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Abstract. In this paper, we will discuss two classic impartial games, specifically Fibonacci
nim and Wythoff’s game. We will explore the winning strategies for each, along with
exploring the theory underlying them. Such theory includes the Zeckendorf representation of
a positive integer and Beatty sequences for Fibonacci nim and Wythoff’s game, respectively.

1. Fibonacci nim

We start by exploring Fibonacci nim. First, we explain the rules of the game.

Definition 1.1 (Rules of Fibonacci Nim). The game Fibonacci nim is played between two
players, Left and Right (whom we will refer to as “she” and “he”, respectively), and it starts
with a pile of n tokens; Left goes first. On the first move, she may remove as many tokens
as we wish, provided that she does not remove all n tokens. On every proceeding move,
the number of tokens removed must not exceed twice the number of tokens removed on the
previous move. The player who removes the last token wins.

The reason the game is called Fibonacci nim is because the Fibonacci numbers occur natu-
rally: Right wins going second if and only if n is a Fibonacci number. The Fibonacci numbers
occur in our analysis of this game because of the following theorem from Zeckendorf:

Theorem 1.2 (Zeckendorf). Every positive integer n can be uniquely written of the following
form:

n = Fa1 + Fa2 + Fa3 + · · ·+ Fak

where a1, . . . , an ∈ N with a1 ≥ 2 and ai − ai−1 ≥ 2 for all 2 ≤ i ≤ k.

Before we start the proof of Zeckendorf’s theorem, we present the following lemma:

Lemma 1.3. If d1, d2, . . . , dn is a positive integer sequence with d1 ≥ 2 and di − di−1 ≥ 2
for all 2 ≤ i ≤ n, then

n∑
i=1

Fdi < Fdn+1.

Proof. Fix k = dn; clearly over all sequences di with dn = k, the maximum value that the
sum can take is

Fk + Fk−2 + Fk−4 + Fk−6 + . . . .

We show that this is less than Fk+1 by inducting on k. The base cases k = 2 and k = 3 are
immediate, since F2 < F3 and F3 < F4. For the inductive step, if we assume

Fk−2 + Fk−4 + · · · < Fk−1,
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we may add Fk to both sides to get

Fk + Fk−2 + Fk−4 + · · · < Fk−1 + Fk = Fk+1.

Therefore, the induction is complete, and so

Fk + Fk−2 + Fk−4 + Fk−6 + · · · < Fk+1

for all k ∈ N. This concludes our proof of the lemma. ■

Now we will begin our proof of Zeckendorf’s theorem.

Proof. The case n = 1 is immediate since 1 = F2, so assume that n > 1. First, we will show
that n has a (not necessarily unique) Zeckendorf representation; that is, we will show that
we can write n in the above form. We proceed by induction on n; the base case n = 2 is
clear since 2 = F3. For the inductive step, assume that all 1 ≤ k ≤ n− 1 have a Zeckendorf
representation. Let Fa be the largest Fibonacci number less than or equal to n. If n = Fa,
we are done since that is the Zeckendorf representation. If n = Fa + 1, then we are once
again done, since a ≥ 3 (as n ≥ 2) and so a − 1 ≥ 2. Otherwise, n − Fa ≥ 2. If the
greatest Fibonacci number less than or equal to n− Fa is Fa−1, then Fa−1 ≤ n− Fa implies
n ≥ Fa−1+Fa = Fa+1, contradicting maximality. Thus if Fb is the largest Fibonacci number
less than n− Fa, then a− b ≥ 2. We then apply the inductive hypothesis on n− Fa, which
proves the existence of a Zeckendorf representation.

Now we will prove that the Zeckendorf representation of a positive integer n is unique.
Assume for the sake of contradiction that we can write

n =
∑
a∈A

Fa =
∑
b∈B

Fb,

where A ̸= B are sets of positive integers with no consecutive elements. Let C = A∩B,A′ =
A \ C,B′ = B \ C; we can split each sum as∑

a′∈A′

Fa′ +
∑
c∈C

Fc =
∑
b′∈B′

Fb′ +
∑
c∈C

Fc,

which implies that ∑
a′∈A′

Fa′ =
∑
b′∈B′

Fb′ .

Let k and l be the maximum elements in A′ and B′, respectively; note that k ̸= l since the
two sets are disjoint. Without loss of generality assume that k < l. By Lemma 1.3, we have
that ∑

a′∈A′

Fa′ < Fk+1 ≤ Fl ≤
∑
b′∈B′

Fb′

where the second inequality comes from k < l. This contradicts the fact that they are
equal. Therefore, A = B, implying that the Zeckendorf representation is unique, and we are
done. ■

Our next few key insights are much simpler and easier to prove than Zeckendorf’s theorem.
We refer to them as lemmas for ease of reference.

Lemma 1.4. For all k ≥ 2, we have 2Fk < Fk+2.

Proof. A simple calculation yields that Fk+2 = Fk+1+Fk > Fk +Fk = 2Fk, thus proving our
lemma. ■
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Lemma 1.5. For all k ≥ 3, we have 2
3
Fk ≥ Fk−1.

Proof. This is equivalent to proving that Fk ≥ 3
2
Fk−1. Writing Fk = Fk−1 + Fk−2, we get

Fk−1 + Fk−2 ≥
3Fk−1

2
.

Rearranging and once again using the definition gives

Fk−2 ≥
Fk−1

2
=

Fk−2 + Fk−3

2
.

Once again rearranging, it suffices to show Fk−2 ≥ Fk−3, which is clearly true. ■

We will now begin our proof that Right wins going second if and only if n is a Fibonacci
number. In fact, we will show an even stronger statement:

Theorem 1.6. Suppose that Left and Right are playing in a position (n, q) of Fibonacci nim
where there are n tokens in the pile, and Left to move can remove at most q tokens on her
move. Then Left wins if and only if when we write n’s Zeckendorf representation

n =
k∑

i=1

Fai ,

we have that Fd1 ≤ q. Otherwise, Right wins. Call such a position (n, q) good if it satisfies
the property above and bad otherwise.

Proof. First, we will show that every good position has a move to a bad position. This is
not hard; by definition Fa1 ≤ q, so Left to move may remove Fa1 tokens, leaving

∞∑
i=2

Fai

tokens remaining. Now, Right to move can remove at most q′ = 2Fa1 < Fa2 tokens by
Lemma 1.3. This means that our new position is bad, as needed.

Now we will show that every bad position only has moves to a good position. Suppose that
Left to move removes x < Fa1 tokens. It suffices to show that in the Zeckendorf representation
of Fa1 − x, the smallest term is at most 2x. We prove this by induction on a1; the base cases
a1 = 3 and a1 = 4 are immediate, since 2− 1 = 1 ≤ 2, 3− 1 = 2 ≤ 2, and 3− 2 = 1 ≤ 4. For

the inductive step, if x ≥ Fa1

3
then the smallest term is less than Fa1 − x ≤ 3x− x = 2x, as

needed, so assume that x <
Fa1

3
. Then by Lemma 1.4, we get

x− Fa1

3
> Fa1 −

Fa1

3
=

2Fa1

3
> Fk−1.

This means by the algorithm described in Theorem 1.1, the number Fk−1 is in the Zeck-
endorf representation of Fa1 − x. Therefore, it suffices to show that the smallest term in the
Zeckendorf representation of Fa1 − x − Fa1−1 = Fa1−2 − x is at most 2x, which follows by
the inductive hypothesis. This implies that every bad position has moves only to a good
position.

Finally, every good position can move to a bad position, from which a bad position only has
moves to a good position. This implies that all good positions are winning for Left, whereas
all bad positions are winning for Right, as desired. ■
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Now, the setup of normal Fibonacci nim uses q = n− 1. If n is not a Fibonacci number,
then the smallest number in its Zeckendorf representation is by definition less than n, and
thus less than or equal to n − 1, making it a winning position for Left. If n is a Fibonacci
number on the other hand, then the smallest number in its Zeckendorf representation is
equal to n, which is greater than n − 1. This makes n a winning position for Right. This
implies that Right wins if and only if n is a Fibonacci number, which concludes our study
of Fibonacci nim.

2. Wythoff’s game

We shall now begin our discussion of Wythoff’s game. First, we explain the rules of the
game. As before, the game is between two players, Left and Right, with Left moving first.
At the start of the game, there are two piles, one with m tokens and another with b tokens.
On each move, the current player can either remove as many tokens as they would like from
either pile, or they can remove tokens from both piles, so long as they remove the same
number of tokens from each pile. For example, the valid moves from the position (2, 3) are
to

(1, 3), (0, 3), (2, 2), (2, 1), (2, 0), (1, 2), (0, 1).

The player who has no valid moves left loses; thus a player wins if they are the first to clear
both piles.

The winning positions are described below:

Theorem 2.1. Let ϕ = 1+
√
5

2
be the golden ratio. A position (a, b) is a winning position for

Right in Wythoff’s game if (a, b) is of the form (⌊kϕ⌋, ⌊kϕ2⌋) or (⌊kϕ2⌋, ⌊kϕ⌋), where k is
a nonnegative integer. Otherwise, (a, b) is a winning position for Left. Call positions of the
above form bad, and call all other positions good.

The reason why the golden ratio comes into play is because of the following theorem from
Rayleigh on Beatty sequences:

Theorem 2.2 (Rayleigh). Let r, s be irrational numbers with r, s > 1. with 1
r
+ 1

s
= 1. Let

ak = ⌊kr⌋ and bk = ⌊ks⌋ for all positive integers k. Then every positive integer n is contained
in exactly one of the sequences {ak}∞k=1 or {bk}∞k=1.

Proof. First, we will show that no positive integer can be in both sequences. Assume for
the sake of contradiction that there exist positive integers n,m, k such that ⌊rk⌋ = n and
⌊sm⌋ = n. Note that n ̸= rk and n ̸= sm, otherwise r and s are rational. Then

rk < n < rk + 1

and

sm < n < sm+ 1.

Dividing the first relation by r and the second by s, we get

k <
n

r
< k +

1

r

and

m <
n

s
< m+

1

s
.
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Adding the two and using the fact that 1
r
+ 1

s
= 1 gives us

k +m < n < k +m+ 1.

This implies that an integer is between two consecutive integers, which is a contradiction.
Therefore, no positive integer can be in both sequences.

Now we will show that there is no positive integer n such that n is in neither sequence.
Assume for the sake of contradiction that there exists such an n. The sequence {ai}∞i=1

divides the positive real numbers into intervals of the form [kr, kr+1) for positive integers k,
and a positive integer n is in the sequence if and only if it lies in one of these intervals. Thus
if n is not in the sequence, it must be in an interval between the two intervals [kr, kr + 1)
and [(k + 1)r, (k + 1)r + 1). This implies that for some positive integer k, we have that

kr + 1 ≤ n < kr + r.

The first inequality is actually strict because r is irrational, so

kr + 1 < n < kr + r.

Similarly, for some positive integer m, we have that ms+1 < n < ms+ s. Dividing the first
relation by r and the second relation by s, we get

k +
1

r
<

n

r
< k + 1

and

m+
1

s
<

n

s
< m+ 1.

Adding the two and using the fact that 1
r
+ 1

s
= 1 gives us

k +m+ 1 < n < k +m+ 2.

As before, this implies that an integer is between two consecutive integers, which is a con-
tradiction. Thus no positive integer is in neither sequence.

Therefore, every positive integer is in exactly one of the sequences {ak}∞k=1 or {bk}∞k=1, as
desired. ■

For simplicity, let ck = ⌊kϕ⌋ and dk = ⌊kϕ2⌋. A well-known property of ϕ is that

1

ϕ
+

1

ϕ2
= 1;

this may be verified either by repeatedly applying the identity ϕ2 = ϕ + 1 or by direct
expansion. By Theorem 2.2, this implies that every positive integer is in exactly one of the
sequences {ck}∞k=1 or {dk}∞k=1.

Now we will begin our proof of Theorem 2.1.

Proof. First, we must show that every bad position only has moves to a good position.
Assume that Left to move is at the position (a, b) with a = ck and b = dk; similar analysis
applies when Left to move is at the position (b, a). On her move, she can either decrease a
to any nonnegative integer less than it, decrease b to any nonnegative integer less than it, or
decrease a and b by the same amount, so long as the results are both nonnegative integers.
In the first case, note that a = ck, so a ̸= ci for i ̸= k and a ̸= dj for all j. This means that
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decreasing a will yield a good position. Similarly, decreasing b will yield a good position.
Finally, if we decrease both a and b, we do not change b− a. However,

dk − ck = ⌊kϕ2⌋ − ⌊kϕ⌋ = ⌊kϕ+ k⌋ − ⌊kϕ⌋ = k,

so ck − dk = −k. Therefore, if she goes from (a, b) to a bad position while keeping a − b
constant, she must stay at (a, b), which is against the rules. Thus in any case, every bad
position only has moves to a good position.

Now we must show that every good position (a, b) has some move to a bad position. Without
loss of generality, assume that a < b; if a = b we just move to (0, 0), which is bad. There are
two cases:

Case 1: a = ck for some k. Then if b > dk, we can move from (a, b) to (ck, dk), which is a
bad position. Otherwise, a ≤ b < dk. Let m = b− a, so that dm− cm = m = b− a. We claim
that k < b − a, so that a < cm, which means that there is a move from (a, b) to (cm, dm).
Indeed, this reduces to k < b− ck, which is indeed b > dk.

Case 2: a ̸= ck for all k. Then a = dm for some m, implying cm ≤ dm = a < b, so there is a
move from (a, b) to (dm, cm).

Therefore, every good position has a move to a bad position, which combined with our earlier
work implies that all good positions are winning positions for Left, and all bad positions are
winning for Right, as desired. ■

Example. Let’s explore our winning strategy in Wythoff’s game with (a, b) = (15, 19). The
first few terms of the sequences ci and di are

0, 1, 3, 4, 6, 8, 9, 11, 12, 14, 16, 17, 19

and
0, 2, 5, 7, 10, 13, 15, 18.

Then Left to move notices that by Theorem 2.1, the position (15, 9) is bad and thus winning
for the second player, so she moves there. Right then has no moves to a good position on his
move, so suppose he moves to (11, 5). Left to move now sees that (3, 5) is a winning position
for the second player, so she moves there. Right then must move to a good position for Left,
say (3, 1). Left now moves to (2, 1), from which Right either moves to (2, 0), (0, 1), (1, 1), or
(1, 0). All of these positions are bad, so Left wins here.

3. Acknowledgments

The author would like to thank Simon Rubinstein-Salzedo and Rachana Madhukara for
their helpful insights on this paper.

Email address: tarun.rapaka@gmail.com


	1. Fibonacci nim
	2. Wythoff's game
	3. Acknowledgments

