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Abstract. The surreal numbers are a generalization of the real, hyperreals, superreals,
and other similar systems. This papers assumes knowledge that the surreal numbers form
an ordered field. We define the ω map and use it to derive the Conway normal form for
all surreal numbers. Then we define omnific integers, the appropriate analogue of integers
for surreal numbers. We close by proving the surreal numbers are real closed, which means
that the surcomplex numbers ae algebraically closed.

1. Conway Normal Form

Any real number x can be expressed uniquely as a base-b infinite sum with digits between
0 and 9. Does a similar expansion exist for surreal numbers? There does. Conway normal
form is like a base-ω expansion for a surreal number.

Theorem 1.1. Any surreal number x can be expressed uniquely as a sum of the form

(1.1) x =
∑
α<β

rαω
yα ,

where β is an ordinal, yα is any surreal, and rα is a real number for all α.

Right now, this theorem has a few problems. First, we don’t have a definition for ωx when
x is not an integer. We also haven’t defined ordinal-indexed sums.

Let’s try to define ωx first. We want ωx to be positive, so it can’t hurt to make 0 a left
option. For any left option xL, we want rωxL to be smaller than ωx for all positive real
numbers r, so we make rωxL

a left option of ωx. Similarly, we want ωxR to be a right option.
It turns out this is a pretty good definition. The reason we need to add 0 as a left option so
that ω0 = 1. Thus we have gotten this definition for exponents.

Definition 1.2 (ω map). Let x be a number. We define

(1.2) ωx = {0, rωxL|rωxR},

where r ranges over all positive reals.

There is another commonly used definition of exponential for any surreal number, not just
ω, that doesn’t necessarily match our definition, which is why this is often called the ω map.
Of course, we want the ω map to behave like an exponential.

Theorem 1.3. As we have defined it, ωx behaves like a normal exponential. Specifically,

(1.3) ωxωy = ωx+y, ω0 = 1
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The proof is just computation. All other properties of exponents follow from this, so our
definition is decent.

A lot of times, it can be helpful to know if two numbers are the same ”order of magnitude”.
We formalize this below.

Definition 1.4. We say positive numbers x and y are commensurate if there exists some
positive reals a, b such that ax < y < bx. If 0 < x < y, and x and y are not commensurate,
we say that x is infinitesimal compared to y, and write x << y.

It is easy to prove that commensurativity is an equivalence relation. Also, if x < z < y,
and x is commensurate to y, then z is commensurate to x and y, which means that these
equivalence classes are convex. It is a bit harder to prove every surreal number is in one of
these equivalence classes.

Theorem 1.5. Any positive number x is commensurate with a unique ωy.

Proof. We can say by induction that xL is commensurate to ωyL and that ωR is commensurate
to ωyR . We can assume x is not commensurate with any of its options. Since x is not
commensurate to ωyL and xL < x, we have that rωyL < x for any positive real r. Thus we
can add rωyL as a left option. Since xL < bωyL for some b, we can remove xL as an option
without changing the value of x. We can do the same thing for the right options. Thus
x = {0, rωyL |rωyR}, and x is commensurate with ωy, y = {yL|yR}. Our choice of y is unique
since ωy is commensurate with ωy′ if and only if y = y′. This is because we can add y′ as a
left option of y without changing its value. ■

Say that x is commensurate to ωy. Let the set of all r ∈ R such that rωy < x be A, and
R − A = B. One of A,B has an extreme element. Call that element r. Then x − rωy is
commensurate to ωy′ for some y′ < y. If this stops, we get a nice, finite sum for x. If it
doesn’t stop, we want the infinite sum of all of these terms to be x. We will define infinite
sums so that this works out.

The 0-term of x is the number r0ω
y0 such that x−r0ω

y0 is infinitesimal compared to x. It is
allowed for r0 = 0, which clearly only happens when x = 0. We define

∑
β<1 ryβω

yβ = r0ω
y0 .

Now we define the α-term of x for all ordinals α by induction. Assume the β-term has
been defined for all β < α as some ryβω

yβ . Then we define

(1.4)
∑
β<α

ryβω
yβ

to be the simplest number whose β-term is ryβω
yβ for all β < α. Then we write

(1.5) x =
∑
β<α

ryβω
yβ + xα,

and define the α-term of x to be the 0-term of xα. If the α-term is 0, we can just stop the
sum here, and we have gotten the Conway normal form of x.

Now consider the set of all partial sums

(1.6)
∑
β<α

ryβω
yβ

for a particular number x. Assume that the sum never terminates at any ordinal, so that
each α gives a different partial sum. Since the sums are chosen to be the simplest, they must
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be born before or at the same time as x. But the ordinals make up a proper class, while the
numbers born by a certain day are a set. So the sum must stop a a certain point, and we
have proven that each number has a Conway normal form.

2. Omnific Integers and Gaps

Now that we have an analogue to decimals, we can use that to define a surreal analogue to
integers. A real number is an integer if its decimal expansion ends before its decimal point.
So we could define a surreal number x to be an omnific integer if all the nonzero exponents
of ω in Conway Normal Form are nonnegative. But this would make any real number an
omnific integer, which we don’t want. So we also add the restriction that y0 must be an
integer. This would work as a definition, but there is a much nicer way to describe omnific
integers.

Definition 2.1. A surreal number x is an omnific integer if and only if x = {x− 1|x + 1}.
We call the set of omnific integers Oz.

This is how omnific integers are usually defined. We will prove this is equivalent to the
other definition. First, we prove this definition makes sense.

Theorem 2.2. The omnific integers form a group under addition. That is,
i) If x, y ∈ Oz, then x+ y ∈ Oz.
ii) If x ∈ Oz, then −x ∈ Oz.

Proof.
i) x+ y = {x− 1|x+ 1}+ {y − 1|y + 1} = {x+ y − 1|x+ y + 1}, so x+ y ∈ Oz.
ii) −x = {−(x+ 1)| − (x− 1)} = {−x− 1| − x+ 1}, so −x ∈ Oz. ■

After this lemma, we will be ready to prove the equivalency.

Lemma 2.3. We have the following:
i) rωx ∈ Oz if x > 0
ii) rωx /∈ Oz if x < 0.
iii) rω0 ∈ Oz if and only if r ∈ N.

Proof. i) The 0-term in rωx − 1 and rωx + 1 is rωx. Since the equivalence classes we made
are convex, all numbers in the interval [rωx− 1, rωx+1] are commensurate with ωx. In fact,
these numbers also have 0-term rωx. Since rωx is the simplest number with that 0 term, we
get {rωx − 1|rωx + 1} = rωx by the simplicity theorem.

ii) If x < 0, rωx − 1 < 0, rωx + 1 > 0, so {rωx − 1|rωx + 1} = 0.
iii) The interval (r−1, r+1) contains exactly one integer, which is the value of {r−1|r+1}

by the simplicity theorem. ■

Theorem 2.4. Any surreal number x is a quotient of two omnific integers.

So the surreal numbers are more like rationals than reals in this way. Maybe we can fix
this by filling in the gaps between surreal numbers dedekind-cut style, defining gaps {X|Y },
where X ∪Y = On. The problem here is that the surreal numbers are too big to be a set, so
X and Y aren’t sets, but rather proper classes. This means that thing get extremely weird.
For example, proper classes cannot be contained in other proper classes. To avoid all this
weirdness, we will stay in the surreal numbers. If you want to learn more about classes, read
(insert reference here).
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3. The Fundamental Theorem Of Algebra

We will end this paper by proving an analogue of the fundamental theorem of algebra
for the surreal numbers. If you haven’t seen the proof of the fundamental theorem for the
complex numbers, check out (insert reference). The proof of the fundamental theorem for
an arbitrary field only requires two things:

1) Every positive number has a square root.
2) Every polynomial with odd degree has a root (in the field)
Unfortunately, NO isn’t a field, since the surreal numbers are too big to be a set, and

fields must be over a set. But this doesn’t really matter, since we can define fields to be over
a class instead without creating any problems. Fields with properties 1) and 2) are known
as real closed fields. These fields turn out to be very nice. More specifically

We already know 1) is true. The proof of 2) requires a version of Hensel’s lemma:

Lemma 3.1. Let f(x) = a0x
n+a1x

n−1+· · ·+an−1x+an be a surreal polynomial. Assume that
ai = bi+εi, where bi is a real number and εi is infinitesimal. If f ′(x) = b0x

n+b1x
n−1+· · ·+bn

factors into g0(x)h0(x), then f(x) = h′(x)g′(x) for some g′, h′ with the same degree as g0, h0.

Proof. First, we can assume a0 = 1, and also that g0, h0 are relatively prime. We write f as
a sum of polynomials where the coefficients that are commensurate with each other are all
grouped together into a single polynomial. More formally, write

(3.1) f(x) =
∑
β<α

ωyβsβ(x)

where the yβ form a decreasing sequence, and sβ(x) is a real polynomial with degree ≤ n.
We know that yβ = 0 and s0(x) = f ′(x) = g0(x)h0(x). Say that deg g = r and deg h = s,
r + s = n.

We will inductively define a sequence gα, hα. Say that

(3.2)

(∑
β<α

ωyβgβ(x)

)(∑
β<α

ωyβhβ(x)

)
has the same coefficient of ωy as f as long as y ≥ yβ for some β < α, but is not equal to
f(x). Recall that the coefficient of ωy will be a real polynomial. Say by induction that gβ, hβ

have degrees at most r − 1, s− 1 for β ̸= 0.
Let yα be the biggest exponent i whose coefficient does not match that of f . Notice that

yα < yβ for all β < α. We will find fα(x), gα(x) with degrees less than r, s such that

(3.3)

(∑
β<α

ωyβgβ(x) + ωαgα(x)

)(∑
β<α

ωyβhβ(x) + ωαhα(x)

)
has the same coefficient of ωy as f as long as y ≥ yα. For this to be true, we just need that
gα(x)h0(x) + hα(x)g0(x) = p(x) for some polynomial p with degree at most n − 1. This is
because the only way we can get a factor of xn is in the product is through g0f0. Because
g0, h0 are relatively prime, we can choose hα, gα to have degrees at most r− 1, s− 1. Notice
that bβ is a finite sum of some yβ’s, since we can’t have an infinite decreasing chain o ordinals.

Now we claim that eventually

(3.4) f(x) =

(∑
β<α

ωyβgβ(x)

)(∑
β<α

ωyβhβ(x)

)
,
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so that the process stops eventually. This must happen because the ordinals form a class,
while the finite sums of yβ’s are a set, and we cannot repeat yβ’s. ■

Now we are ready.

Theorem 3.2. Let f(x) = anx
n + an−1x

n−1 + · · · + a0 be a polynomial with odd (integer)
degree and ai ∈ On. Then f(x) has a root in On.

Proof. This is equivalent to showing that the only irreducible odd degree surreal polynomials
are those with degree 1. First, we can scale x such that all the coefficients are ≤ 1. Any
number a ≤ 1 can be written as b+ε, where b is real and ε is infinitesimal. (Take the conway
normal forms.) So we can assume that f(x) = xn + (bn−1 + εn−1)x

n−1 + · · ·+ (b0 + ε0). We
can also shift x such that bn−1 + εn−1 is 0. Then we can shift x again so that at least one
coefficient other than that of xn has a nonzero real part, unless f = xn, which is an obvious
case. By the previous lemma, the real part of this must not have relatively prime factors.
So the polynomial is either of form (x + a)n, n odd or (x2 + bx + c)n. The last option is
impossible, having even degree. So the real part of f is (x + a)n. Since the coefficient of
xn−1 is 0, we get that a = 0. But this is in contradiction to the assumption that some other
coefficient had a nonzero real part. ■

Thus we have shown that No is real closed, so the surcomplex numbers, defined as x +
iy, x, y ∈ On, i2 = −1, are an algebraically closed field. In fact, since the surreal numbers
contain all ordered fields, the surcomplex numbers turn out to contain all algebraically closed
fields, although this is beyond the scope of our paper.

Theorem 3.3. The surcomplex numbers are algebraically closed.

4. Conclusion

There are still a lot of things we don’t know about the surreal numbers. A lot of people
have been trying to do calculus on the surreal numbers. The big problem is that the usual
ε-δ definition of limits doesn’t work anymore, since we have infinitesimals. Omnific number
theory also has some interesting problems, but it seems that proofs of theorems are either
the same is in the case of regular integers, or unknown, so not much work has been done
there. Similarly, we know basically nothing about the surcomplex numbers, since we don’t
even know that much about the surreals.
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