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1 Introduction

Further analysis on loopy games can be done by restricting the ability for players to complete a loop. For
example, the general ko rule forbids repetition of past board positions. It is adopted from the rulebook in
Chinese Go, implemented to prevent preemptive stalemates in scoring. In this paper, we will discover a
property that arises in loopy games under a particular ko rule. Then, we will extend scoring to games with
ko rules under orthodox-play, so that Hanner and Milnor’s Mean Value Theorem will be proven for games
with ko rules. Finally, the Mean Value Theorem is used to prove the achievement of a mean value of 1

3 ,
which is conventionally impossible in the set of short games.

2 An Interesting Property

2.1 Terminology

Definition 2.1. Let G be a loopy game. A ko is an alternating loop of length 2 in a subposition of G.

Definition 2.2. Definition: We call a loopy game G simple if:

• the only loops in G are kos, and

• every subposition H of G has at most one Left option HL with option HLR = H, and at most one
Right option HR with option HRL = H.

To observe some interesting results in loopy games with ko positions, we introduce a rule on the play of kos.
The ko rule states that

No position may be repeated during an individual play of G

We say a player is kobanned from moving to G if the move violates the ko rule.

2.2 A Game Named PUSH

The game PUSH is played with black and white tokens on a finite strip of squares. Left may push a black
token one square to the left, also pushing any tokens in its immediate path. For example, Left may make
this move:

Similarly, Right may push a white token one square to the right, along with any tokens immediately to the
right of it. Tokens pushed off the board are removed from the game. Note the scoring for PUSH:

= 1,

= −4.

Consider the following game J :

J = =

{ ∣∣∣∣∣∣∣∣ ∣∣∣∣ }
= { 1 || J | − 1 }.
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Proposition 2.1. J is a simple game.

Proof. We begin by proving all loops in PUSH are kos.
Consider a position P in a PUSH game that is repeated in a loop. There must exist a strip of tokens in P
which was pushed left and right an equal amount of times. Because PUSH is a short game, the tokens must
be pushed in alternating directions during consecutive moves. Therefore, the loop has length 2.

We finish by proving each player has at most one option in J that is part of a ko.
Without loss of generality, assume that there exists some sub-position P such that Left has two distinct
options X,Y which both have P as a Right option. Then, there exists a strip of tokens in X such that Right
can push the strip to obtain P. In particular, this is the same strip Left pushed in the move P to X. There
must exist a distinct strip of tokens in Y that satisfies the same quality. However, there are at most 1 of
each color token in P, so the strips in X and Y cannot be distinct. Ergo, X and Y are the same option. The
same argument can be made for options of Right.

For the rest of the paper, we will analyze gameplay on J and sums with J under the ko rule.

Consider the sum J ′ = J + J + J. We can trace the gameplay of J ′ to completion as follows:

J + J + J

J + J + 1

JR + J + 1

JR + 1 + 1

−1 + 1 + 1

JR + J + J

JR + J + 1

JR + JR + 1

J + JR + 1

J − 1 + 1

1− 1 + 1

−1 + J + 1

−1 + 1 + 1

Remark 2.1. The mean value of J seems to be 1
3 .

We find that J ′ = 1, implying m(J) = 1
3 , which is a value ordinarly unachievable under finite games. Proving

this formally is the main result of this paper.

3 Sentestrat for Games with ko rules

Definition 3.1. A kothreat is a move to a component with sufficiently large temperature, such that the
opponent now favors responding locally to the threat instead of finishing a ko.
Kothreats of size k are denoted as

θk = { 2k | 0 || }.

The environment in which kothreats are played is called the threat environment.

Definition 3.2. A threat environment of size k is denoted

Θk = kθk.
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Definition 3.3. The Komaster of a ko is the player who can win the local ko without ignoring a kothreat.
Either player prefers to be Komaster, if possible.

The privilege of being Komaster is determined by local auctions before the play begins. If the global
game contains several kos, then it is possible for Left to be Komaster of a local ko, and Right to be Komaster
of others. See [Ber96] for more.

Consider the sum
J + θ5

when Right moves first to { J | − 1 }+ θ5.
Left may play on θ5 to

{ J | − 1 }+ { 10 | 0 }.
Right is forced to move in { 10 | 0 } to

{ J | − 1 }.
Left is no longer restrained by the ko rule, so she moves to J, and Right is forced to take a coupon in the
environment.

Remark 3.1. Left is the komaster of J + θ5 because kothreat forces Right to respond locally.

We can now extend sentestrat to games with ko rules.

3.1 Generalized Sentestrat
Generalized sentestrat states:

Assume that your opponent is komaster.

If your opponent has just moved on a component that is now active at the ambient tem-
perature t, respond locally in that component. Otherwise, play on the component with the
hottest temperature below t.

If the suggested move is banned by the ko rule, play on an available component with hottest
temperature below t.

Note that the third clause of generalized sentestrat introduces a need for an adjustment in scoring of games
with ko rules.

Definition 3.4. Let H be a subposition of a game G played according to sentestrat and let H ′ be an option of
H. Suppose a player makes a move in H to H ′ at ambient temperature t in accordance to the third clause of
generalized sentestrat. Let t′ be the temperature of H, such that t′ < t. The corresponding ko-adjustment
at H ′ is given by

∆u(H ′) =

{
t′ − t if H ′ is a left option of H
t− t′ if H ′ is a right option H

Note that in loopfree games, the ko-adjustments are necessarily zero.

Definition 3.5. Let H be a subposition of a game G, and let H ′ be an option of H. Suppose a player moves
from H to H ′, the temperature drop at H ′, denoted ∆ta(H

′) is given by

∆ta(H
′) =

{
ta(H)− ta(H

′) if H ′ is a left option of H
ta(H

′)− ta(H) if H ′ is a right option of H

4 Orthodox Accounting

In orthodox play, players play for the best score in a game enriched by a coupon stack E δ
t of temperature t

and granularity δ:
E δ
t = ±δ ± 2δ ± 3δ ± · · · ± (t− δ)± t.

In particular, sentestrat recommends only orthodox moves [Sie13]. Orthodox analysis is particularly helpful
for Go, wherein the game can be analyzed as a sum of simple components. The components have various
values, simulating an enriched environment for a component of interest.
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4.1 Stops and Masts

We denote the Left and Right stops of a game G enriched by a coupon stack E δ
t as Lδ

t (G) and Rδ
t , respectively.

Since Left and Right prefer to end at their opponent’s stops, the scores of the players are analogous to their
respective stops.

Definition 4.1. Let G be a short game with Right as Komaster. A left (resp. right) option GL (resp. GR)
is said to be orthodox at temperature t if

R♭
t(G

L
t )− t = L♭

t(Gt)

(resp. L♭
t(G

R
t ) + t = R♭

t(Gt)).

Definition 4.2. The enriched scores Lδ
t (G) and Rδ

t are given by

Lδ
t (G) = L(G+ E δ

t )−
t

2
and Rδ

t = R(G+ E δ
t ) +

t

2
.

Definition 4.3. Let G be a simple game.1 For temperatures t ≥ −1 we define Left-Komaster scores L♯
t(G)

(Left starts) and R♯
t(G) (Right starts), where

L♯
t(G) = lim

k→∞
Lt(G+Θk)

R♯
t(G) = lim

k→∞
Rt(G+Θk)

and Right-komaster scores L♭
t(G) and R♭

t(G) as follows:

L♭
t(G) = lim

k→∞
Lt(G−Θk)

R♭
t(G) = lim

k→∞
Rt(G−Θk).

Definition 4.4. We call m♯(G) the mast value for games G in which Left is Komaster. m♭(G) is the mast
value of games G with Right as Komaster.

Proposition 4.1. m♯(G) ≥ m(G) ≥ m♭(G)

Proof. Consider the game G+Θk. Note that Right is given no new options on G. Thus,

Lδ
t (G+Θk) ≥ Lδ

t

for all δ and t. Then, for when L♯
t(G) is defined,

L♯
t(G) ≥ Lt(G).

Similarly, the game G − Θk is at most as favorable to Left as G, so Lt(G) ≥ L♭
t(G). The same argument

works for Right. Consequently, we have

L♯
t(G) ≥ Lt(G) ≥ L♭

t(G),

R♯
t(G) ≥ Rt(G) ≥ R♭

t(G).

The proposition then follows.

If a loopy game G contains a ko that is hotter than G, then G is particularly sensitive to kothreats. Necessarily
in these games, m♯(G) ̸= m♭(G).

Definition 4.5. A game G hyperactive if a subposition of G contains a ko hotter than G itself, placid
otherwise.

Consequently, for placid games G, we have m♯(G) = m♭(G).

Proposition 4.2. J is a placid game.

Proof. The only subposition of J that is a ko is J itself. Then, J is not hyperactive.
1For simple games, these limits exist. See [Sie13] for more.

4



4.2 Extension of the Orthodox Accounting Theorem

Definition 4.6. Let t be the ambient temperature of the sum G1+· · ·+Gk. The Left and Right orthodox
forecasts at temperature t are given as

xt = m(G1) + · · ·+m(Gk) +
t

2

yt = m(G1) + · · ·+m(Gk)−
t

2
,

respectively.

Theorem 4.1. (Orthodox Accounting Theorem) Let G1, ..., Gk be simple and placid. Suppose Left plays first
(resp. second) on the sum

G = G1 + · · ·+Gk,

following sentestrat. She is guaranteed a score of at least

z +
1

2

w∑
i=1

∆ti +

n∑
j=1

∆uj ,

where z is the Left (resp. Right) orthodox forecast, ∆ti are the temperature drops, and ∆uj are the ko-
adjustments.

Proof. We proceed by induction on the number of moves made on G for the score of Left.
We let the ambient temperature t at the start be defined as follows:

t = max(0, t♭(G1), ..., t
♭(Gk).

This is sufficient because Left assumes Right is komaster, and the first component Left moves on must have
temperature ≤ t, ideally as close to t as possible.

Let n′ denote the number of ko-adjustments made on G so far in a play. We will show that for each
subposition Y = Y1 + · · ·+ Yk of G with Right to move

R♭
t(Y1) +R♭

t(Y2) + · · ·+R♭
t(Yk)−

t

2
+

n′∑
j=1

∆uj ≥ yt (1)

is satisifed, provided that at least one component Yi is active at t. Furthermore, each subposition X =
X1 + · · ·+Xk with Left to move satisfies

L♭
t(X1\Z) +R♭

t(X2) + · · ·+R♭
t(Xk) +

t

2
+

n′∑
j=1

∆uj ≥ xt, (2)

such that at least one component Xi is active at t, where Right just moved from Z to X1.

Consider the time when no moves have been made on G. The number of ko-adjustments n′ on G is 0.
Evidentally, we have R♭

t(G1)+R♭
t(G2)+ · · ·+R♭

t(Gk)− t
2 ≥ yt and L♭

t(G1)+R♭
t(G2)+ · · ·+R♭

t(Gk)+
t
2 ≥ xt,

since R♭
t(Gi) = m(Gi) = L♭

t(Gi). This will be our base case.
Assume (1) and (2) are true for positions where the number of moves N is less than a certain p.

Consider a subposition Y satisfying (1). Such Y exists due to the inductive hypothesis. Without loss of
generality, assume Right moves on the component Y1 to Y R

1 . Let the resulting position be X = Y R
1 \Z+Y2+

· · ·+ Yk, where Z = Y1. Therefore,
L♭
t(Y

R
1 \Y1) + t = R♭

t(Y1)

by Definition 4.1. Then (2) follows.

Consider a subposition X = X1 +X2 + · · ·+Xk which satisfies (2). There are two cases for X1’s activity at
t.

Case 1: X1 is active at t. There are two subcases.
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• Case 1a: If there is some XL
1 ̸= Z which sentestrat recommends, then by Definition 4.1 we have

R♭
t(X

L
1 )− t = L♭

t(X1),

from which the recurrence (1) follows.

• Case 1b: Otherwise, sentestrat recommends a move elsewhere, say from X2 to XL
2 . Because this move

follows from the third clause of generalized sentestrat, there is a ko-adjustment:

∆u(XL
2 ) = L♭

t(X2)−R♭
t(X

L
2 ) + t ≥ R♭

t(X2)−R♭
t(X

L
2 ) + t.

Furthermore, if Z is kobanned, then

L♭
t(X1\Z) = R♭

t(X1),

since neither player can move to Z. Therefore,

R♭
t(X1) +R♭

t(X
L
2 ) + ∆u(XL

2 ) ≥ L♭
t(X1\Z) +R♭

t(X2) + t,

from which (1) follows where Y2 = XL
2 .

Case 2: X1 is dormant at t. Then, sentestrat recommends a move elsewhere, say on active component X2

to XL
2 . Therefore,

R♭
t(X

L
2 ) = L♭

t(X2) + t ≥ R♭
t(X2) + t,

from which we find

R♭
t(X1) +R♭

t(X
L
2 ) + · · ·+R♭

t(Xk)−
t

2
+

n′∑
j=1

∆uj

≥ R♭
t(X1) +R♭

t(X2) + t+ · · ·+R♭
t(Xk)−

t

2
+

n′∑
j=1

∆uj

≥ yt,

which satisfies (1). If the recommended move is kobanned, then the situation is equivalent to Case 1b.
Eventually all the components will become dormant at the ambient temperature t, say at position Y.

Players will take coupons from the environment until the temperature of a coupon dips below that of some
component Yi. (Without loss of generality, let this component be Y1 with temperature t′, which becomes the
new ambient temperature.) If this happens after Left moves, then the temperature drop is calculated as

∆t(Y1) = t− t′

Let X be the position reached after the temperature drop, where X1 = Y L
1 , and Xi = Yi for i > 1. We have

m♭
t′(X1) +m♭

t′(X2) + · · ·+m♭
t′(Xk)−

t

2
≥ yt.

By induction on G, since Left goes second on X, she is guaranteed a score of at least

m♭
t′(X1) +m♭

t′(X2) + · · ·+m♭
t′(Xk)−

t′

2
+

1

2

w∑
i=2

∆ti +

n′∑
j=1

∆uj

= m♭
t′(X1) +m♭

t′(X2) + · · ·+m♭
t′(Xk)−

t

2
+

1

2
∆t(Y1) +

1

2

w∑
i=2

∆ti +

n′∑
j=1

∆uj

≥ yt +
1

2

w∑
i=1

∆ti +

n′∑
j=1

∆uj

where ti represents the ith temperature drop, and w′ the total number of temperature drops through the
play. The same argument can be made if the temperature drop happens after a move done by Right, yielding
X where Left goes first.
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4.3 Mean Values

We now present two important corollaries of the Orthodox Accounting Theorem.

Theorem 4.2. Let G1, ..., Gk be simple and placid games. Suppose Left plays first (resp. second) on the
sum

G = G1 + ...+Gk + E δ
t

and follows sentestrat. Then she is guaranteed at least the Left (resp. Right) orthodox forecast, to within a
bounded multiple of δ.

Proof. Let s(G) be the number of subpositions in G, and let g = G1 + · · ·+Gk. For each temperature drop
∆ti, the number of moves on g since the preceding temperature drop is bounded by s(G). Moreover, at most
s(G) + 1 moves were played on the coupon stack E δ

t since the last drop. So, we have∑
s(G)≥1

|∆ti| ≤ 2 · s(G) · δ,

Successive temperature drops happen when s(G) = 0, and alternate between positive and negative for Left
and Right. There can be at most s(G) moves on g, so∑

s(G)=0

∆ti ≥ −s(G) · δ.

Then, we obtain the bound ∑
∆ti ≥ −3 · s(G) · δ.

Similarly, the number of ko-adjustments is bounded by s(G). Each ko-adjusment has magnitude of at most
|s(G)δ|. Therefore, ∑

∆uj ≥ k · s(G)δ

for some constant s(G) ≥ k ≥ −s(G). From the Orthodox Accounting Theorem, it follows that Left going
first (resp. second) is guaranteed the Left (resp. Right)orthodox forecast within a bounded multiple of δ.

Theorem 4.3. (Mean Value Theorem) Let G = G1 + · · ·+Gk is a sum of simple placid games. Then,

m(G) = m(G1) + · · ·+m(Gk).

Proof. Let x = m(G1) + · · · +m(Gk). The Orthodox Accounting Theorem and Theorem 4.2. show that for
t = max(0, G1, G2, ..., Gk), the enriched scores Lδ

t (G) and Rδ
t (G) satisfy the inequalities

|Lδ
t (G)− x| ≤ kδ and |Rδ

t (G)− x| ≤ kδ,

for some constant k. By the definition of enriched scores and application of the definition of a limit, Lt(G) =
Rt(G) = x = m(G) for all such t.

We return to main result of the paper.

Proposition 4.3. m(J) = 1
3 .

Proof. By the Mean Value Theorem,

m(J ′) = m(J) +m(J) +m(J)

=⇒ m(J) =
1

3
.
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5 Conclusions

This paper extends two fundamental theorems of combinatorial game analysis on short games to loopy
games under ko rules (allowing finite plays). The classical game Go, has such a set of ko rules. Go had
been of particular interest due to its resistance against artificial intelligence domination (in 2016, a human
grandmaster defeated a computer in a match). Generalization of scoring to include games with the ko rule
has been used for evaluation of end-stage positions of Go, at which point interactions between various parts
of the board are limited, allowing analysis of a board as a sum of simple components. Mathematical analysis
of Go has many applications in economics, politics, psychology, and evolutionary biology.
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