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1. Introduction

A challenge arises as the world uses more data: How can we transport the data? Trans-
ferring data is challenging. Often, bits of data get altered, which can completely change the
meaning of the data. To overcome this issue, we will introduce some redundancy into the
data. This ensures that even if some bits are lost, the message’s meaning isn’t lost. For
example, the simplest way to introduce redundancy to the data is to repeat each bit k times.
We could construct a set like

[e1, e2, . . . en, e1, e2, . . . en, . . . e1, e2, . . . en]

or
[e1, e1, . . . e1, e2, e2, . . . e2, . . . en, en, . . . en].

The first scenario is more robust to multiple runs and hence is used in practice. This is the
basis on which the theory of error-correcting codes arises. [6]

In this paper, we will go over the construction of Hamming codes and their relationship
to Nim. Then we introduce Lexicodes and generalize the results from the game of Nim
to any heap game. Finally, we will shift our focus from Nim to Annihilation Games and
Anncodes and explore the relationships between them error-correcting codes.

2. suggestions

give me more sugegestions rto add

3. Hamming Code: Encoding, Error Detection, and Correction

The Hamming code process begins with defining two key matrices: G, the generator
matrix, and H, the parity-check matrix. For the [7, 4] Hamming code, G encodes 4-bit
messages into 7-bit codewords, while H ensures error detection and correction. [2]

Definition 3.1. In this setup, H is a 7× 3 matrix, constructed with each row as a unique
binary representation:

H =



0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1


.

Definition 3.2. The relationship G ·H = 0 ensures the code’s structure, meaning that any
valid codeword, when multiplied by H, yields a result of zero. From this, G is derived to
encode the input message:
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G =


1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1

 .

This generator matrix maps each 4-bit message into a unique 7-bit codeword by appending
parity bits calculated as linear combinations of the original message bits. [7]

Example 3.3. To demonstrate, let’s encode a message m = [1, 0, 1, 1]. Using G, the code-
word c is calculated as:

c = m ·G = [1, 0, 1, 1] ·


1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1

 .

Performing the matrix multiplication gives:

c = [1, 0, 1, 1, 0, 1, 0].

Definition 3.4. This 7-bit codeword is transmitted. However, during transmission, a single-
bit error may occur. To identify and correct this, the parity-check matrix H is applied to
the received message to compute the syndrome s:

s = H ·m.

Example 3.5. Suppose the received message m = [1, 0, 1, 0, 0, 1, 0] differs from c, with an
error in the 4th bit. Using our H, the calculation involves multiplying each row of H with
the corresponding bits of m (mod 2):

s =



0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1


·



1
0
1
0
0
1
0


.

The result s = [0, 0, 1] indicates that the received message does not satisfy the parity-check
constraints. The syndrome corresponds to the 4th row of H, identifying the position of the
error. This process works because H was designed such that each row uniquely identifies
one bit in the codeword.

Once the error is located, the 4th bit of m is flipped, correcting the error and yielding the
original codeword c = [1, 0, 1, 1, 0, 1, 0].

Definition 3.6. The key idea here is that the syndrome s reflects the error pattern. Math-
ematically, if c is the original codeword and e represents the error vector (a binary vector
with a single 1 at the position of the error), then:

m = c+ e.

Applying H:
s = H ·m = H · (c+ e) = H · c+H · e.

Since H · c = 0 for valid codewords, we have:

s = H · e.
Thus, s directly identifies the column ofH corresponding to the error, enabling its correction.
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By combining the encoding process, error detection through the syndrome, and error
correction via flipping the identified bit, the Hamming code provides a robust method for
single-bit error correction. [1]

4. Hamming Codes and their Relation to Nim

The Hamming code has many connections to the game of Nim. Before we go into the
content, let’s go over an important theorem.

Theorem 4.1. A code corrects up to e errors if and only if its Hamming distance is greater
than or equal to 2e+ 1.

Proof. We can prove this in both directions. Let X and Y be any two codewords from this
code.

We will prove the forward direction first. Let the code have a Hamming distance that
is greater than or equal to 2e+1. Then we know that X and Y differ in at least 2e+1 spots.
Thus any message that differs from X in at most e spots, differs from Y is at most e + 1
spots. So if the message was interpreted asX then it can’t be interpreted as Y and vice versa.

Now we will show the other direction. Let the code be an e-error-correcting code. So
the message that is interpreted as X can differ in at most e spots from X. Also, note that
any message that is interpreted as Y differs from X in at least e+1 positions. Hence X and
Y must differ in at least 2e+ 1. [5] □

This is an important result to keep in mind and we will use this for the proofs below. With
this let’s take a look at some definitions that will better help us understand the relationship
between Hamming Codes and the game of Nim.

Definition 4.2. The game of Nim is a classical two-player game. In any position of Nim,
there are multiple piles of stones and each player takes turns removing the stones. The first
player without any legal moves is the loser.

Definition 4.3. Let ∗n denote a Nim pile of size n.

Definition 4.4. Consider the Nim game ∗a1 + ∗a2 + · · ·+ ∗ak where ak ≥ ak−1 ≥ · · · ≥ a1
and ai ∈ N. Take an array of size ak populated with 0’s. Then for each ai, we flip the bit at
index ak − ai. We will call this the binNim.

Example 4.5. The binNim of the game ∗3 + ∗7 + ∗2 + ∗1 + ∗1 + ∗5 is 1010100.

We have an interesting connection to the game of Nim using this concept.

Theorem 4.6. The codewords in Hamming code are the P -positions when represented as a
binNim string.

In other words, we are claiming that any Hamming code of length n is a P position.

Proof. Let P be the set of all codewords written as a binNim string and let N be the set
of all other messages. Note that messages in N differ from some codeword in less than 3
positions. This means we can go from the set of all messages excluding codewords in N to
an element in P .

Now we consider the set P of codewords. Since P is a set of codewords we know that
it differs from another codeword in at least 3 positions. Also, note that changing for greater
than or equal to 3 positions is not possible with the Nim moves. Hence we see that a move
can only flip 1 or 2 of the bits. Therefore, we can go from the set of all codewords P to the
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set of all other messages N .

By the partition theorem, we can see that P and N are just the P and N positions re-
spectively. □

We encourage the reader to find a proof using the generator concept introduced above as
a fun challenge.

5. Lexicodes

Definition 5.1. Lexicodes are a type of error-correcting code that helps detect and fix mis-
takes in data transmission. They use a greedy algorithm involving lexicographical ordering
that ensures no two codewords are too similar. [3]

Definition 5.2. The Hamming distance of two codewords is the number of positions in
which they differ. A code’s Hamming distance is the minimal distance between any two of
its codewords.

Construction 5.3. To construct a lexicode, begin by ordering all possible binary strings in
lexicographic order, such as 0000, 0001, 0010, and so on. Start with the first string 0000

and add it as the first codeword. Filter the rest of the list, selecting only those strings that
are at least the required Hamming distance (e.g., 3) from every codeword already selected.
Repeat this process until all valid strings are chosen.

Example 5.4. For example, suppose we’re building a lexicode with a minimum Hamming
distance of 3 using binary strings of length 4. After 0000, the next valid string is 0110,
which is 3 units away from 0000, so it is added. Continuing this process, we select strings
like 1001, 1111, and so on. The final lexicode for this case would be {0000, 0110, 1001,

1111}.

Remark 5.5. This approach works as it makes sure that codewords are sufficiently spaced
to detect and correct errors. If a codeword is altered slightly, it would not match any valid
codeword, allowing the error to be obvious to detect. When the error is small, the receiver
can determine the original codeword by finding the nearest valid one.

6. Lexicodes and their relation to heap games

Once again as last time, we will start with some definitions.

Definition 6.1. A turning set is a general form of {a0, a1, . . . an} where a0 > a1 > · · · >
an ≥ 0.

Definition 6.2. The base of a code is the number of unique digits used to represent messages
and is usually denoted by B.

Definition 6.3. A heap game is an impartial game with several heaps of stones. We can
use turning sets to describe the play of this game. A player may replace the pile of size a0
with a series of piles of size a1, a2, . . . an.

In particular, we see that Nim, a heap game, has a turning set of {a0, a1}.
With the two definitions above we can write a relationship between the P -positions in

heap games to lexicodes.

Theorem 6.4. The P positions of any heap game correspond to codewords in lexicode for
any turning set and base.
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Proof. We can do an inductive proof by the positions of the game. Consider a position X.
Now we will consider two cases, the first being if X is not in the lexicode and the second
being if X is in the lexicode.

If X is not in the lexicode this means that X ′ is in the lexicode where X ′ < X and {X,X ′}
is a turning set. By the inductive hypothesis, a move from X to X ′ is a winning move, and
therefore G is not a winning position.

If X is in the lexicode and X to X ′ is a legal move, then we must have X ′ < X and
the turning set {X,X ′} exists. But since we have assumed that X is a winning position, we
need to reject each X ′ which means the move from X to X ′ is not a winning move. Therefore
X is a winning position. □

With this, we have shown a relationship between all Heap games and error-correcting
codes.

7. Annihilation Games

Now we will shift our attention to a new type of game called Annihilation Games.

Definition 7.1. Annihilation games are played on finite directed graphs called ground
graphs (Γ) where tokens are distributed across the vertices of the graph. Players can spend
a move moving a token of their choice across a directed edge.

(1) If the destination vertex is already occupied by another token, both tokens are re-
moved from the game.

(2) If the destination vertex is unoccupied, the token moves there.
(3) A player loses if they cannot make a move on their turn.

Example 7.2.

•

•

◦ ◦

Figure 1. N-Position. Left moves top left token to the top right vertex and anni-
hilates both tokens. Then Right has no moves left allowing Left to win the game.

◦ ◦

•

Figure 2. P-Position. Left runs out of moves as he cannot move the token to any
position.
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Definition 7.3. Each annihilation game can be represented as a binary vector where each
bit corresponds to a vertex in a graph. When the bit is 1, it represents an occupied vertex
and when the bit is 0, it represents an empty vertex.

Definition 7.4. The set of P -positions in the game form collections of binary vectors that
satisfy the ruleset. These vectors are then used to form the codewords in an anncode.

◦ •

Figure 3. This game can be represented through the state (0, 1).

Example 7.5.

Definition 7.6. The binary vectors representing P -positions are used as codewords for the
anncodes because P -positions form a linear subspace in the vector space over GF (2). This
means the XOR (bitwise addition modulo 2) of any two P -position vectors is also a P -
position, and the zero vector (0, 0, . . . , 0), representing no tokens on any vertex, is always a
P -position.

(1) The game rules impose constraints on P -positions, ensuring that any two P -position
vectors are sufficiently far apart in terms of Hamming distance. The Hamming dis-
tance is defined as the number of positions where two vectors differ.

(2) A larger minimum Hamming distance improves the error detection and correction
capabilities of the code.

Example 7.7. For example, if (1, 0, 1, 0) and (0, 1, 1, 0) are P -positions, their XOR, (1 ⊕
0, 0 ⊕ 1, 1 ⊕ 1, 0 ⊕ 0) = (1, 1, 0, 0), is also a P -position. More specifically, here is how it is
formally derived.

Definition 7.8. Let V be a vector space over GF(2), and let g : V → GF(2)t be a function
satisfying the properties of the Sprague–Grundy function. The kernel of g, defined as V0 =
{u ∈ V : g(u) = 0}, forms a linear subspace of V . The function g is a homomorphism,
mapping V onto GF(2)t, where t = dimV − dimV0. Consequently, V/V0 is a quotient space
consisting of 2t cosets, where each coset Vi = u⊕V0 represents positions in V that share the
same g-value.[4]

Remark 7.9. The subspace V0 contains all P-positions, establishing a direct connection with
the positions of the annihilation game and the algebra from V .

Theorem 7.10. Let G be an annihilation graph. Every G has a function γ (the generalized
Sprague-Grundy function).

Proof. For the proof, see [Fraenkel 1996, p. 20] and [Fraenkel and Yesha 1986]. □

Definition 7.11. The Sprague-Grundy function assigns a nonnegative integer (Grundy
value) to each position in a combinatorial game which helps identify the winning strate-
gies. It is defined as

g(u) = mex{g(v) : v ∈ F (u)},
where F (u) is the set of positions reachable from u. A position g(u) = 0 is a losing position
(P-position), while g(u) > 0 indicates a winning position (N-position) for the current player.

Though beyond the scope of this paper, this function and results from a study of lexicodes
can help us evaluate anncodes. We will direct the interested reader to read [Fraenkel, pg 420
- 430].
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8. Conclusion

In this paper, we investigated the connections between Nim and in general heap games and
Hamming codes and Lexicographic codes. We also introduced the idea of an annihilation
game and showed the relationships to Hamming distances.
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