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Abstract. Impartial games are games in which both players have the same options. Aside from Nim, two
of the most famous impartial games are Fibonacci Nim and Wythoff’s Game. In Fibonacci Nim, players

take stones from a pile such that the player to move may take at most twice the number of stones removed
on the previous turn. In Wythoff’s Game, there are two piles, and the player to move may take any amount

of stones from either or the same number of stones from both. In both games, the first player who cannot

make a move loses. When considering these two games, the natural question is who wins. This paper will
answer these questions and dive deep into the number-theoretical foundations of these games.

1. Introduction

In many common games, the players have different moves available to them. For example, in chess, one
player moves the black pieces while the other moves the white pieces. Games like this, where both players
have completely different moves, are called partizan. On the other hand, other games that have the same
set of moves for both players are called impartial. The set of possible moves is called the set of options of
the game. This paper focuses on these impartial games, and we’ll begin with the most common one: nim.

2. Nim

Definition 2.1. In the game of nim, the two players take turns moving. The game starts with k piles of
stones p1, p2, . . . , pk such that the ith pile has size si. On a player’s turn, they pick one pile pj and remove
any positive number of stones from it. The player who can no longer move loses.

So what positions are winning and losing?

Definition 2.2. An N position is one in which the Next player to move wins. A P position is one in which
the next player loses so that the Previous player is the winner.

Theorem 2.3 (Partition Theorem). Consider a set J of short impartial games such that for all G ∈ J ,
all subpositions of G are in J . Suppose there exist disjoint subsets P and N that partition J such that for
all games G ∈ P, all options of G are in N , and for all games G ∈ N , there exists an option of G in P.
Then P and N are the P and N positions of J , respectively.

Proof. Intuitively, this theorem seems to make sense; in an N position, where the player to move must win,
there should be a way for them to move to a position in which they move, which is now a P position. On
the other hand, in a P position, the player to move should lose no matter what they play, so all of their
moves must be to an N position. So clearly these sets satisfy the condition.

We’ll induct on the birthday of G to show that they are the only such sets. If the birthday of G is 0,
then G ∈ P. In such a partition, since there doesn’t exist an option of 0 in P, 0 must be sorted into the set
P, which is indeed the correct sorting. Now, assume that all games with birthdays less than n are sorted
correctly. Now consider a game G with birthday n. If G ∈ P, we know that all options of G are in N . But
since options of G have birthday n − 1, our inductive hypothesis tells us that they are N positions. Thus
G is a P position. Similarly, we find when G ∈ N that G is an N position, so the desired result follows by
induction. □

Next, we’ll define the operation at the heart of our analysis of nim.

Definition 2.4. Let ⊕, or the nim sum (called ”xor” in computer science), be an operation such that a⊕ b
adds the two integers in binary without carrying.
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Let’s try evaluating 10⊕ 14. We get 1010 = 10102 and 1410 = 11102. Adding without carrying, we obtain
the following:

1010
⊕ 1110

0100

.

Thus, 10⊕ 14 = 1002 = 4. Before we use the nim sum, we need a few lemmas to help us understand it.

Lemma 2.5. For all positive integers n, n⊕ n = 0.

Proof. Suppose that when written in binary,

n =

k∑
i=0

ai2
i,

where ai ∈ {0, 1}. When computing the nim sum n⊕ n, we go through each digit from right to left and find
the corresponding digit in the nim sum. For each index i, ai is the digit in both rows of the binary addition.
Thus, the ith digit from the right of n⊕ n is 0, so n⊕ n = 0, as desired. □

Lemma 2.6. The nim sum is commutative and associative.

Proof. Each digit of the nim sum is the result of a sum of digits in each number. If we permute the numbers,
the nim sum will therefore remain the same, so the nim sum is indeed associative and commutative by the
corresponding properties of normal addition. □

Lemma 2.7. Given n integers a1, a2, . . . , an, there exists a unique integer an+1 such that

a1 ⊕ a2 ⊕ · · · ⊕ an+1 = 0.

Proof. Let x = a1 ⊕ a2 ⊕ · · · ⊕ an. Then x has some digits that are 0 and some that are 1. By Lemma 2.6,
the desired condition is equivalent to proving that there is a unique integer an+1 such that an+1⊕x = 0. Let

x =

k∑
i=0

bi2
i,

where bi ∈ {0, 1}, and let

an+1 =

j∑
i=0

cix
i.

For each digit i, if bi = 1, ci must be 1 for the ith digit of the nim sum to be 0. Similarly, if bi = 0, ci = 0
as well. Thus we find an+1 = x is the unique integer satisfying a1 ⊕ a2 ⊕ · · · ⊕ an+1 = 0. □

The next theorem, from Bouton [Bou02], shows the significance of the nim sum to the game.

Theorem 2.8. The position with piles of size s1, . . . , sk is a P position if and only if s1 ⊕ s2 ⊕ · · · ⊕ sk = 0.

Proof. Let P be the set of positions {s1, . . . , sk} such that s1⊕s2⊕· · ·⊕sk = 0, and let N be the set of posi-
tions such that the nim sum is not zero. Clearly, these two are disjoint and partition the set of nim positions.

Let’s begin with a position in N , so the nim sum is nonzero. We must show that there is a move we
can make to make the nim sum zero. Suppose this nim sum is

S = s1 ⊕ s2 ⊕ · · · ⊕ sk.

We can write this in binary, so that

S =

r∑
i=0

ai2
i,

where ai ∈ {0, 1}. We have that ar is the leading digit. Once we clear out the zeros from the front - note
that since S ̸= 0 there must be a 1 somewhere - let l be the index of that 1. Then al = 1, so by the definition
of the nim sum there must be an odd number of si with a 1 in the 2l position. Pick one of these, sx. Then
sx and S both have a 1 in the 2l position. This means that sx ⊕ S has a 0 in that position, so sx ⊕ S < sx.
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Consider the move M that takes away sx − (sx ⊕ S) stones from the pile with sx stones, leaving sx ⊕ S
stones. The nim sum of the resulting position is

S′ = s1 ⊕ s2 ⊕ · · · ⊕ sx−1 ⊕ (sx ⊕ S)⊕ sx+1 ⊕ · · · ⊕ sk

= (s1 ⊕ · · · ⊕ sk)⊕ S

= S ⊕ S

= 0,

so we move to a position in P.

Next, we consider a position in P with nim sum 0. We aim to show that all moves from this position
are in N . Suppose we move in pile p. Since the nim sum is 0, we know that

sp = s1 ⊕ · · · ⊕ sp−1 ⊕ sp+1 ⊕ · · · ⊕ sk.

By Lemma 2.7, sp is the unique value such that the nim sum of all the piles is 0. Therefore, moving in pile p
will decrease sp and therefore change the nim sum into a nonzero value. Thus all moves from P are in N .

Therefore, by the Partition Theorem, we arrive at the desired result. □

3. Nimbers and the Mex Rule

Definition 3.1. We define the nimbers

∗n = {∗0, ∗1, . . . , ∗(n− 1)},
or the game whose options are all the nimbers before it. We abbreviate ∗0 = 0 and ∗1 = ∗.

Observe that ∗n is simply the value of a nim pile with size n.

Theorem 3.2. ∗a1 + ∗a2 + · · ·+ ∗ak = ∗(a1 ⊕ a2 · · · ⊕ ak).

Proof. We know that G = H for two games G and H if and only if G−H ∈ P. For impartial games H = −H,
so this is equivalent to showing that G+H ∈ P. The desired result then follows immediately from Lemma
2.7. □

Definition 3.3. Let S be a subset of the nonnegative integers. Then mex (S) (Minimum EXcludant) is the
minimal nonnegative integer not contained in S.

The mex is also important to our study of nimbers.

Theorem 3.4 (Mex Rule). The game G = {a1, a2, . . . , an} is equivalent to ∗m, where m = mex (a1, . . . , an).

Proof. We aim to prove that G+ ∗m ∈ P. The first player can either move in G or ∗m. If they move in G,
say to ai, we are left with ai + m. By definition, m ̸= ai, so the second player moves ai to m if ai > m,
and vice versa otherwise. We are now left with ∗m, ∗m or ∗ai, ∗ai, which by Lemma 2.5 and Theorem 2.8 is
a P-position. On the other hand, if they move in ∗m to ∗a, ∗a ∈ {ai} by the definition of m, so the move
from G to ∗a wins for the second player. Thus G+ ∗m ∈ P, as desired. □

4. Sprague-Grundy Theory

Definition 4.1. If G is an impartial game such that G = ∗n, we define the Grundy Value G(G) of G to be
equal to n.

The following theorem, discovered by Sprague [Spr36] and Grundy [Gru39], is the central idea for the
theory of classical impartial games.

Theorem 4.2. Any short impartial game G can be expressed as ∗n for some nonnegative integer.

Proof. We’ll induct on the birthday of G. The base case 0 is trivial. Now assume that the theorem is true
for the options of G, so that each option can be expressed as ∗ak. Then

G = {∗a1, ∗a2, . . . , ∗ak} = ∗m,

where m = mex (a1, . . . , ak). By induction, we arrive at the desired result. □

Given these tools, we move on to the two most common variants of Nim that we’ll be analyzing.
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5. Fibonacci Nim

fibonacci nim [Whi63] is a variant of Nim with extremely important connections to Number Theory.

Definition 5.1. In fibonacci nim , players take stones from a single pile. However, each player may only
take at most twice the number of stones taken on the previous turn. (The first player may take as many
stones as desired, but not the whole pile.)

As usual, the game is lost when a player has no moves left. This can happen at 0, but this game can also
be lost in the opening position 1. We denote a position with (n, r) if there are n stones in the pile and the
maximum number that can be removed is r.

Definition 5.2. The Fibonacci numbers Fn satisfy F1 = F2 = 1 and Fn = Fn−1 + Fn−2 for all n ≥ 3.

Lemma 5.3. Given an increasing sequence a1, a2, . . . , ak such that ai+1 > ai + 1 and a1 > 1,

k∑
i=1

Fai < Fak+1.

Proof. We’ll induct on k. If k = 1, the problem asks us to prove that Fa1
< Fa1+1, which follows simply

from the fact that the Fibonaccis are increasing. Now, suppose that k > 1. By the inductive hypothesis, we
know that

k−1∑
i=1

Fai
< Fak−1+1.

This means that

k∑
i=1

Fai
=

k−1∑
i=1

Fai
+ Fak

< Fak−1+1 + Fak
≤ Fak−1 + Fak

= Fak+1,

where the second inequality follows from the fact that ak−1 + 1 < ak. □

Through this Lemma, we can prove the following important result: [Hen16]

Theorem 5.4 (Zeckendorf’s Theorem). Every positive integer can be uniquely represented as a sum of
distinct, nonconsecutive Fibonacci numbers.

Proof. We’ll start by showing the existence of such a representation through induction. For our base case,
1 is already a Fibonacci number. Now, let n > 1. If n is Fibonacci, then we’re done. Otherwise, there is
a positive integer a such that Fa < n < Fa+1. By the inductive hypothesis, this means that x = n − Fa

has a Zeckendorf representation. We have that Fa + x = n < Fa+1 = Fa + Fa−1, or x < Fa−1. Then every
Fibonacci in the Zeckendorf Representation is at most Fa−2, so we can simply add Fa to the representation
to obtain a valid Zeckendorf representation of n.

Now, we must show uniqueness. We’ll use contradiction; let n be the smallest number with at least two
Zeckendorf representations. We can write Fa1 + Fa2 + · · · + Faj = n = Fb1 + Fb2 + · · · + Fbk . If any of the
ai equaled one of the bi, we could remove these terms to get a smaller n, which is impossible; therefore, the
ai and bi are distinct. WLOG assume a1 < a2 < · · · < aj , b1 < b2 < · · · < bk, and aj < bk. Then

n =

j∑
i=1

Fai
< Faj+1 ≤ Fbk ≤

k∑
i=1

Fbi

by Lemma 5.3, a contradiction, so the desired result follows immediately. □

Definition 5.5. We let zi(n) denote the ith smallest part of the Zeckendorf Representation of n.

Lemma 5.6. Let n > 1 and 1 ≤ k < z1(n) so that z1(k) = Ft. Then z1(n− k) ∈ {Ft−1, Ft+1}.
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Proof. We use induction on the number z of Zeckendorf parts of k. If z = 1, k is a Fibonacci number and
k = Ft. Let z1(n) = Fs. If s ≡ t (mod 2), we have that s = t+ 2d. Therefore,

Fs − k = Fs − Ft

= Fs − Fs−2d

= (Fs − Fs−2) + (Fs−2 − Fs−4) + · · ·+ (Fs−2d+2 − Fs−2d)

= Fs−1 + Fs−3 + · · ·+ Fs−2d+1,

meaning that

z1(Fs − k) = z1(n− k) = Fs−2d+1 = Ft+1.

If s ̸= t (mod 2), we have t = s− 2d− 1, and find similarly that

Fs − k = Fs−1 + · · ·+ Fs−2d+1 + Fs−2d−2,

so

z1(Fs − k) = z1(n− k) = Fs−2d−2 = Ft−1.

Therefore, our base case is satisfied. Next, suppose z > 1 and z1(k) = Ft. Then z1(k − Ft) ≥ Ft+2. In
addition, k−Ft has at most z− 1 parts. Then, by the inductive hypothesis, z1(n− k+Ft) ∈ {Ft+1, Ft+3, so

z1(n− k + Ft) > Ft+1 > Ft = z1(k).

Applying the base case with n′ = n− k + Ft and k′ = z1(k), we arrive at the desired result. □

Theorem 5.7. The fibonacci nim position (n, r) is a P position if and only if r < z1(n).

Proof. Let P be the set of positions (n, r) where r < z1(n), and let N be the rest of positions. Consider
(n, r) ∈ N . Since r ≥ z1(n), we can move to (n − z1(n), 2z1(n)). If n = z1(n), this move is clearly to a P
position. Otherwise, if Ft = z1(n), we have that z1(n − z1(n)) = z2(n) ≥ Ft+2 = Ft+1 + Ft ≥ 2Ft, so this
is a move to P. Now consider (n, r) ∈ P. Then r < z1(n). For all possible moves that take away k stones,
k ≤ r < z1(n), so by Lemma 5.6 we can write

z1(n− k) ≤ Ft+1 = Ft + Ft−1 < 2Ft < 2k,

where Ft = z1(k). Thus (n− k, 2k) ∈ N , as desired. □

From this formula, we see that the winning move in an N position (n, r) must be the move to (n −
z1(n), 2z1(n)). This is the move that takes away z1(n) stones from the pile with size n; in other words, this
move removes the smallest element in the Zeckendorf Representation of n.

6. Grundy Values for Fibonacci Nim

While there is no known closed form for the Grundy Values of Fibonacci Nim, [LRS16] finds a form for
the Grundy Value in some cases, assuming that zi(n) = ∞ if the number of Zeckendorf parts of n is less
than i. The authors show the following theorems:

Theorem 6.1. G(n, r) = 1 iff z1(n) = 1 and r ∈ [1, z2(n)).

Theorem 6.2. G(n, r) = 2 iff z1(n) = 2 and r ∈ [2, z2(n)).

Theorem 6.3. G(n, r) = 3 iff z1(n) = 1, z2(n) = 3, and 3 ≤ r < z3(n), or z1(n) = 3 and 3 ≤ r < z2(n)− 1.

Theorem 6.4. For all n ≥ 0, we have G(n, n) ≤ G(n+ 1, n+ 1) ≤ G(n, n) + 1.

7. Wythoff’s Game

wythoff’s game or wythoff nim is another game with P positions relating to important number
theoretic sequences.

Definition 7.1. wythoff’s game is played with two piles. A turn consists of taking some number of
stones from a single pile or the same number of stones from both piles.
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Figure 1. A queen on an 8× 8 chessboard

Equivalently, we can consider a queen on a chessboard - the diagram above shows the case of an 8 × 8
board. As depicted, the queen may move horizontally, vertically, or diagonally. If we consider the number
of rows and columns to be the sizes of the two piles, this means that the queen’s horizontal or vertical
movements consist of taking stones away from a single pile, while diagonal movements take the same number
of stones away from each pile. We define a wythoff’s game position to be the pair (a, b) corresponding to
the sizes of the piles, so that a represents the horizontal distance of the queen while b represents the vertical
distance. Figure 1 is therefore (5, 3).

Theorem 7.2. The P positions of wythoff’s game are the pairs (an, bn) so that an = mex (ai, bi : i ∈
{0, 1, . . . , n− 1}) and bn = an + n.

Proof. Call the set of positions described P and the rest N . Then suppose for the sake of contradiction that
there exists a move from (an, bn) to (am, bm). Since the minimum of all the coordinates cannot increase, we
must have m < n by construction of ai. By this construction, an ̸= am and bn ̸= bm, so this move must be
diagonal. But this is also impossible; for it to be diagonal, we would need an − bn = am − bm, or −n = −m,
which is impossible. Next, we must show that there exists a move from N to P. Suppose that (a, b) is not
of the form (ai, bi), and WLOG a ≤ b. If a is of the form ai, we must have b ̸= bi. If b > bi, there is a move
from (a, b) to (a, bi) = (ai, bi), which is a move to a P position. Otherwise, if a ≤ b < bi, let m = b− a, so
that m < i =⇒ am < ai, and there is a move to (am, bm). Otherwise, if a is not of the form ai, we must
have a = bn for some n by construction of ai. Thus an < a, so there is a move to (bn, a), completing the
proof by symmetry. □

Definition 7.3. Two sets are complementary iff they partition the positive integers.

Definition 7.4. Let α be a positive irrational number. The sequence an = ⌊αn⌋ is called a Beatty sequence.

The following theorem from [Bea26] is critical to our understanding of wythoff’s game.

Theorem 7.5. Let α and β be positive irrational numbers such that 1
α + 1

β = 1. Then the Beatty Sequences

for α and β are complementary.

Proof. For some integer N , there are ⌊N
α ⌋ terms of the Beatty Sequence for α that are less than N , and ⌊N

β ⌋
terms of the Beatty Sequence for β less than N . We know that

N

α
− 1 < ⌊N

α
⌋ < N

α
(7.1)

N

β
− 1 < ⌊N

β
⌋ < N

β
.(7.2)

Adding (7.1) and (7.2) givesN−2 < ⌊N
α ⌋+⌊N

β ⌋ < N. Thus ⌊N
α ⌋+⌊N

β ⌋ = N−1. In addition, ⌊N+1
α ⌋+⌊N+1

β ⌋ =
N. The extra 1 must be added to exactly one of the two terms, so the desired result follows immediately. □

This gives us our final theorem:

Theorem 7.6. The P positions of wythoff’s game are the positions (a, b) and (b, a) such that

a = ⌊ϕn⌋ and b = ⌊ϕ2n⌋.
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Proof. Note that ϕ2 = ϕ + 1, meaning that 1
ϕ + 1

ϕ2 = 1. Then the Beatty Sequences for ϕ and ϕ2 are

complementary. In addition,
⌊nϕ2⌋ = ⌊nϕ+ n⌋ = ⌊nϕ⌋+ n.

This means that ⌊nϕ⌋ = mex (⌊mϕ⌋, ⌊mϕ2⌋ : m < n) and ⌊nϕ2⌋ = ⌊nϕ⌋ + n, so the desired result follows
from Lemma 4.2. □

While we do know the winning strategy, the Grundy values for wythoff’s game are elusive, and no
significant patterns have been found.
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