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Abstract

Impartial games are a very important set of games in Combinatorial
Game Theory[1]. An example of an impartial game is Nim, which is one
of the most important games, in Combinatorial Game Theory. It is well
known that the second player will win if and only if a1⊕a2⊕ . . .⊕an = 0.
In this paper we explore various impartial games such as Fibonacci Nim,
Wythoff’s Game.

1 Introduction

Impartial games are a very important set of games in Combinatorial Game
Theory[1]. An example of an impartial game is Nim, which is one of the most
important games, in Combinatorial Game Theory. The rules of Nim are as
follows:

Consider n piles of stones. The first pile has a1 stones, the second has a2
stones, and so on until the n-th pile has an stones. The current player chooses
any pile and removes any positive number of stones from that pile (but the
player cannot take more than the current number of stones in that pile). The
person who makes the last move wins.

It is well known that the second player will win if and only if

a1 ⊕ a2 ⊕ . . .⊕ an = 0

.
In this paper we explore winning and losing positions in games such as

Fibonacci Nim and Wythoff’s Game.

2 Fibonacci Nim

Fibonacci Nim is a famous variants of the traditional Nim game. The rules of
Fibonacci Nim is as follows[1−7]:

Assume there are n coins in a pile. On the first move, the first player can
take no more than n − 1 coins. For every next move, the player takes at most
twice as many coins as the number of coins taken on the previous move. In
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other words, let qm be the maximum number of coins that can be removed on
the m-th move and let rm be the number of coins removed on the m-th move.
Then, q1 = n − 1 and qi = 2ri−1 where i ≥ 2. The person who takes the last
coin wins the game.

We use the following definition for a position in Fibonacci Nim.

Definition 2.1. If at the current state, there are n coins remaining in the
pile and the maximum number of coins we can currently remove is r, then we
represent the current position as (n, r).

From here, we see the starting position is just (n, n − 1). We claim the
following theorem.

Theorem 2.2. A fibonacci nim game is in P if and only if n, the number of
coins initially, is a Fibonacci number.

We first define the Zeckendorf representation of a number. This is a unique
representation for the values of N written as a sum of fibonacci numbers, such
that no to fibonacci numbers have adjacent indices.

Definition 2.3. Define z(k) to be the smallest Fibonacci number in the Zeck-
endorf representation of k.

With the following definition we can state a more general theorem from which
Theorem 2.2 follows since the first player loses if and only if n− 1 < z(n) ≤ n,
so we must have z(n) = n which means n needs to be a Fibonacci number.

Theorem 2.4. We have (n, qm) is a losing position for the current player if
and only if qm < z(n).

To prove Theorem 2.4, we first prove the following lemma.

Lemma 2.5. Suppose n > 1 and 1 ≤ k < z(n). Suppose that z(k) = Ft. Then
z(n− k) ∈ {Ft−1, Ft+1}. In particular z(n− k) ≤ 2k.

Proof. We induct on the number of Zeckendorf parts of k. The base case is if
k is a Fibonacci number, say k = Ft, and suppose that z(n) = Fs. We now
consider the cases where s ≡ t (mod 2) and s ̸≡ t (mod 2).

Assume s ≡ t (mod 2). Let t = s− 2d for some positive integer d.

Fs − k = Fs − Ft

= Fs − Fs−2d

= (Fs − Fs−2) + (Fs−2 − Fs−4) + . . .+ (Fs−2d+2 − Fs−2d)

= Fs−1 + Fs−3 + . . .+ Fs−2d+1

Thus, we have z(Fs − k) = z(n− k) = Fs−2d+1 = Ft+1.
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Now, assume s ̸≡ t (mod 2). Let t = s−2d−1 for some non-negative integer
d.

Fs − k = Fs − Ft

= Fs − Fs−2d−1

= (Fs − Fs−2) + (Fs−2 − Fs−4) + . . .+ (Fs−2d+2 − Fs−2d) + (Fs−2d − Fs−2d−1)

= Fs−1 + Fs−3 ++ . . .+ Fs−2d+1 + Fs−2d−2

Thus, we have z(Fs − k) = z(n − k) = Fs−2d−2 = Ft−1. This proves that the
statement is true when k is a Fibonacci number.

Now assume the lemma holds when k has m − 1 parts in its Zeckendorf
representation. Consider a number l that has m parts in its Zeckendorf repre-
sentation. Suppose z(l) = Ft. Thus, z(l − z(l)) ≥ Ft+1 and l − z(l) has m − 1
parts, so by induction we have:

z(n− l + z(l)) ≥ Ft+1 = Ft = z(l)

. Thus, we get that z(n− k) ∈ {Ft−1, Ft+1}, as desired.

Now, we prove theorem 2.4.

Proof. Let A be the set of positions (n, qm) such that qm < z(n) and B be the
set of positions (n, qm) such that qm > zn. We prove that for all moves from
any position in A we go to a position in B and for any position in B there exists
a move to go to a position in A.

We begin by showing that if (n, qm) ∈ B then there is a move to a A position.
Since qm > z(n), there is (n − z(n), 2z(n)). If n = z(n), then this move is
clearly to a A position, since the game is finished. Otherwise, if z(n) = Ft, then
z(n−z(n)) = y(n) ≥ Ft+2 > 2Ft, so (n−z(n), 2z(n)) ∈ A, where y(n) represents
the second smallest Fibonacci number in the Zeckendorf representation of n.

Now suppose that (n, qm ∈ A, so qm < z(n). Then, for any k ≤ qm < z(n),
we have z(n−k) ≤ 2k by the previous lemma, so (n−k, 2k) ∈ B, as desired.

3 Wythoff’s Game

Wythoff’s Game is another famous variant of the Nim game. It is well known
by many number theorists[8]. The rules of Wythoff’s Game is as follows:

There are two piles of coins. The players play alternately and either takes
some arbitrary amount from one of the piles or an equal amount from both
piles. The person who takes the last coin wins the game.

The following theorem summarizes the results for Wythoff’s Game.

Theorem 3.1. If one pile has n coins and the other has m coins, then this is
a winning position if and only if it cannot be written as the form n = ⌊kϕ⌋ and
m = ⌊kϕ2⌋, for any non-negative integer k, where ϕ is the golden ratio.

But, before we prove the theorem we first start with a lemma.
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Lemma 3.2. The losing positions in Wythoff’s game are the pairs (an, bn) for
all n ≥ 0, which are defined recursively

an = mex{ai, bi : 0 ≤ i < n}, bn = an + n

Proof. Call the positions described in the lemma the A positions, and the others
the B positions. We begin by showing that there is no move from a A position
to another A position.

Suppose there was a move from (an, bn) to some (am, bm) or (bm, am). Notice
the situation when we start with (bn, an) is symmetric.

Since the minimum of the coordinates cannot increase, we must have m < n.
By the construction of an, we cannot have an = am or an = bm, so this move
must remove an equal amount from both piles. But this is impossible as well,
since |an − bn| = n, but |am − bm| = m < n. Thus all moves from A positions
go to B positions.

We are now left to show that for any B position, there is a move to a A
position. Suppose that (a, b) is not of the form (an, bn) or (bn, an) for any n.
By symmetry, we must assume a ≤ b. First, suppose that a = an for some n.
If b > bn, then there is a move from (a, b) to (a, bn) = (an, bn) which is a move
to a A position. Otherwise, if a ≤ b < bn, then let m = b − a. Then m < n
so am < an, and there is a move to (am, bm). Finally suppose that a ̸= an for
all n. Then, by the construction of an, we must have a = bn for some n. Thus,
an < a = bn so there is a move to (bn, an) which completes the proof.

We now prove Theorem 3.1.

Proof. Note that ϕ2 = ϕ+1, which implies that 1
ϕ+

1
ϕ2 = 1. Thus, by Rayleigh’s

Theorem, the Beatty sequences for ϕ and ϕ2 are complementary[9]. Note also
that

⌊nϕ2⌋ = ⌊nϕ+ n⌋ = ⌊nϕ⌋+ n

Thus, we have

⌊nϕ⌋ = mex{⌊mϕ⌋, ⌊mϕ2⌋ : 0 ≤ m < n} and ⌊nϕ2⌋ = ⌊nϕ⌋+ n

Thus, the result directly follows from Lemma 3.2.
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