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1. An Introduction to an Introduction to Brownian Motion

Brownian motion is very immense, the idea behind it allowing for proofs of every theorem
as some claim. To visualize it, let us start with a metaphor, imagine a football stadium
with a large crowd. A very large balloon lies on top of many members of the crowd at
a single moment. These fans, due to excitement hit the balloon at different times and in
different directions with the choice of direction being completely random, but all with the
same strength. Consider now the force exerted at a certain time. The balloon will move in
the direction that it is hit. Now look at the balloon from far above, so that we cannot see the
supporters. We can see the large balloon as a small object animated by erratic movement.
Another commonly used metaphor is that of a drunkard’s walk, who can randomly move
left or right at discrete, equi-spaced instances of time. This random movement also mimics
Brownian motion.

Stochastic calculus (random calculus) helps in working with non-deterministic functions.
It is necessary, but it is part of the nitty-gritties, so we will explain what we need as we get
to it.

2. Introduction to Brownian Motion

Consider the symmetric random walk, in which in each unit time we are equally likely to
take a step to the left or to the right. Now imagine that we speed up this process by taking
smaller and smaller steps in smaller and smaller time intervals. The limit is what we know
as Brownian motion.

Say that for each ∆t time unit, we randomly take a step of ∆x to the left or right. We
can say that the position at a time, X(t) is:

X(t) = ∆x(X1 +X2 + ...+X(t/∆t))

Where Xi is the “state” at time ti: +1 if the step of ∆x is to the right and -1 if to the
left. The Xi are assumed independent and the two states have equal probabilities.

We now have that E[Xi] = 0 and E[X(t)] = 0, which means that there is no expected
function-this motion is indeed random. Further, we can look at the variation:

V ar(X(t)) = ∆x2(t/∆t)

We now let ∆x and ∆t go to 0. However, we cannot let them equal each other as that
case is trivial (E[X(t)] and V ar(X(t)) would both converge to 0 and thus X(t) would be 0
with probability 1).

We can let ∆x = c
√

∆t for some positive constant c, then:

E[X(t)] = 0
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V ar(X(t))→ c2t

Since the variance increases with time, and is non-zero, we can see that Brownian Motion
is random and increasing in randomness.

Definition 2.1 (Brownian Motion). A stochastic process is said to be a Brownian Motion
process if

(1) X(0) = 0
(2) {X(t), t ≥ 0} has stationary and independent increments
(3) For every t > 0, X(t) is normally distributed with mean 0 and variance c2t

A standard Brownian motion is one where c = 1.

3. Probability Theory

Because Brownian motion is a continuous-time stochastic process, there is some indeter-
minancy as to how the motion proceeds. Thus, some probability theory must be covered to
fully understand Brownian motion.

Definition 3.1 (Probability Space). A probability space is a triple(Ω, F , P ) consisting of:

• the sample space Ω, the set of all possible outcomes, as an arbitrary non-empty set
• the σ-algebra F ⊆ 2Ω, where 2Ω is the power set of Ω, such that:

– F contains the sample space: Ω ∈ F
– F is closed under complements: if A ∈ F , then (Ω\A) ∈ F
– F is closed under countable unions: if A1, A2, ..., An... ∈ F , then

⋃∞
i=1Ai ∈ F

• the probability measure P : F → [0, 1] such that:
– P is countably additive: if {Ai}∞i=1 ⊆ F is a countable collection of pairwise

disjoint sets, then P (
⋃∞
i=1Ai) =

∑∞
i=1 P (Ai)

– the measure of the entire sample space is equal to one: P (Ω) = 1

The notion of a probability space is important, as Brownian motion is defined over a
probability space.

Definition 3.2 (Filtration). A filtration on (Ω, F , P ) is a collection of measurable sets
Ft : t ≥ 0 which satisfies Fs ⊂ Ft ⊂ F if s < t.

Intuitively, filtration represents all historical but not future information available about a
stochastic process. This means that you cannot see into the future.

Definition 3.3 (Stopping Time). A random variable T : Ω 7→ [0,∞] defined on a filtered
probability space is called a stopping time with respect to the filtration F if the set x ∈ Ω :
T (x) ≤ t ∈ Ft for all t.

For T to be a stopping time, it should be possible to decide whether or not T (x) ≤ t has
occurred on the basis of the knowledge of Ft.
Definition 3.4 (Markov Property). Suppose that X = (Xt : t ∈ T ) is a random process on
the probability space (Ω,F , P ), where Xt is a random variable taking values in S for each
t ∈ T . Then the random process X is said to satisfy the Markov property if for every s, t ∈ T
with s ≤ t, and for every H ∈ Fs and x ∈ S, the conditional distribution of Xt given H and
Xs = x is the same as the conditional distribution of Xt just given Xs = x:

P(Xt ∈ A|H,Xs = x) = P(Xt ∈ A|Xs = x), A ⊆ S
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That is, a stochastic process is said to have the Markov property if, given the present, the
future does not depend on the past. One of the most famous Markov proccesses is a Markov
chain. Brownian motion is also a Markov process.

Theorem 3.5 (Brownian motion and the Markov Property). Let Bt : t ≥ 0 be a Brownian
motion started at x ∈ Rd. Fix t > 0, then the process Bt+s−Bt : s ≥ 0 is a Brownian motion
starting at the origin and independent of Bt : 0 ≤ t ≤ s. In other words, Brownian motion
satisfies the Markov property.

Proof. From the definition of Brownian motion, we know that Brownian motion satisfies
the independent increments property (i.e. for any finite sequence of times t0 < t1 < ... < tn,
the distributions Bti+1

−Bti for i = 1, ..., n are independent). Since the process

Bt+s −Bt =
s∑
j=1

Bt+s −Bt+j−1(s > 0)

where each term Bt+j −Bt+j−1 is independent, the given process is independent.

In probability theory, there is also the idea of a martingale. Essentially, a stochastic
process is a martingale if the expected value of the next value is the sequence is equal to the
present observed value, even given knowledge of all prior observed values. This means that
the past events have nothing to do with predicting the future. More formally:

Definition 3.6 (Martingales). In general, a stochastic process B : T×Ω 7→ S is a martingale
with respect to a given filtration F∗ and probability measure P if:

• F∗ is a filtration of the probability space (Ω,F , P )
• For each t in T , each random variable Bt is measurable with respect to Ft.
• E[Bt] is finite.
• For any s, t ∈ T and 0 ≤ s ≤ t,E[Bt|Fs] = Bs

Brownian motion is a martingale.
Another classic example of a martingale is Polya’s urn, which contains a number of different

coloured marbles. At each turn, a marble is randomly selected from the urn and replaced
with several more of that same colour. The repeated selection of a ball from Polya’s Urn is
a martingale process, as the expected value of the next selection depends only on a current
state of the urn.

There is also the notion of a local martingale, which satisfies the localized property of a
martingale.

Definition 3.7 (Local Martingale). A local martingale refers to an adapted stochastic
process X(t) : 0 ≤ t ≤ T which contains a sequence of stopping times Tn such that
X(min{t, Tn}) : t ≥ 0 is a martingale for every n.

4. Brownian Motion

Definition 4.1 (d-dimensional Brownian Motion). A d-dimensional Brownian motion is a
stochastic process Bt : Ω → R from the probability space (Ω, F , P ) to Rd such that the
following properties hold:

• (Independent Increments) For any finite sequence of times t0 < t1 < ... < tn, the
distributions Bti+1

−Bti for i = 1, ..., n are independent,
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• For all ω ∈ Ω, the parametrization function t 7→ Bt(ω) is continuous,
• (Stationary) For any pair s, t ≥ 0, let Bs+t −Bs ∈ A,

P (Bs+t −Bs) =

∫
A

1

(2πt)d/2
e−|x|

2/2tdx

Standard Brownian motion is the Brownian motion where B0(ω) = 0.

Definition 4.2 (Recurrence and Transience). Brownian motion Bt : t ≥ 0 is:

(1) transient if limt→inf |Bt| =∞
(2) point recurrent if for every x ∈ Rd, there is an increasing sequence tn such that

Btn = x for all n ∈ N
(3) neighbourhood recurrent if for every x ∈ Rd and ε > 0, there exists an increasing

sequence tn such that Btn ∈ Bε(x) for all n ∈ N

Recurrence means that there is some probability greater than zero that the Brownian
motion will go back to the place it came from. For example, if we are at the point one and
if there is a probability greater than zero that we will return to one, then one is recurrent.
Transience is the opposite of this.

Recurrence also gives us a criteria to define how Brownian motion moves in the Rd space.
It’s easy to figure out 1-dimensional Brownian motion has point recurrent from intuition.
However, in higher dimensions (especially when d ≥ 3), Brownian motion does not follow
the same rule any more.

Theorem 4.3. Brownian motion is:

(1) point recurrent in dimension d = 1,
(2) neighbourhood recurrent, but not point recurrent, in dimension d = 2 (also called as

planar Brownian motion)
(3) transient in dimension when d ≥ 3.

5. Preliminaries for Proof of the Fundamental Theorem of Algebra

Theorem 5.1 (Fundamental Theorem of Algebra). If f : C→ C, f(z) = anz
n+an−1z

n−1 +
... + a1z + a0 (an 6= 0, a0, ..., an ∈ C) is a polynomial of degree n ≥ 1, then f(C) = C.
Specifically, the equation f(z) = 0 has at least one root in C.

Note that Theorem5.1 covers real numbers, which simply have an imaginary part equal to
0, in addition to complex numbers. To prove Theorem 5.1, we will first define several terms
and theorems. This proof follows the one given by Mihai N. Pascu, published in 2004 in a
paper titled ”A Probabilistic Proof of the Fundamental Theorem of Algebra.”1

Definition 5.2 (P-Valued and P-Valent Functions). For a given integer p ≥ 1, a complex
map f : D → C is p-valued if for any w ∈ C there are at most p solutions in D to the
equation f(z) = w, and there exists w0 ∈ C for which the equation f(z) = w0 has exactly p
roots in D. A function for which the inverse is true (i.e., a value in the domain maps to at
most p values in the codomain) is p-valent.

1http://www.ams.org/journals/proc/2005-133-06/S0002-9939-04-07700-7/

S0002-9939-04-07700-7.pdf

http://www.ams.org/journals/proc/2005-133-06/S0002-9939-04-07700-7/S0002-9939-04-07700-7.pdf
http://www.ams.org/journals/proc/2005-133-06/S0002-9939-04-07700-7/S0002-9939-04-07700-7.pdf
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Theorem 5.3. Suppose that f(z) is analytic at z0, f(z0) = w0 and that f(z)−w0 has a zero
of order n at z0. If ε > 0 is sufficiently small, there exists a corresponding δ > 0 such that
for all w with |w−w0| < δ the equation f(z) = w has exactly n roots in the disk |z− z0| < ε.

Theorem 5.3 roughly describes that the values around z0 in the domain will map to values
around w0 in the codomain, provided several conditions hold.

Theorem 5.4 (Koebe’s Quarter Theorem). The image of an injective analytic function
f : D → C from the unit disk D on to a subset of the complex plane contains the disk whose

center is f(0) and whose radius is
1

4
|f ′(0)| .

Koebe’s Quarter Theorem is an important finding in complex analysis, and the constant
of 1/4 cannot be improved. The following two theorems on Brownian motion will help us
leverage the unique properties of this type of motion in order to construct a proof of the
Fundamental Theorem of Algebra.

Theorem 5.5. Given φ : [0, t]→ Rd(d ≥ 1) is continuous, Bt is a d-dimensional Brownian
motion starting at B0 = φ(0) and ε > 0, then there exists c > 0 such that

(5.1) P φ(0)(sup
s≤t
||Bs − φ(s)|| < ε) > c,

where c depends only on t, ε, and the modulus of continuity of φ.

Theorem 5.5 states, roughly, that the probability that Bs approximates φ(s) is greater than
0. Since φ(s) is any continuous function defined on the domain [0, t], the theorem suggests
an important finding that Brownian motion at a certain point in time can be approximately
modeled by a continuous function at that point in time.

Theorem 5.6. Let f : C → C be an entire map and Bt a 2-dimensional Brownian motion
starting at B0 = x. Then f(Bαt) is a 2-dimensional Brownian motion starting at f(B0) =
f(x), where

(5.2) αt = inf{s : As ≥ t}

and

(5.3) At =

∫ t

0

|f ′(Bs)|2ds.

Theorem 5.6 states, roughly, that an entire mapping of a Brownian motion can be ex-
pressed as a time shift of that motion. Before we can begin the proof, we will need the
definition of an important topological property.

Definition 5.7. Given a domain D, a closed curve γ ⊂ D is said to be homotopic to zero
in D if the curve γ can be deformed continuously in D to a constant curve. It is known that
homotopy is a topological property, meaning it is preserved under continuous mappings.

Throughout the proof, we will use D(z, r) to indicate the open disk centered at z ∈ C of
radius r > 0.



6 JANE, RASIKA, VANSHIKA, SADHIKA, ANIKA, SHERRY, STEPHANIE

6. Proof of Fundamental Theorem of Algebra

Assume f never assumes w0 ∈ C, meaning f(z) = w0 has no roots in C. Since f is a
non-constant polynomial of degree n ≥ 1, there exists a p ≤ n such that f is p-valent.

By replacing f(z) with

(6.1) f̃(z) =
f(z)− w0

w1 − w0

,

we can assume that w0 = 0 and w1 = 1. In other words, f(z) = 0 has no roots in C,
and f(z) = 1 has p roots in C. Let z1, z2, ..., zm be distinct roots in C of f(z) = 1 with
multiplicities n1, n2, ..., nm. It follows then that n1 + n2 + ... + nm = p.By the continuity of
f and Koebe’s quarter theorem, we can choose ε > 0 small enough so that it satisfies

(6.2) |f(z)− 1| < 1

4
for all z ∈

m⋃
i=1

D(zi, ε)

With Theorem 5.3, we can choose a smaller ε > 0 so that there exist δ1, δ2, ..., δm > 0 such
that for |w − 1| < δi, the equation f(z) = w has exactly ni roots in |z − zi| < ε, for all
i ∈ {1, 2, ..., n}.Since n1 + n2 + ...+ nm = p and f is p-valent, these roots are all the roots of
the equation f(z) = w in C. Thus,

(6.3) |f(z)− 1| < δ ⇒ z ∈
m⋃
i=1

D(zi, ε)

where δ = min{δ1, δ2, ...δm}. Without loss of generality, we can also assume δ <
1

4
.

Define a Brownian motion Bt in C starting at B0 = z1.Since f is entire, Theorem 5.6
implies that Wt = f(Bαt) is a Brownian motion starting at f(B0) = f(z1) = 1, where the
time change αt is the inverse of Equation 5.3.

Theorem 5.5 shows that there is a positive probability of

(6.4) |Wt − e2πit| < δ, for all t ∈
[
0,m

]
.

We know |Wj − e2πij| < δ, which means |Wj − 1| < δ and thus |f(Bα,j(ω)) − 1| < δ. By

equation 5.2, we know Bα,j(ω) ∈
m⋃
i=1

D(zi, ε)

The box principle states that there exists 0 < j < k ≤ m such that the Brownian motions
Bα,j and Bα,k are elements of the disk D(zl, ε) for some 1 ≤ l ≤ m.

For the next step of the proof, we create a closed curve. We connect [zl, Bα,j] and [Bα,k, zl]
to create a closed, continuous curve γ. Let Γ be the image of γ (Γ = f(γ)).

From the box principle, we know that Bα,j and Bα,k are elements of the disk D(zl, ε). Since
zl ∈ D(zl, ε), we know the whole path γ is a subset of D(zl, ε) which is a subset of the union

of the disks
m⋃
i=1

D(zi, ε). Equation 5.2 states |f(z)− 1| < 1
4
∀ z ∈

m⋃
i=1

D(zi, ε). Thus, we know

that f([zl, Bα,j]) and f([Bα,k, zl]) is a subset of D(1, 1
4
). This means that Wt(ω) = f(Bα,t(ω))

lies in the the δ tube around the unit circle. Long story short, this shows that the index of
the curve is nonzero.

A nonzero index implies that the path Γ is not homotopic to 0. This is a contradiction.
We know γ is homotopic to 0 because closed continuous curves are homotopic to 0. This is
because C is isomorphic to R2 and the fundamental group of R2 is 0. The image of a curve
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homotopic to 0 should also be homotopic to 0. However, this is not the case with the image
of γ, Γ.

Our original assumptions stated that f did not cover 0 and the above contradiction shows
that this is not possible. Thus, f covers every value of C or f(C) = C.

7. Preliminaries for Louville’s Theorem with Brownian Motion

Recall: Brownian motion is neighborhood recurrent (but not point recurrent) in d = 2
Remark : Because Brownian motion is neighborhood recurrent in d = 2, we know that the

path of the planar Brownian motion is dense in the plane. What this means, informally, is
that Brownian motion goes to every point in the plane or goes arbitrarily close to it.

Theorem 7.1 (Optional Stopping Theorem). Suppose Xt is a continuous martingale and
0 ≤ S ≤ T are stopping times. If the process X(min{t, T}) is dominated by an integrable
random variable Y , then E[XT |FS] = XS.

Suppose we wanted to talk about games then a martingale is just a way to describe a fair
game. The money a player is expected to end with is simply the money they have right now.
However, if we were to end the game at certain stopping times then would the person still
have the expected amount of money? In some situations yes and in others no. This theorem
just explains what conditions must be met in order for the expected value of the random
variable at stopping time to equal the initial value.

Recall that while Brownian motion is continuous everywhere, it is can be differentiated
nowhere. So what does calculus in such a place even mean? To understand and operate on a
system we have to make something different. This is why stochastic calculus is so important
since it can be used to operate on stochastic systems. Specifically we will be using Ito’s
process and Ito’s formula help us.

Many times when studying Brownian motions, we want to estimate the difference of func-
tions like f(t, Bt) over time differences that infinitesimally small (let us assume that f is
a smooth function). Notice that this function only depends on the the second variable, so
there is only an implicit dependence on time.

Let us consider the Taylor expansion of f

f(x+ ∆x)− f(x) = (∆x)f ′(x) +
(∆x)2

2
f ′′(x) + . . .

Since we are using Bt as the input, for x = Bt, we have

∆f = (∆Bt)f
′(Bt) +

(∆Bt)
2

2
f ′′(Bt) + . . .

Consider the term (∆Bt)
2. Since we know that E[(∆Bt)

2] = ∆t, we see that the second
term is no longer negligible (this is called quadratic variation). The equation becomes

∆f = (∆Bt)f
′(Bt) +

∆t

2
f ′′(x) + . . .

and in terms of infinitesimals, we have

df(Bt) = f ′(Bt)dBt +
1

2
f ′′(Bt) ∗ dt

which is known as Ito’s lemma. More generally we have the formal statement of Ito’s lemma.
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Theorem 7.2 (Ito’s Lemma). Let f(t, x) be a smooth function of two variables, and let Xt

be a stochastic process satisfying dXt = µtdt+ σtdBt for a Brownian motion Bt. Then

df(t,Xt) =
(∂f
∂t
dt+ µt

∂f

∂x
+

1

2
σ2
t

∂2f

∂x2

)
dt+

∂f

∂x
dBt

Because of Ito’s lemma, we can get the following theorem, which is necessary for our proof
of Liouville.

Theorem 7.3. Let D ⊂ Rd be a connected open set and f : D → R be harmonic on D.
Let Bt with 0 ≤ t ≤ T be Brownian motion starts inside D and stops at T , then process
f(Bt) : 0 ≤ t ≤ T is a local martingale.

All that this is saying is that if we fulfill such conditions, and the Brownian motion takes
a specific path then the function during a the interval from 0 to T is a local martingale.

Theorem 7.4. (Levy’s Theorem) Suppose that both M and (M2
t −t)t≥0 are local martingales.

Assume M0 = 0. Then M is a Brownian motion with respect to (Ft).

Proof. Let f(x) = eivx where v ∈ R. Since f ∈ [0,∞)2, we have by Ito’s Lemma

f(Mt) = f(0) +

∫ t

0

f ′(Ms)dMs +
1

2

∫ t

0

f ′′(Ms)ds

where M f
t :=

∫ t
0
f ′(Ms)dMs is a local martingale. If f ′ and f ′′ are bounded, then M f

t is a
martingale. If we take the expectations of both sides we get

E[f(Mt)] = f(0) +
1

2

∫ t

0

E[f ′′(Ms)]ds

Let g(t) = E[f(Mt)], then we get

g(t) = 1− v2

2

∫ t

0

g(s)ds

This shows that we can get g(t) as the solution to the differential equation that satisfies
the following conditions:

g′(t) = −v
2

2
g(t) and g(0) = 1

As a first order differential equation, the unique solution to g is

g(t) = e−
tv2

2 .

As a result, we have

E[eivMt ] = e−
tv2

2 ,

displaying that Mt v N (0, t) where t is the variance. Let s > 0 and A ∈ Fs with P (A) > 0.
Let P ∗(B) = P (B|A), F∗t = Ft+s and M∗

t = Mt+s −Mt for t ≥ 0. Then with respect to F∗t
over probability space (Ω,F , P ∗), (M∗

t )t≥0 is continuous local martingale with M∗
0 = 0 such

that [M∗
t ]2 − t is also a local martingale. Then from what we have already proven,

E[eivM
∗
t ] = e−

tv2

2

Substitute M∗
t = Mt+s −Mt and let A vary in Fs
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E[eiv(Mt+s−Mt)][Fs] = e−
tv2

2

which shows that Mt+s −Mt is independent of Fs and is normally distributed, making it
Brownian motion.

Theorem 7.5 (Dubins-Schwartz Theorem). Let (Mt)t≥0 is a continuous local martingale
such that M0=0 and 〈M〉∞ = +∞. There exists a Brownian motion (Bt)t≥0, such that for
every t ≥ 0, (Mt) = B〈M〉t.

Proof. Let Ct = inf {s ≥ 0, (Mt)s < t}. (Ct)t≥0 is a right continuous and increasing
process such that for every t ≥ 0, Ct is a finite stopping time of the filtration (Ft)t≥0 and
M is obviously constant on each interval [Ct−, Ct]. (MCt)t≥0 is a local martingale whose
quadratic variation is equal to t. From Levy’s theorem, (Bt)t≥0 is a Brownian motion.

8. Proof of Liouville’s Theorem with Brownian Motion

Theorem 8.1 (Liouville’s Theorem). Suppose f is complex valued function that is entire
and bounded, then it is constant.

Proof. Suppose f is an entire function but not constant. Then according to 7.3 when given
a Brownian motion Bt, f(Bt) will be a local martingale. By 7.5, f(Bt) is also a Brownian
motion. Recall that planar Brownian motion is neighborhood recurrent, so f is dense and
therefore f is not bounded, contradicting our assumption. Therefore, the entire function
must be constant.
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