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Abstract

In math, most shapes can be considered a polytope, or a shape with finite
faces, each with zero curvature. The three that I will be discussing today, will
be two constructed using and with combinatorial, and topological properties:
The Associahedron, and the Permutohedron,.

1. The Associahedron

The associahedron, for every integer n ≥ 2, Kn, is defined to be an
(n−2)-dimensional convex polytope, having each vertex correspond to a way
of correctly parenthesizing a word of n letters, and each vertex corresponds
to a single use of the associativity rule (that being where the name is from).
This can then also be seen as that each vertex is a triangulation of a n + 1
sided regular polygon, with edges representing edge flips, where a diagonal
is removed from the triangulation, and replaced by a different one. So if
two triangulations of the polygon, differ by one diagonal, then they will be
adjacent in the associahedron. We can then conclude that the amount of
vertices contained in each higher dimension associahedron, will be the Cn−1

Catalan number.

A nice way to think about these shapes is through the idea of loop concatenation
(this is why associadra are also called loop spaces). This would be defined
as taking a loop, and imagining the length of it through an interval of 0 to
1 . If you were to have two loops (it would resemble an infinity sign; the
representation of the K2), loop a and loop b, and concatenated them, you
would have a continuous shape that started and ended at the same point.
We’ll then say that the length of this object still spans our interval of 0 to
1. Regardless of how we split it, it still represents the same thing of a ∗ b.
Only once we reach K3 do things start to get interesting. K3 represents three
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loops, a, b, and c. Concatenating them, we get a three leaf clover. If we were
to think about the ways of parenthesizing this, we would get (ab)c and a(bc).
The first one represents having to go around both loops a and b in the first
half, and c in the remaining time. The second representing a similar idea: a
in the first half second, and b and c in the remaining time. Although these
seem like very different things (and to be honest, they are), there is a way
of connecting the two: Take a continuous function that simultaneously slows
down the time for c while accelerating a. And since this is continuous, there
are an infinite amount of points/other 3 leaf clovers between (ab)c and a(bc).
So, we represent this with a line segment, with end points being these two
parenthesizations. That’s our use of the associativity rule as stated before!
These changes are known as a homotopy, denoted by H(a, b), with a and b
are two vertices of our ”clovers”.

This is where the connection between topology and combinatorics shows up.
You can think of the Cn−1 Catalan number of the associahedron, Kn as our
topology, and the quantity as our subsets comprising it. For example, with
the K3 associahedron, we have the C2 = 2 vertices (our topology) construct-
ing our associahedron. Each vertex (or parenthesization) represents a subset
constructing our topology. The previously stated homotopies is what then
makes our topology continuous, creating the set of neighborhoods for each
vertex. It shows the infinite amount of superpositions a vertex can move
between, to move to another vertex.

So far we have looked at a 0− dimensional and a 1− dimensional, with
K4, we get a 5 vertices (and thus forming a pentagon). If we were to look at
the pentagon’s vertices, we would have 2 homotopies. Now what’s really cool
about this, I would be able to find an infinite amount of connections from
these homotopies, to the other homotopy. If I represent these two homotopies
as parallel lines, I could pick any point along one line, and connect it to any
point along the other. This means that the pentagon itself is a homotopy.
It’s the associativity rule being applied again to be projected onto something
else that has already been affected by the associativity rule.

This also translates into higher dimensions: For K5 (the 3-dimensional
associahedron), the vertices are paranthesizations, edges are homotopies be-
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tween vertices, faces are homotopies of homotopies (the edges), and the solid
interior is all of the homotopies of the homotopies (the faces) of the original
homotopies (the edges).

This is a basic idea of what associahedra are supposed to represent.

2. The Permutohedron

The permutohedron (sometimes spelled, permutahedron) of order n, is
an n − 1 dimensional polytope, whose vertices are given by permuting the
coordinates [n] (i.e. the permutohedron of order 4, is a 3-dimensional ob-
ject with 4! (24) vertices, and it’s embedded in 4-dimensional space), while
also being embedded in n-dimensional space. This being embedded is im-
portant to note due to its topological relevance (this also means that the
permutohedron of order n lies in the (n− 1)-dimensional hyperplane).

An embedding in topology is defined to be a function f : X → Y where
X and Y are topological spaces, and f forms a homeomorphism (a contin-
uous function) between X and f(X) (f(X) also then gains the subspace
topology from Y , meaning that the f(X) is a subset of Y , and its topology
being derived from Y ). With that in mind we can say that if we embed a
permutohedron of order n into an n-dimensional space, then that if it was
an object of that dimension (instead of being embedded, just ”existed”), it
would retain all of its topological properties, as this mapping can also be
reversed with an inverse function, f−1(X).

Another thing about these shapes is that each vertex, is only connected to
n−1 other vertices. This then tells us that there are n!(n−1)

2
edges, while being

length
√

2. These edges connect vertices whose permutation only differs by
swapping two coordinates in which the values differ by 1. So the coordinate
of 1, can only be swapped with 2 to be connected with an edge. 2 can be
swapped with 1 or 3. 3 with 2 or 4. And 4 with only 3. (This is with the
permutohedron of order 4) There is also one face per nonempty subsets, S,
of [n], consisting of the vertices in which all coordinates in positions in S
are smaller than all coordinates in positions not in S. That means, the total
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number of faces is 2n − 2, as you can either choose to keep or not to keep
each number (that’s where the 2 comes from), and you do this n times. The
subtraction of 2 comes removing the empty set, and the set itself (as those
aren’t proper subsets). Also, one can generalize this, as there is a bijection
on the strict weak orderings of the set of [n], in which there are n − d
equivalence classes. Because of this, the number of faces is also given by the
ordered Bell numbers.

Another thing to note about permutohedra is that they are isogonal,
or vertex-transitive. This is because each coordinate of a vertex in a given
permutohedron is acted upon by the symmetric group.

The symmetric group, Sn, is the group of all permutations of [n] with
order n!, and every subgroup of Sn is of order n.

The set being acted upon is important to note: A group action is when a
group acts on a set, and permutes its elements, such that the mapping from
the group to the permutation group of the set forms a homomorphism. Since
we’re acting upon our set with the symmetric group, the permutation group
is just a subgroup of the symmetric group, meaning that there intrinsically
is a homomorphism between the two, preserving the structure of our vertices
(which is our set that we’re acting upon). This is why permutohedra are
isogonal.
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