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1 Introduction

Impartial games are an important category of combinatorial games. In these
games, the same moves are available to both players, and the first player who
cannot make a move loses. They can be analyzed with Sprague-Grundy the-
ory, which allows impartial games to be easily reduced to nimbers. Nimbers
are the games 0, ∗, ∗2, . . . , each of which has moves to every previous nim-
ber. Some of the most famous classical impartial games reduced to nimbers are
Fibonacci nim and Wythoff’s game. These are both modifications of Nim,
which is the most important impartial game. Fibonacci nim is a game where
players can remove a certain number of coins from a pile, and the number of
coins that can be removed is at most twice the number of coins removed on the
last turn. In Wythoff’s game, there are two piles, and players have a choice
between removing a number of stones from one pile or removing the same num-
ber of stones from both piles. In this paper, we will find the winning strategies
for both Wythoff’s game and Fibonacci nim.

2 Preliminaries

Definition 2.1. Positions in Wythoff’s game are represented by a pair of
nonnegative integers (a, b), representing the number of coins in each pile. Valid
moves from (a, b) are:

1. (a− n, b) where 0 < n ≤ a

2. (a, b− n) where 0 < n ≤ b

3. (a− n, b− n) where 0 < n ≤ min{a, b}

Example 2.1. (1, 1) would be a N position since the first player can move
to (0, 0), but (1, 2) would be a P position since all valid moves are to an N
position.

Definition 2.2. Positions in Fibonacci Nim are represented by a pair of non-
negative integers (n, r). n represents the number of coins in the pile, and r
represents the maximum number of coins that can be taken away on the next
move. Valid moves from (n, r) are:
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1. (n− k, 2k) where 0 < k ≤ min{n, r}

The starting positions of Fibonacci Nim we are interested in are of the form
(n, n − 1). This gives the first player the maximal number of choices without
giving them an instant win by removing all the coins.

Example 2.2. If the starting position is (4, 3), and the first player removes 1
coin, then the resulting position is (3, 2). At this point the second player can
remove either 1 or 2 coins. Either choice allows the first player to move to a
(0, r) position, which causes the second player to lose. Therefore (4, 3) is a N
position.

To find a winning strategy for impartial games, we need to classify which
positions are P and which are N . The winning strategy from a N position is to
move to a P position. P positions are a loss for the first player, so there is no
winning strategy. To find the P and N positions, we use the partition theorem:

Theorem 2.1. Let L be a set of impartial games closed on subpositions. Sup-
pose P and N partition L such that every move from a game G ∈ P is to a game
in N and for every G ∈ N, there is a move to a game in P. Then P = P ∩ L

and N = N ∩ L.

To classify the positions of Fibonacci nim, we need Zeckendorf’s theorem:

Theorem 2.2. Let Fn denote the nth Fibonacci number, and let k be any non-
negative integer. Then there exists a unique sequence {ci}r1 where ci ≥ 2 and
ci ≥ ci+1 + 2 for all i, such that

r∑
i=1

Fci = k

For Wythoff’s game, we will need Rayleigh’s theorem:

Theorem 2.3. Let r and s be two positive irrational numbers with 1
r + 1

s = 1.
Then every positive integer n can be uniquely represented as ⌊rk⌋ or ⌊sk⌋ for
some positive integer k.

Proof sketch: We want to prove that ⌊rk⌋ ≠ ⌊sm⌋ for integers k,m, to en-
sure uniqueness. If j = ⌊rk⌋ ≠ ⌊sm⌋, this gives the inequalities j < rk < j + 1
and j < sm < j+1, since r and s are irrational. Dividing the first by r and the
second by s, then adding the two inequalities, results in j < k +m < j + 1, a
contradiction since k+m is an integer. A similar contradiction can be obtained
to prove existence.

Apart from analyzing which positions are P or N , we may also want to know
the Grundy values of positions of these games, which describe how they affect
sums of impartial games. In Figure 1, we show a chart of the Grundy values of
Fibonacci nim for 0 ≤ n < 500 and 0 ≤ r < 500. In Figure 2, we do the same
for Wythoff’s game. General formulas for the Grundy values of either game
are not yet known. Larsson and Rubinstein-Salzedo [2016]
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Figure 1: Grundy values of positions in Fibonacci nim

3 Proof

First, let L be the set of all positions (n, r) of Fibonacci nim. Let N be a
positive integer. By Zeckendorf’s theorem there is a nonempty sequence {ci}k1
which are the indices of Fibonacci numbers that sum to N . Let g(N) = ck.
Define

P = {(n, r) : n = 0 ∨ r < g(n)}

and
N = {(n, r) : n > 0 ∧ r ≥ g(n)}

Certainly these sets partition L, so we must check the other requirements of the
partition theorem. We have two cases to consider: (n, r) can be in P or N.

• Suppose (n, r) ∈ N, and let {ci}k1 be the Zeckendorf representation of
n. Then removing g(n) coins is a valid move to (n − g(n), 2g(n)). If
n − g(n) = 0, then this is in P. Otherwise, n − g(n) has Zeckendorf
representation {ci}k−1

1 , so

g(n− g(n)) = Fck−1
≥ Fck+2 = Fck+1 + Fck > 2Fck = 2g(n)

Thus (n− g(n), 2g(n)) ∈ P, so we have found a move to a position in P.

• Suppose (n, r) ∈ P. If n = 0, then no moves are available, and we are
done. Otherwise, the available moves remove m coins, where m ≤ r <
g(n). Suppose (n − m, 2m) ∈ P. Clearly n − m > 0, since m < g(n) ≤
n. Therefore we have 2m < g(n − m). Let {ci}k1 be the Zeckendorf
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Figure 2: Grundy values of positions in Wythoff’s game

representation of n. If ck = 2, then g(n) = 1, so m would have to be 0, a
contradiction. Thus ck > 2. Now let l be maximal such that

Fck−2l > m

Then we have

n−m =

(
k∑

i=1

Fci

)
−m =

(
k−1∑
i=1

Fci

)
+ Fck −m

=

(
k−1∑
i=1

Fci

)
+

l∑
j=1

Fck−2j+1 + (Fck−2l −m)

Note that the two sums on the left have the necessary requirements to
be a Zeckendorf representation. The term on the right is positive and
less than Fck−2l, so its Zeckendorf representation can be appended to the
two other sums to get the Zeckendorf representation of n − m. Thus
we have g(n − m) ≤ Fck−2l−1. But since l is maximal, we know that
Fck−2l−2 ≤ m. Therefore 2m < g(n − m) ≤ Fck−2l−1 = Fck−2l−2 +
Fck−2l−3 ≤ 2Fck−2l−2 ≤ 2m, a contradiction. Hence (n−m, 2m) must be
in N, so this requirement of the parittion theorem holds.

By the partition theorem, P and N are the P and N positions of L respectively.
We are mainly interested in positions of the form (n, n − 1) where n > 1. If n
is a Fibonacci number, then g(n) = n, so (n, n− 1) ∈ P. Otherwise, g(n) < n,
so n − 1 ≥ g(n) and (n, n − 1) ∈ N . Therefore the first player can win if and
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only if n is not a Fibonacci number.

In the case of Wythoff’s game, the classification of positions is quite dif-
ferent. Since the positions (a, b) and (b, a) are equivalent, we only consider
positions with a ≤ b. In this case, we define

P =

{(⌊
n
1 +

√
5

2

⌋
,

⌊
n
3 +

√
5

2

⌋)
: n ≥ 0

}

and N to be all other positions. We want to prove that all moves from P

positions are N positions. Let (a, b) ∈ P. If a = 0 and b = 0, then there are no

moves, so we are done. Otherwise, by Rayleigh’s theorem, when r = 1+
√
5

2 and

s = 3+
√
5

2 , every positive integer occurs exactly once as a pile size in a P position.
Therefore removing coins from one pile will not give a P position. Also, every
positive integer occurs exactly once as the difference between the sizes of the
piles in a P position. Therefore removing the same number of coins from each
pile will not give a P position. Now suppose (a, b) ∈ N. If a = 0, then removing
all coins from the second pile moves to a P position. Otherwise, suppose that

a =
⌊
n 1+

√
5

2

⌋
for some positive n. If b >

⌊
n 3+

√
5

2

⌋
, then moving the second

pile to
⌊
n 3+

√
5

2

⌋
gives a P position. If b <

⌊
n 3+

√
5

2

⌋
, we have 0 ≤ b − a < n.

Therefore we can move to(⌊
(b− a)

1 +
√
5

2

⌋
,

⌊
(b− a)

3 +
√
5

2

⌋)

which is a P position. Now suppose a =
⌊
n 3+

√
5

2

⌋
for some positive n. Then,

since b ≥ a, we can move the second pile to
⌊
n 1+

√
5

2

⌋
, which is a P position.

Thus P and N have the necessary properties for the partition theorem.

4 Conclusion

By finding the winning strategies for Fibonacci nim and Wythoff’s game,
we gain insight into potential interesting extensions of the two games. An
obvious extension for Fibonacci nim is to increase the bound on the next
move to some other integer multiple, such as 3. This could lead to a generalized
variant of the Zeckendorf representation. For Wythoff’s game, a possible
extension would be to allow any number of piles. A valid move would be to
remove n coins from a nonempty subset of piles. Also, the Grundy values of
Fibonacci nim appear to have a fractal structure that could be analyzed with
more work.
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