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1. Fourier Series

Indeed, any periodic function, even the ones with discontinuities, can be represented as a
series of sum of sin(nx) and cos(nx) for n ∈ N, which, together, is called a Fourier series. A
Fourier series has the complex form

∑∞
n=−∞ ane

inx. To find the coefficients an, we use the
following formula, which is derived using the orthogonality of trignometric functions

ak =
1

2 · π

∫ π

−π

f(x)

eikx
dx

In general, for functions with period 2L, the Fourier series coefficients can be calculated
through the integral,

ak =
1

2L

∫ L

−L

f(x)

e
kixπ
L

dx

.

While Fourier series only applies to periodic function, we can try a little bit harder to
generalize it.

Example. Show that π
4

=
∑∞

n=0
(−1)n

2n+1

Given the function f(x) = x2 on the interval −1 ≤ x ≤ 1. We can use the integral

1

2

∫ 1

−1

x

ekixπ
dx =

1

2

∫ 1

−1

x · (cos (kxπ)− i · sin (kxπ))dx

to find the coefficients ak. Using integration, we can see that the coefficient is equal to
ak = (−1)k+1 i

kπ
. Now, we can write

x =
∞∑
1

2(−1)n+1

nπ
sin (nπx)

for −1 ≤ x ≤ 1. Plug in x = 1
2
, we have

1

2
=
∞∑
1

2(−1)n+1

nπ
sin (

nπ

2
) =

∞∑
0

2(−1)n

π(2n+ 1)

Moving the 2
π

to the left, we are left with the summation π
4

=
∑∞

0
(−1)n

2n+1
.
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2. Fourier Transform

The idea of Fourier Transform is to assume that we have a periodic function whose period
is ∞. Thus, we can write down the Fourier series of the function f(x) =

∑∞
n=−∞ ane

inxπ
L =∑∞

n=−∞
1

2L

∫ L
−L

f(x)

e
nixπ
L
dx e

inxπ
L according to the formula from Fourier series. We use a change

of variable k = n·π
L

and ∆k = π
L

, then f(x) =
∑∞

n=−∞
∆k
2π

∫ L
−L

f(x)
ekix

dx eikx.

Taking the limit as L → ∞, we get f(x) =
∫∞
−∞

1
2π

∫∞
−∞

f(x)
eikx

dx eikx dk. The effect of the
two integration cancels out and turn out to be the forward and inverse Fourier Transform
respectively.

Thus, the Fourier Transform of a function is

F (k) =

∫ ∞
−∞

f(x)

eikx
dx

The inverse Fourier Transform is

f(x) =

∫ ∞
−∞

1

2π
F (k)eikxdk

Since k = n·π
L

, when L represents the period of a function, k, which is the reciprocal of L,
represents the frequency from a physics point of view.

Properties of Fourier Transform:

A shift in time domain f(t − t0) under Fourier Transform would lead to an exponential
term: F (f(t− t0)) = F (x) ∗ e−ik(t0).

A shift in frequency domain F (x − x0) under the Inverse Fourier Transform would also
lead to an exponential term: F−1(F (k − k0)) = f(t)eitk0

Convolution:

Convolution is defined as follow: Let f(t) and g(t) be two functions in the time domain,
then the convolution of the two function, f(t) ∗ g(t) is equivalent to∫ ∞

−∞
g(t′)f(t− t′)dt′

If we Fourier-transform the integral, the result is F (f(t) ∗ g(t)) = F (f(t)) ·F (g(t)). We

will prove this by showing that the F−1(f̂(x) · ĝ(x)) = f(t) ∗ g(t).

Proof:

F−1(f̂(x) · ĝ(x)) =
1

2π

∫ ∞
−∞

f̂(x)

∫ ∞
−∞

g(y)e−iyxdyeixtdx
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=
1

2π

∫ ∞
−∞

∫ ∞
−∞

f̂(x)g(y)ei(t−y)xdydx

=

∫ ∞
−∞

g(y)

∫ ∞
−∞

1

2π
f̂(x)ei(t−y)xdxdy

=

∫ ∞
−∞

g(y)f(t− y)dy

=

∫ ∞
−∞

f(y)g(t− y)dy

3. Parseval’s Identity

We first state the Parseval’s Identity. If f(x) =
∑∞

n=−∞ cn · e
inπx
L , then

1

2L

∫ L

−L
|f(x)|2dx =

∞∑
−∞

|cn|2

Proof: Let

f(x) =
∞∑

n=−∞

cn · e
inπx
L =

∞∑
m=−∞

cm · e
imπx
L

It’s easy to see that

|f(x)|2 = f(x) · f(x) =
∞∑

n=−∞

cn · e
inπx
L ·

∞∑
m=−∞

cm · e
−imπx
L =

∞∑
n=−∞

∞∑
m=−∞

cn · cme
i(n−m)πx

L

. Taking the integral, we have∫ L

−L
|f(x)|2dx =

∞∑
n=−∞

∞∑
m=−∞

cn · cm
∫ L

−L
e
i(n−m)πx

L dx

We know that unless n = m,
∫ L
−L e

i(n−m)πx
L dx will be zero. Thus, we can simplify the sum-

mation by eliminating terms whose n 6= m.∫ L

−L
|f(x)|2dx =

∞∑
n=−∞

2L|cn|2

4. Poisson Summation Formula

The Fourier Transform of a function and function itself exhibit surprising properties, one
of which is demonstrated through the Poisson Summation Formula:

∞∑
−∞

f(x+ n) =
∞∑
−∞

f̂(x+ n)

Proof: Let f(x) be defined on R and F (x) =
∑

n∈Z f(x+n), then since F (x) has a period

of 1, we can find its Fourier series: F (x) =
∑∞

n=−∞
∫ n+1

n
F (x) dx e−ikx =

∫∞
−∞ F (x) dx
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e−ikx =
∑∞
−∞

∫∞
−∞ f(x + n) dx e−ikx =

∑∞
−∞ f̂(x + n). But we note that F (x) is merely∑∞

−∞ f(x+ n). Thus, we’ve shown that
∞∑
−∞

f(x+ n) =
∞∑
−∞

f̂(x+ n)

This also requires
∑∞

n=−∞ f(x+ n) to be convergent.

5. Convergence of Fourier Transform and the Laplace Transform

Looking at the Fourier Transform, F (k) =
∫∞
−∞

f(x)
eikx

dx, a question would naturally arise:
What happen when the integral diverges? Or, does all function have a Fourier Transform?
For example, functions such as eλx and sin (x), give us headache when we try to find its
Fourier Transform. Luckily, an alternative to this dilemma would be a ”different” sort of
Fourier Transform, called the Laplace Transform.

Let’s try to multiply the badly-behaved function f(x) by an exponential e−λt such that
the integrand f(x) · e−(λ+ik)x converges. However, when x → −∞, the exponential gets
arbitrarily large, so we tackle this problem by multiplying the integrand by a function H(x),
where H(x) = 1 when x > 0, and H(x) = 0 when x ≤ 0. Thus, the Fourier Transform now
becomes F (k) =

∫∞
0
f(x) · e−(λ+ik)xdx. We rename the variable s = λ + ik, so it becomes

F (s) =
∫∞

0
f(x) · e−sxdx. Using the formula for inverse Fourier Transform, we get that the

inverse Laplace Transform is 1
2πi

limω→∞
∫ λ+iω

λ−iω F (s)estds.

6. Reference

https://lpsa.swarthmore.edu/Fourier/Xforms/FXformIntro.html

https://www.thefouriertransform.com/

https://math.mit.edu/ gs/cse/websections/cse41.pdf
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