The function

g(τ) = f(τ)
∏
k

(j(τ)− j(τk))mk

has no poles on the fundamental domain, so it has no poles on all of H. Thus, g(τ) is
holomorphic on the upper half plane and g(τ) can be written as

g(τ) = a−nq
−n + a−n+1q

−n+1 + · · · .

By Theorem 4.4, the q-expansion of j(τ) only has one negative power of q, namely q−1.
This means it is possible to find a polynomial P (j(τ)) such that h(τ) = g(τ) − P (j(τ))
does not have any terms in its q-expansion with nonpositive power of q = e2πiτ . Therefore,
h(i∞) = lim=(τ)→∞ f(τ) = 0. It can be shown further that h(H∪{∞}) is compact [5], which
would imply by the maximum modulus principle that h is constant, so h(τ) = 0 for all
H ∪ {∞}. Therefore, g(τ) is a polynomial in j(τ) and so f(τ) is a rational function in j(τ).

�

This theorem shows how the j-function characterizes every modular function. Also, if we
restrict the functions in consideration to holomorphic modular functions, one can now also
easily show that the set of holomorphic modular functions is the same as C[j], the set of
polynomials in j(τ).

Let H/ SL2(Z) be the quotient of the upper half plane by the action of SL2(Z). We now
introduce a mapping property of the j-function.

Definition 3.5. A fundamental domain of H/ SL2(Z) is an open connected subset of the
upper half plane with the property that no two elements are SL2(Z) equivalent, and every
point in H is SL2(Z) equivalent to some point in the closure of the fundamental domain.

Such a fundamental domain with set

RΓ =

{
z ∈ H : |z| > 1, |<(z)| < 1

2

}
is shown on the next page in Figure 1.

Theorem 3.6. The j-function is a bijection from any fundamental domain of H/ SL2(Z) to
C.

Proof. To prove injectivity, suppose j(τ) = j(τ ′). Now, we pick some λ such that

λ4 =
g2(τ)

g′2(τ)
.
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Figure 1. The canonical fundamental domain of the modular group,
denoted RΓ [1].

We have
1728g2(τ ′)3

g2(τ ′)3 − 27g3(τ ′)2
=

1728g2(τ)3

g2(τ)3 − 27g3(τ)2
.

Simplifying,

λ12 =

(
g3(τ)

g3(τ ′)

)2

.

Therefore, such a λ exists so that g2(τ ′) = λ−4g2(τ) and g3(τ ′) = λ−6g3(τ), so τ and τ ′ must
be SL2(Z) equivalent.

We can also show that the j-function is surjective to the complex plane. Since j(τ) is
holomorphic, the image j(H) is an open set by the open mapping theorem. Now, we show
that the image is also closed. Let there be some sequence τ1, τ2, . . . with each τk in the
fundamental domain so that j(τ1), j(τ2), . . . converges to some w ∈ C. We must show that
w is in the image of j. First, if the imaginary parts of the τk’s were unbounded, then there
would be some subsequence of the j(τk)’s that approached ∞ since j(i∞) = ∞, which is a
contradiction. Therefore, the imaginary parts of the τk’s must be bounded above by some
value A. Each of the τk’s must lie in the compact subset of H,

R′Γ =

{
z ∈ H : |z| > 1, |<(z)| < 1

2
,=(z) ≤ A

}
.

This means there is some subsequence of the τk’s converging to τ ∈ R′Γ. By the continuity
of j, we must have j(τ) = w, and so the image of j is closed.

Since the only nonempty clopen set in C is C itself, j(H) = C, so j is bijective from H to
C, up to the action of SL2(Z). Equivalently, the j-function forms a bijection between any
fundamental domain of the modular group to the complex plane.

�

4. Fourier expansions

Since j(τ + 1) = j(τ), the j-function is a periodic function, so it has a Fourier series
expansion. We now calculate the Fourier expansions, known as q-expansions, for the modular
invariants and the j-function, as they will be helpful in showing some results later. First, we
start with a useful lemma. Define q = e2πiτ .
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Lemma 4.1. We have the following Fourier series expansions:
∞∑

a=−∞

1

(a+ bτ)4
=

8π4

3

∞∑
k=1

k3qkb

∞∑
a=−∞

1

(a+ bτ)6
= −8π6

15

∞∑
k=1

k5qkb.

Proof. We start by computing decompositions for certain trigonometric expressions that

may at first may seem unrelated. For z ∈ C \Z, if we integrate f(w) = π cot(πw)
(w+z)2

over a large

circular contour, we obtain the identity,

1

sin2(πz)
=

1

π2

∞∑
n=−∞

1

(z + n)2
.

Then, if we integrate this series term by term, we get

− 1

π tan(πz)
=

1

π2

∞∑
n=−∞

− 1

z + n
.

Rearranging,

π cot(πz) =
1

z
+
∞∑
n=1

(
1

z − n
+

1

z + n

)
.

Note that we write the expression in this form rather than the nicer-looking but incorrect
expression,

π cot(πz) =
∞∑

n=−∞

1

z + n
,

to fix convergence issues. Now, again using q = e2πiτ , we have

1

z
+
∞∑
n=1

(
1

τ − n
+

1

τ + n

)
= π cot(πτ)

= π
(eπiτ + e−πiτ )/2

(eπiτ − e−πiτ )/2i
= πi

(
q + 1

q − 1

)
= πi

(
1 +

2

q − 1

)
= πi

(
1− 2

∞∑
k=0

qk

)

= −πi

(
1 + 2

∞∑
k=1

qk

)
.

Differentiating with respect to τ , we obtain
∞∑

n=−∞

1

(τ + n)2
= −2πi

∞∑
k=1

(2πik)qk = 4π2

∞∑
k=1

kqk.

Taking higher derivatives, we get the following expressions:

−6
∞∑

n=−∞

1

(τ + n)4
= −16π4

∞∑
k=1

k3qk
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−120
∞∑

n=−∞

1

(τ + n)6
= 64π6

∞∑
k=1

k5qk.

Therefore,
∞∑

a=−∞

1

(a+ bτ)4
=

8π4

3

∞∑
k=1

k3qkb

∞∑
a=−∞

1

(a+ bτ)6
= −8π6

15

∞∑
k=1

k5qkb.

�

These are not quite the Eisenstein series, but now all that is left to compute the series
expansions for them is to sum over all values of b.

Definition 4.2. Denote the normalized Eisenstein series E2, E4, and E6 to be

E2(τ) = 1− 24
∞∑
n=1

nqn

1− qn

E4(τ) = 1 + 240
∞∑
n=1

n3qn

1− qn

E6(τ) = 1− 504
∞∑
n=1

n5qn

1− qn
.

Lemma 4.3. The Fourier expansions of g2(τ) and g3(τ) are

g2(τ) =
4π4

3

(
1 + 240

∞∑
m=1

σ3(m)qm

)
=

4π4

3
E4(τ)

g3(τ) =
8π6

27

(
1− 504

∞∑
m=1

σ5(m)qm

)
=

8π6

27
E6(τ).

Proof. We first compute the series expansions of the general Eisenstein series. We have

Gn =
∑

(a,b)∈Z2

(a,b)6=(0,0)

1

(a+ bτ)n
=

∑
a∈Z

a6=0, b=0

1

(a+ bτ)n
+ 2

∞∑
b=1

∞∑
a=−∞

1

(a+ bτ)n
.

For n = 4, this is

G4 = 2
∞∑
a=1

1

a4
+ 2

∞∑
b=1

(
8π4

3

∞∑
k=1

k3qkb

)
= 2ζ(4) +

16π4

3

∑
(b,k)∈Z2

+

k3qkb.

To rewrite the final sum over the pairs of positive integers (b, k), we can consider each
particular value of bk, which we can call m. For a given value of m, the contribution to
the above sum of the pairs of positive integers (b, k) with bk = m is just σ3(m)qm where
σk =

∑
d|m d

k. Therefore,

G4 = 2

(
π4

90

)
+

16π4

3

∞∑
m=1

σ3(m)qm =
π4

45

(
1 + 240

∞∑
m=1

σ3(m)qm

)
.
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By a similar calculation,

G6 = 2ζ(6)− 16π6

15

∑
(b,k)∈Z2

+

k5qkb =
2π6

945

(
1− 504

∞∑
m=1

σ5(m)qm

)
.

Multiplying these two Eisenstein series by 60 and 140 respectively, we get our desired
q-expansions for g2 and g3.

�

Using the previous lemma combined with our definition of j, we can calculate the first few
terms of the Fourier expansion of j(τ).

Theorem 4.4. The Fourier expansion of j is

j(τ) =
1

q
+ 744 +

∞∑
n=1

cnq
n =

1

q
+ 744 + 196884q + 21493760q2 + · · ·

where cn are integer coefficients and q = e2iπτ .

Proof. We can express j in terms of the normalized Eisenstein series. Using the definitions,

j(τ) = 1728
g3

2(τ)

g3
2(τ)− 27g2

3(τ)

= 1728
(4π4/3)3(E4(τ))3

(4π4/3)3(E4(τ))3 − 27(8π6/27)2(E6(τ))2

= 1728
E4(τ)3

E4(τ)3 − E6(τ)2
.

If we plug in sufficiently many terms into our known Fourier series for the Eisenstein series
and simply, we get the first few coefficients of the expansion, as displayed above.

�

Remark 4.5. An asymptotic formula for the coefficients cn of this q-expansion as n → ∞
was shown by Petersson [7]:

cn ∼
e4π
√
n

√
2n3/4

.

Again, the definition and q-expansion coefficients for the j-function seem completely ar-
bitrary at first. However, the only other functions that have this property in Theorem 3.4
of generating all modular functions this way are the nontrivial functions of the form

aj(τ) + b

cj(τ) + d

for complex numbers a, b, c, d. If we further restrict these functions to be holomorphic on H
and have the coefficient of q−1 in the Fourier series be 1, then we also get that a = d = 1
and c = 0, so such a function is uniquely determined up to the addition of a constant. This
shows how the j-function is actually, in a way, the most fundamental and simple function
satisfying the relations j(τ) = j(τ+1) and j(τ) = j(−1/τ) (up to the addition of a constant)
and that there is also something very special and fundamental to modular functions about
these higher coefficients of the q-expansion 196884, 21493760, . . . .
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It turns out that these coefficients have a very surprising connection with the Monster
group, the largest sporadic simple group. McKay first noticed that the coefficient of q,
196884, is 1 greater than the dimension of the lowest irreducible representation of the Mon-
ster group, 196883. After more similar apparent numerical coincidences were found and more
concrete relations between the Monster group and modular functions were discovered, Con-
way and Norton formulated the Monstrous Moonshine conjecture, that connects these two
areas of math. We will not discuss this further in this paper as it is a very difficult and deep
connection, but the conjecture was eventually proven by Richard Borcherds, who won the
Fields Medal for his solution.

5. Complex Multiplication and Why eπ
√

163 is a Near-Integer

Hermite first observed the remarkable near-integer property of

eπ
√

163 = 262537412640768743.99999999999925 . . . .

This fact is no coincidence! Some other examples are

eπ
√

67 = 147197952743.9999987 . . .

and

eπ
√

43 = 884736743.9998 . . . .

Another unusual part about this is that all three of these examples are just slightly less
than integers that end with 744 in base 10. This number 744 also happens to appear as the
constant term of the Fourier expansion for j! Indeed, we will see that this is explained by
the j-function.

First, we consider these these numbers 43, 67, and 163 in the above expressions. These
are the three largest Heegner numbers.

Definition 5.1. A Heegner number is a square-free number d such that the ring of integers
of the quadratic number field Q(

√
−d) possesses unique prime factorization.

It has been shown that there are exactly nine Heegner numbers:

1, 2, 3, 7, 11, 19, 43, 67, 163.

The proof that the first few of these are Heegner numbers can be done fairly easily with an
extension of the Euclidean algorithm. For the larger numbers like 67 and 163, proving they
the unique prime factorization can be done by computing class numbers. Showing that there
are no other Heegner numbers is much more difficult and a proof can be found in [9].

We will just examine the largest Heegner number, 163, in the rest of this paper, as it will
provide the most interesting results. Similar corresponding properties exist for the other

Heegner numbers as we saw above with eπ
√

67 and eπ
√

43.

Lemma 5.2. We have

j

(
1 +
√
−163

2

)
= −6403203.

To prove this lemma, we need to first introduce elliptic curves and complex multiplication.
It is also worth mentioning that the results that follow all generalize fairly easily to any fields
with characteristic different from 2 and 3, but we will just be working with the complex
numbers in this paper.
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Definition 5.3. An elliptic curve over the complex numbers E/C is a curve of the form
y2 = 4x3 − g2x− g3 where g2, g3 ∈ C and ∆ = g3

2 − 27g2
3 6= 0.

This definition matches our previous discussion of the j-function, and indeed we denote
the j-invariant of such an elliptic curve to be

j(E) = 1728
g3

2

g3
2 − 27g2

3

∈ C.

Normally, we would use g2 as a function of τ , or rather of a lattice. The reason we define
elliptic curves in this way and with the notation g2 and g3 is because they correspond directly
with lattices through the Weierstrass ℘-function.

Definition 5.4. We define the Weierstrass ℘-function to be

℘(z;L) =
1

z2
+

∑
w∈L\{0}

(
1

(z − w)2
− 1

w2

)
.

We will refer to this function as just ℘(z) when L is being held constant.

Proposition 5.5. The ℘-function satisfies the differential equation

℘′(z)2 = 4℘(z)3 − g2(L)℘(z)− g3(L).

Proof. The proof of this theorem just involves computing the Laurent expansion of ℘, and
then finding a linear combination of these powers of ℘ and ℘′ that gets rid of the pole at 0.
This yields an entire elliptic function, which is constant by Liouville’s theorem. The details
of the proof can be found in [5]. �

This differential equation for some lattice L gives us the solutions (℘(z), ℘′(z)) for z ∈ C
of an elliptic curve y2 = 4x3 − g2(L)x − g3(L). Note that g2 and g3 in this expression have
argument L. Therefore, every lattice L can represent a unique elliptic curve in this way,
through this mapping using its Weierstrass ℘-function. It even turns out that this is a
bijection, and every elliptic curve over C corresponds to a unique lattice, which we will see
in the following theorem.

Theorem 5.6 (Uniformization Theorem). Every elliptic curve E/C : y2 = 4x3 − g2x − g3

has a unique lattice L such that g2 = g2(L) and g3 = g3(L).

Proof. This follows from Theorem 3.5. Consider an arbitrary elliptic curve y2 = 4x3−g2x−g3.
Because the j-function is surjective to the complex plane and g3

2−27g2
3 6= 0, there must exist

some τL ∈ H such that

j(τL) = 1728
g3

2

g3
2 − 27g2

3

= j(E).

Therefore, due to the same argument as that in the proof of Theorem 3.5, there must be
some λ such that g2 = λ−4g2(τL) and g3 = λ−6g3(τL). Thus E corresponds to the lattice
L = λ[1, τL] since g2(L) = g2 and g3(L) = g3. The uniqueness of L follows from the fact that
j(L) = j(L′) iff L and L′ are homothetic. �

Definition 5.7. An elliptic curve over C is said to have complex multiplication if its endo-
morphism ring,

End(E) = {α ∈ C : αL ⊂ L},
is larger than the integers.
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Since Z ⊂ End(E), this condition is equivalent to the condition, Z 6= End(E). The term
complex multiplication comes from the idea of the lattice being rotated by multiplication of
some nonreal endomorphism α 6∈ R.

Theorem 5.8. For an elliptic curve E/C with complex multiplication, j(E) is an algebraic
integer. Furthermore, the degree of the algebraic integer is the same as the class number of
the elliptic curve’s corresponding quadratic imaginary field.

This is a difficult theorem. If the reader is interested, 2 other more “local” proofs for this
theorem can be found in [8], one showing E has potential good reduction at all primes using
l-adic cohomology and the other showing E has no nonreal endomorphisms if j(E) is not
integral at some prime using p-adic analysis and the Tate module. However, we prove this
using a third more “global” argument from [8], primarily using complex analysis and modular
functions. We will assume more extensive background knowledge of abstract algebra and
number theory in this proof and will only consider the first, main part of the theorem for
the sake of brevity.

Proof. First, let M2(Z) be the ring of 2 × 2 matrices with integer coefficients. Also define
the sets of matrices Dn and Sn as they are in [8]:

Dn =

{(
a b
c d

)
∈M2(Z) : ad− bc = n

}
,

Sn = SL2(Z)\Dn =

{(
a b
0 d

)
∈M2(Z) : ad = n, d > 0, 0 ≤ b < d

}
.

We will construct a monic polynomial Fn(j(E), x) that has coefficients in Z[j(E)] and that
has j(E ′) as a root. Suppose E has complex multiplication with an endomorphism of degree
n, where the degree is the order of the kernel, or equivalently the magnitude of the value
α 6∈ R. Then taking E ′ = E, we have Fn(j(E), j(E)) = 0.

Specifically, consider the polynomial

Fn =
∏
α∈Sn

(x− j(ατ)).

Expanding this, we have

Fn =
∏
α∈Sn

(x− j(ατ)) =
∑
m

cm(τ)xm

for coefficients cm that are each the mth symmetric function in j(ατ). Note that these are
holomorphic functions on H.

First, we can prove that each cm(τ) is invariant under the action of SL2(Z) for all τ ∈ C.
Let γ ∈ SL2(Z). Suppose we have some α ∈ Sn. We know that αγ ∈ Dn, but there also exists
some δα ∈ SL2(Z) such that δααγ ∈ Sn. It turns out this map from α 7→ δααγ is bijective
from Sn to itself.

Now, we can use this substitution of δα ∈ SL2(Z) to examine the set {j(αγτ) : α ∈ Sn} :

{j(αγτ) : α ∈ Sn} =
{
j(δ−1

α (δααγτ)) : α ∈ Sn
}
.

Make use of the SL2(Z) invariance of j,{
j(δ−1

α (δααγτ)) : α ∈ Sn
}

= {j(δααγτ) : α ∈ Sn} = {j(ατ) : α ∈ Sn},
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where the last equality comes from the bijection we saw earlier from Sn to itself. Therefore,
the symmetric functions cm(τ) are all invariant under multiplication by γ, so each cm is a
holomorphic modular function.

By Theorem 3.4, cm is a modular function so it is a rational function of j(τ). Moreover, cm
must be a polynomial in j because of its holomorphicity. Additionally, one can prove that
the q-expansion of cm has integer coefficients. This means cm ∈ C[j] and cm ∈ Z[q, q−1]. We
will show that this implies cm ∈ Z[j] as well. Let cm = a0j

d + a1j
d−1 + · · ·+ ad. Then,

cm =
a0

qd
+
a1 + 744da0

qd−1
+ · · ·

by the q-expansion of j, which along with the fact that cm ∈ Z[q, q−1] implies that a0 ∈ Z.
Now,

f − a0j
d = a1j

d−1 + a2j
d−2 + · · ·+ ad

is also in C[j] ∩ Z[q, q−1]. Repeating the same argument as above, we get that a1 ∈ Z, and
we can inductively use this to show that ak ∈ Z for all k. Thus∏

α∈Sn

(x− j(ατ)) =
∑
m

cm(τ)xm

for cm ∈ Z[j].

Let R ∼= End(E) be an order in some quadratic imaginary number field K = Q(−
√
d) for

square-free d. First, suppose R is the ring of integers of K, denoted OK . Consider the element
ρ =
√
−d ∈ OK . Note that n = |NOK

Q ρ| is a perfect square. Now, the isogeny [ρ] : E → E
has degree n. By the surjectivity of j, we can always find some τ ∈ H such that j(τ) = j(E).

Let α =

(
a b
c d

)
∈ Dn. Then,

j(ατ) = j(τ) = j(E).

From our earlier definition of Fn, we have that Fn(j(τ), x) has a zero at x = j(ατ). Therefore,
Fn(j(τ), j(ατ)) = Fn(j(E), j(E)) = 0. For n not a perfect square, this polynomial is not
constant and has leading coefficient of ±1 since we already know that Fn(j, j) ∈ Z[j], and
one can prove using just q-expansions that Fn(j, j) ∈ q−mZ[q] for some m. Therefore, in this
first case, we have shown that j(E) is an algebraic integer.

Suppose instead that R is not the ring of integers of K, but some arbitrary other order.
Let L = [ω1, ω2] be the lattice corresponding to the elliptic curve E. Then, possibly replacing
L by a homothetic lattice L′ = λL for some λ, assume that L ⊂ OK = Zτ + Z. We can find
some integers a, b, c, d ∈ Z with ad − bc = n ≥ 1 such that ω1 = aτ + b and ω2 = cτ + d.

Since α =

(
a b
c d

)
∈ Dn, there exists some γ ∈ SL2(Z) such that γα ∈ Sn. Therefore, by

our previous discussion of Fn and the fact that j is a modular function, j(ατ) = j(γατ) is
a root of Fn(j, x), so j(ατ) is also integral over the ring of integer-coefficient polynomials in
j(τ). However, also know that j(τ) is an algebraic integer since τ in this case corresponds
to the ring of integers of K, OK , which was the first case we already considered. Combining
these together, we see that j(ατ) = j(E) is also an algebraic integer in the general case of
an arbitrary order. �

With that, we are essentially done in proving Lemma 5.2.
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Proof of Lemma 5.2. Consider the quadratic imaginary field K = Q(
√
−163). This field has

class number 1, so its ring of integers OK is such that j(OK) is an algebraic integer of degree

1, or in other words, an integer. The corresponding lattice here is
[
1, 1+

√
−163
2

]
, so expressing

this in terms of τ, we have

j

(
1 +
√
−163

2

)
∈ Z.

All that is left is to compute the value it is equal to. We can easily do this computa-

tion by calculating j
(

1+
√
−163
2

)
with sufficiently many terms of the q-expansion so that the

error is less than ±0.5. Doing this, we find that the precise integer value is −6403203 =
−262537412640768000. �

We now plug in τ = 1+
√
−163
2

into Theorem 4.4, the q-expansion for j(τ). First calculating
q, we get

q = e2iπτ = eiπ(1+i
√

163) = −e−π
√

163.

Therefore,

j

(
1 +
√
−163

2

)
=

1

q
+ 744 + 196884q + 21493760q2 + · · ·

= −eπ
√

163 + 744−O(e−π
√

163)

= −6403203.

We now see why this value j(1+
√
−163
2

) explains the near-integerness of eπ
√

163. All of the
terms in the q-expansion after 744 are very small due to the slow, sub-exponential asymptotic

growth of the coefficients, as seen in Remark 4.5. The error is approximately 196884e−π
√

163 ≈
7.5× 10−13, thus we have

eπ
√

163 ≈ 6403203 + 744− 7.5× 10−13,

just as we had calculated.

6. The Chudnovsky Formula

We now turn our focus to the Chudnovsky formula for π, which is yet another seemingly
mysterious and remarkable place where the j-function and 163 show up.

Theorem 6.1 (Chudnovsky formula). The constant 1/π is given by the infinite series

1

π
=
∞∑
n=0

12(−1)n(6n)!(13591409 + 545140134n)

(3n)!(n!)3(6403203n+3/2)
.

We have the identities

g2(τ) =
4

3
π4E4(τ)

and

g3(τ) =
8

27
π6E6(τ).

Also define

s2(τ) =
E4(τ)

E6(τ)

(
E2(τ)− 3

π=(τ)

)
.

In 1988, the brothers David and Gregory Chudnovsky first published the following identity.



THE j-FUNCTION 15

Lemma 6.2. We have

1

2π=(τ)

√
j(τ)

j(τ)− 1728
=
∞∑
n=0

(6n)!

(3n)!(n!)3

6n+ 1− s2(τ)

6j(τ)n
.

Proof. The proof of this is quite extensive, using the Picard Fuchs differential equation and
Clausen’s formula for hypergeometric series. We refer the reader to [4]. �

Now, to build the most rapid converging series, we can use our special value of τ,

τ =
1 +
√
−163

2
.

By Lemma 5.2, we have j(τ) = −6403203. Furthermore, it can be shown that

1− s2(τ)

6
=

13591409

545140134
.

A detailed proof of this, again using complex multiplication, can be found in [6]. The number
in the denominator comes from the fact that 163(1728 + 6403203) = 122 · 5451401342.

Proof of Theorem 6.1. Plugging in our values for j(τ) and s2(τ) into the identity, we get

1

2π=(τ)

√
j(τ)

j(τ)− 1728
=
∞∑
n=0

(
(6n)!

(3n)!(n!)3

)(
6n+ 1− s2(τ)

6j(τ)n

)

=
1

2π(
√

163/2)

√
6403203

6403203 + 1728
=
∞∑
n=0

(
(6n)!

(3n)!(n!)3

)( 13591409
545140134

+ n

(−6403203)n

)

=
(640320)3/2

12 · π · 54514013
=
∞∑
n=0

(
(6n)!

(3n)!(n!)3

)( 13591409
545140134

+ n

(−640320)3n

)
Simplifying,

1

π
=
∞∑
n=0

12(−1)n(6n)!(13591409 + 545140134n)

(3n)!(n!)3(6403203n+3/2)
.

�

Thus these strange large numbers 640320, 13591409, and 54140134 come from the j-
function and the fact that the the elliptic curve corresponding to the lattice involving the
largest quadratic imaginary field with class number 1 exhibits complex multiplication. This
formula for π actually turns out to be extremely rapidly converging compared to other known
infinite series or product expansions for π. As of 2021, this has remained the basis for the
most efficient algorithm used to compute π for over a decade, holding the current record of
50 trillion digits [10].
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