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1. Introduction

Combinatorial game theory provides a rich framework for analyzing two-player, alternative moves
games with perfect information. In CGT, games are typically analyzed under the normal play
convention, where the player who makes the last move wins. However, an interesting variation exists
known as misère games, where this convention is reversed: the player who makes the last move loses.
This seemingly simple alteration introduces significant complexity into combinatorial game analysis
and strategy development. Normal play is thoroughly understood through the Sprague–Grundy
theorem, but the theory of misère-play is messy, and filled with intriguing problems, including
challenging open questions.

The study of combinatorial games began in 1901, with C. L. Bouton’s published solution to the
game of NIM [Bou01]. Next, R. P. Sprague and P. M. Grundy independently generalized Bouton’s
result to obtain a complete theory for normal-play impartial games. In a seminal paper of the
1956 Proceedings of the Cambridge Philosophical Society, Grundy and Smith published a paper on
misère games, noting the difficulty of misère play [GS56, Sie17].

2. Preliminaries

2.1. Impartial Combinatorial Games. A combinatorial game is a two-player game of perfect
information, with no hidden randomness, in which the players alternate making moves. A position
in such a game consists of the entire state of play at a given moment. A game is impartial if the
set of moves available from any particular position depends only on that position and not on which
player is about to move. In other words, both players have access to the same moves whenever it
is their turn.

2.2. Normal-Play and Misère-Play Conventions. We consider two standard conventions de-
termining the outcome when no moves remain:

• Normal-Play Convention: The player who cannot move on their turn loses. The player who
makes the last move wins.

• Misère-Play Convention: The rules are the same as normal-play except that the player who
cannot move wins. In this situation, whoever makes the last move loses.

2.3. P-Positions and N-Positions in Normal-Play. Under normal-play conditions, we classify
positions into two types, defined inductively:

Definition 1. A position is a P-position (previous-player winning position) if the player who has
just played can force a win from that position under perfect play. If it is your turn to move and
you find yourself in a P-position, then you do not have a winning strategy assuming perfect play.

Definition 2. A position is an N-position (next-player winning position) if the player about to
move can force a win from that position under perfect play.

These definitions yield the following characterization:
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• Any terminal position is a P-position in normal-play, since the player about to move cannot
move and thus loses.

• A non-terminal position is an N-position if it has at least one option that is a P-position.
• A non-terminal position is a P-position if all of its options are N-positions.

2.4. Grundy Values and the Sprague–Grundy Theorem. The theory of Grundy values is
based on the observation that any impartial game can be expressed as a Nim heap of a certain size.

Definition 3. Let G be a position in an impartial game, and let O(G) be the set of positions
reachable from G by a single move. The Grundy value (or nimber) of G, denoted g(G), is defined
as

g(G) = mex{g(H) : H ∈ O(G)},
where mex(S) is the smallest nonnegative integer not in the subset S ⊆ N.

Terminal positions have no options, so their Grundy value is g(G) = 0.

The Sprague–Grundy Theorem states that every impartial game under the normal play conven-
tion is equivalent to a one-heap game of Nim. This equivalence extends to disjunctive sums of
games: if G1 and G2 are positions of two impartial games, then the Grundy value of their sum
G1 +G2 is given by the nim-sum of their individual Grundy values:

g(G1 +G2) = g(G1)⊕ g(G2).

A position is a P-position if and only if its Grundy value is zero, otherwise, it is a N-position.

2.5. Normal-Play vs. Misère-Play. Initial Observations: While the Sprague–Grundy theory
provides a complete and elegant solution to normal-play impartial games, the misère variant resists
such a clean characterization. Under misère-play, a position with no moves is now winning for the
player about to move. Consequently, the neat classification of positions by their Grundy values
does not carry over in a straightforward manner.

The classical example illustrating these complications is Misère Nim. While Misère Nim agrees
with the normal-play strategy for most of the game, it diverges drastically as the game nears its
conclusion. We will investigate this in subsequent sections.

2.6. Notation and Conventions.

• We write G for a general impartial game position.
• We use symbols like ≃ or ∼= to denote equivalence of games. (In normal-play, two positions
are equivalent if they have the same Grundy value (not true in misère-play.))

• The operation ⊕ denotes the nim-sum.
• Unless otherwise stated, terms such as “P-position” and “N-position” will refer to the
normal-play context.

3. Misère Nim and the Misère Nim Theorem

With the structural foundations of combinatorial games in hand, we now turn our attention to
misère settings. The change in win conditions—from “last move wins” to “last move loses”—dramatically
affects even the most classical of impartial games. This contrast is very evident in Nim.

3.1. The Game of Misère Nim. In Nim, one begins with several heaps of counters, and each
move consists of choosing a single heap and removing at least one counter from it. Under normal-
play, Bouton’s classical analysis [Bou01] shows that the winning strategy depends solely on the
nim-sum of the heap sizes. Formally, if the heaps are of sizes h1, h2, . . . , hn, define

H := h1 ⊕ h2 ⊕ · · · ⊕ hn.

Then, under these conditions, a position is winning if and only if H ̸= 0.
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Table 1. Example of Multi-Pile Nim Gameplay

Heap A Heap B Heap C Sequence of Moves

4 5 7 Player takes 3 from Heap C
4 5 4 Opponent takes 2 from Heap B
4 3 4 Player takes 1 from Heap A
3 3 4 Opponent takes 3 from Heap C
3 3 1 Player takes 2 from Heap B
3 1 1 Opponent takes entire Heap A
0 1 1 Player takes 1 from Heap B
0 0 1 Opponent takes 1 from Heap C and wins

We are able to formulate a winning strategy for this game (which is under normal-play conven-
tions). Nim has been ”solved” for any number of heaps and for all starting positions [BCG01].

Misère Nim differs only in its terminal rule: the player forced to take the last counter loses.
One might suspect that the misère condition would completely destroy the tidy structure created
by Grundy values. However, the Misère Nim theorem shows that a large portion of normal Nim’s
strategy remains intact—up to a critical endgame scenario, as discussed before.

3.2. The Misère Nim Theorem. Before stating the theorem, let us clarify the conceptual shift:
normal Nim’s nim-sum criterion holds as long as the game position is “far” from termination.
Misère Nim follows the same logic until one reaches a configuration where all heaps are reduced to
size one. At that final stage, parity considerations replace the nim-sum rule.

Theorem 1 (Misère Nim Theorem [Sie17]). Let (h1, . . . , hn) be a misère Nim position. Define
H = h1 ⊕ · · · ⊕ hn as in normal Nim.

(1) If not all heaps are of size one, the position is winning for the next player if and only if
H ̸= 0. In this case, misère Nim behaves like normal Nim.

(2) If all heaps have size one, let m be the number of such heaps. In this scenario, the position
is winning for the next player if and only if m is even.

Proof of the Misère Nim Theorem. We proceed by strong induction on the total number of
counters. The key idea is to show that as long as there exists a heap with size greater than one,
the next player can mimic the normal-play strategy.

Proof. Let N =
∑n

i=1 hi be the total number of counters. We prove the theorem by induction on
N .

Base Cases:
- If N = 1, we have a single heap of size one. Under misère rules, the next player must take this

last counter, thereby losing. Hence, for (1), the next player loses, which agrees with the statement
since m = 1 is odd, and the theorem requires that positions with an odd number of singletons are
losing for the next player.

- If N = 2 and the configuration is (1, 1), there are two heaps of size one. Now the next player
can remove one heap entirely. Then the opponent faces a single heap of size one and is forced to
lose. Thus, (1, 1) is winning for the next player. This matches the theorem since m = 2 is even.

For any configuration including a heap larger than one, say (2), normal-play logic prevails.
Removing one counter from a heap of size two reduces to (1), which we have analyzed. One can
similarly confirm small initial cases by hand.

Inductive Step: Assume the theorem holds for all positions with fewer than N total counters.
Consider a position with a total of N counters.
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Case 1: Not all heaps are size one. In this case, at least one heap, say hj , satisfies hj > 1. Consider
the normal-play nim-sum H. If H ̸= 0, then in normal Nim, this position is winning for the next
player. Under misère conditions, the next player can mimic the normal Nim winning move: there
exists a move that transforms the position into one with nim-sum zero. This follows from the
classical theory of Nim, which ensures that from any H ̸= 0 position, we can reduce one heap to
achieve an H ′ = 0 position.

Crucially, this move does not create a terminal configuration or drastically alter the misère
nature, because we still have at least one heap larger than one (or we reduce to a known smaller
misère configuration). By the inductive hypothesis, all smaller configurations behave as stated in
the theorem. Thus, as long as a move is available that maintains a non-terminal structure, the
normal Nim strategy remains optimal, and the outcome coincides with the normal-play outcome.
Hence, if H ̸= 0, the next player can force a win, and if H = 0, then any move leads to a position
with H ′ ̸= 0, placing the opponent in a winning stance. Thus, away from the all-ones scenario,
misère Nim and normal Nim are outcome-equivalent.
Case 2: All heaps are size one. Suppose we have m heaps, each of size one. If m is odd, the next
player eventually loses, and ifm is even, the next player eventually wins. This matches the theorem’s
statement.

These two cases, combined with our base checks and the inductive hypothesis, complete the proof
of the misère Nim theorem.

Figure 1. 3-Pile Misère Nim Gameplay [Ash24]

3.3. Nim Computations. It is quite evident that Nim gameplay can get very complex. With just
three heaps, there are numerous strategic pathways, and this complexity only grows with additional
heaps and larger initial positions. This raises a question: How can we efficiently perform Misère
Nim analysis and determine winners in these more complex configurations?

We can utilize programming to predict Misère Nim output, determining the winner. Below is an
example using C++14.

For each input:
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(1) Extract the number of piles (n) and the pile sizes.
(2) Determine if all piles are of size 1:

• Iterate through the pile sizes and check if all are 1.
(3) Compute the XOR (Nim-Sum):

• Iterate through the pile sizes and compute the cumulative XOR of all pile sizes.
(4) Output the result:

• If all piles are of size 1, the result depends on n&1 (whether n is odd or even).
• Otherwise, the result depends on whether the XOR is 0.

3.4. Misère Nim Output C++ Algorithm.

#include <algorithm>

#include <cmath>

#include <cstdio>

#include <iostream>

#include <vector>

using namespace std;

int main() {

vector<vector<int>> testCases = {

{2, 1, 1}, // First test case: n=2, s=[1, 1]

{3, 2, 1, 3} // Second test case: n=3, s=[2, 1, 3]

};

string winner[2] = {"First\n", "Second\n"};

for (const auto &currentTest : testCases) {

int numPiles = currentTest[0];

vector<int> pileSizes(currentTest.begin() + 1, currentTest.end());

bool allPilesAreOnes = true;

int xorValue = 0;

for (int pileSize : pileSizes) {

if (pileSize != 1) {

allPilesAreOnes = false;

}

xorValue ^= pileSize;

}

if (allPilesAreOnes) {

cout << winner[numPiles & 1];

} else {

cout << winner[xorValue == 0];

}

}

return 0;

}
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We verify that the built-in test-cases which are (1,1) and (2, 1, 3) output:

First

Second

3.5. Purpose of the Implementation. This C++ program provides a computational verification
of the Misère Nim Theorem. While the theorem offers a theoretical foundation for determining game
outcomes, the implementation demonstrates how these principles can be translated into efficient
algorithms suitable for practical applications, such as game analysis tools or automated strategy
advisories. Changing other conditions, such as the number of players, would significantly increase
the difficulty of the program.

4. Expanding Beyond Misère Nim

With Misère Nim understood as a foundational example, we now use it as a lens to examine
the broader range of misère combinatorial games. Extending the insights gained from Misère Nim,
we explore the challenges in general misère theory, introduce the concept of misère quotients, and
discuss the dichotomy between tame and wild dynamics in misère games.

4.1. Misère Quotients and Structural Attempts. To address the complexities introduced by
misère conditions, researchers have developed the concept of misère quotients. Misère quotients
aim to partition game positions into equivalence classes that reflect their behavior under misère
play, thereby imposing an algebraic or combinatorial structure where the Sprague–Grundy theory
fails.

4.1.1. Conceptual Introduction. A misère quotient is an algebraic structure that encapsulates the
equivalence classes of game positions under misère play. Formally, given a class of impartial games,
the misère quotient groups positions based on their behavior when combined with other games in
the disjunctive sum. This approach mirrors the role of nimbers in normal-play theory by providing
a consistent framework to analyze misère outcomes.

4.1.2. Tame vs. Wild Dynamics. Within the landscape of misère quotients, game families can be
categorized based on their structural properties into tame and wild dynamics.

4.1.3. Tame Games. Tame games are classes of misère games that exhibit well-behaved structures,
allowing for partial or complete classification. These games often admit a finite misère quotient.

Figure 2. Dawson’s Chess Gameplay [Tom]

Example 1. Dawson’s Chess (Restricted Version) is played on a row of coins where players alter-
nate removing a single coin or two adjacent coins. The restricted version, where certain configura-
tions are prohibited, exhibits a finite misère quotient [Pla05].
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Example 2. Kayles is an impartial combinatorial game played on a row of pins. Players take turns
removing either one or two adjacent pins. The game can be generalized to graphs, but the standard
version is played on a linear graph (a single row). Mathematically, Kayles can be represented as
an octal game with the code 0.77.

4.1.4. Wild Games. Wild games, in contrast, defy simple classification due to their intricate and
unbounded misère quotients. They are games with unusual or complex rules that deviate signifi-
cantly from standard combinatorial games like Tic-Tac-Toe or Nim, often featuring unique move
options, board configurations, or scoring systems, making them challenging to analyze and solve
using traditional methods.

Example 3. When Kayles is extended from a simple row of pins to more complex graph structures,
such as trees or arbitrary graphs, the misère quotient can become infinite or unbounded. The misère
quotient for generalized Kayles on arbitrary graphs does not stabilize to a finite structure, exhibiting
behaviors characteristic of wild games [Pla05].

[Pla05] & [Wal97] discuss octal games much further, including the various octal codes and what
they pertain to.

5. Algebraic and Complexity-Theoretic Connections

Having introduced misère quotients and the tame versus wild dynamics within misère games, we
now explore the deeper algebraic structures and complexity-theoretic implications that correspond
to the analysis of misère combinatorial games.

5.1. Algebraic and Number-Theoretic Analogies. Attempts to define misère analogs of nim-
bers have led to the exploration of more complex algebraic objects. Unlike the straightforward
group structure of normal-play nimbers under XOR, misère play demands the incorporation of
operations that can accommodate the nuanced behavior introduced by the misère condition.

The interplay between misère combinatorial games and surreal numbers [Con01] suggests po-
tential analogies where misère quotients might interact with infinite or ordinal-based numerical
systems.

Figure 3. Tree of Surreal Numbers [MM17]

Surreal numbers, form a vast, ordered number system that extends real numbers to include in-
finities, infinitesimals, and their combinations. Constructed recursively as two sets, L (left options)
and R (right options), each number is represented as {L | R}, mirroring the structure of positions
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in combinatorial games. Ordinals, which generalize natural numbers to describe the order type
of well-ordered sets, index positions and strategies in these games. Misère quotients and surreal
numbers align through infinite, infinitesimal, and ordinal-based frameworks, offering a numerical
perspective on complex game outcomes.

Researchers have also proposed extensions to the algebraic framework of nimbers to encapsulate
misère play. These structures often involve additional operations or modified axioms to account for
the inversion in endgame strategies [Sie13].

These algebraic explorations aim to recreate the elegance of the Sprague–Grundy framework
within the more complex misère paradigm, though significant challenges remain in fully realizing
this goal.
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