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1. Introduction

The theory of error correcting codes, also known as coding theory, began in
the late 1940’s with the publications of Claude Shannon. The key problem in
coding theory is communication over a noisy channel. Suppose 2 people wish to
communicate with each other through a connection. However, this connection
may not always transmit the correct message, and instead may alter some of the
data. The goal of coding theory is to transmit the message in a way such that
it is always possible to recover the original message despite the message being
corrupted. In order to do this we add redundancy to the code in efficient ways.
Coding theory is incredibly and increasingly important in the modern world in
order to reliably transfer information. In this paper we discuss the basic elements
of coding theory, as well as its surprising and deep connection the combinatorial
game theory, particularly the connection between NIM and Hamming codes. Later,
we also discuss a generalization of NIM, as well as its connection to linear error
correcting codes.

2. Preliminaries

We begin by defining a few terms which are related to the discussion.

Definition 2.1. A codeword is the intended message. The set of all codewords is
called a code.

Since we are dealing with computers, messages are represented as binary strings.

Definition 2.2. The word length of a code is the number of digits in each message.
This is denoted as n. The base of a code is the number of unique digits used to
represent messages, and is denoted as B. We also call a code that corrects e errors
an e-error correcting-code.

Definition 2.3. A linear code is a code where a linear combination of any code-
words results in another codeword.

Definition 2.4. The Hamming distance between 2 codewords is the number of
positions in which they are different. The Hamming distance of a code is the
minimal Hamming distance between any two codewords.

Hamming distance is extremely important, as we will use it as a metric to mea-
sure how similar two binary strings are. The Hamming distance also helps us
determine how many errors can be corrected.

Date: December 16, 2024.

1



2 ISHAN JOSHI

Theorem 2.5. A code corrects up to e errors if and only if it has a Hamming
distance greater than or equal to 2e+ 1.

Proof. We begin with the forward direction. Let A and B be two codewords from
the code. Then A and B must differ in at least 2e+1 locations. If we consider any
message M , if M is different from A in at most e positions, then it is different from
B in at least e + 1 positions. However, this is only accounting for e errors, so the
M must be interpreted as A. Similarly if a code can be interpreted as B with up to
e errors, than it cannot be interpreted as P . Now we prove the reverse direction. If
the code is an e-error correcting code, then if M is a message which is interpreted
as A, the Hamming distance between A and M can be at most e. However, since
M can only be interpreted as A, the Hamming distance between M and any other
codeword B, must be at least e+1. Therefore, the distance between A and B must
be at least e+ (e+ 1) = 2e+ 1, as desired. □

We have a similar theorem for error detection.

Theorem 2.6. A code detects up to e errors if its Hamming distance is greater
than or equal to e+ 1.

Proof. Any two codewords must differ in at least e + 1 positions, meaning that if
a message is less than e+1 positions away from a codeword, at least one error has
occurred. □

Definition 2.7. A code of length n correcting at most e errors is called a perfect
code if, for every string s of length n, there is exactly one codeword such that s
differs from that codeword in at most e places.

If the code is a perfect code with word length n and a maximum of e, then for
every message sent, there can be
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When the code is not a perfect packing, the amount of codewords must be less than
this amount.

3. NIM and Hamming codes

We now introduce the famous Hamming code, as well as its connection the the
game of NIM.

Definition 3.1. A Hamming code is a 1-error correcting code.

We now show examples of Hamming codes where the word lengths are 3 and 7.
When the word length is 3, it is quite simple to construct the Hamming code. We

want to construct a perfect code, so there must be 23

3+1 = 2 code words. This is
quite simple, as we have the two codewords be 000 and 111. We can visualize this
as such:
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Figure 1. A cube where each vertex represents a 3 bit number

It can be visually seen that the two codewords 000 and 111 have a Hamming
distance which is equal to 3. It can also be seen that if any message other than the
two codewords were to be transmitted, then it would be very simple to figure out
the original message.

Now we can construct the Hamming code of length 7. This would have 27

7+1 = 16
codewords. Similarly to n = 3, the Hamming distance of this code must be at least
3. It turns out that the Hamming code with n = 7 is as follows:

0000000 0000111 0011001 0011110
0101010 0101101 0110011 0110100
1001011 1001100 1010010 1010101
1100001 1100110 1111000 1111111

A fair question to ask is: How are these values computed? One method the reader
may take is simply take the string 0000000, and then to find the next string (In
lexicographic order) such that the Hamming distance from all the other strings is
at least 3. This can be done with a computer. However, there is another way to do
this, and for that we introduce the game of NIM.

Definition 3.2. NIM is an impartial game where two players alternate taking
stones from piles of stones. For any position, there exist piles of stones which the
players can take from. On their turn, each player can remove any number of stones
from exactly one pile, and the first player to not have a move loses.

Now, we would want to somehow express a NIM position.

Definition 3.3. We can represent a NIM pile of size n as ∗n. We represent a NIM
position as a sum of NIM piles: ∗a1 + ∗a2 . . . ∗ an. ∗n is part of a class of game
values called the nimbers.

Definition 3.4. The outcome class of a game is the types of ending for that game.
For impartial games there are 2 outcome classes:

• N - This means that the next player wins. In other words, the player who
starts wins.

• P - This means that the previous player wins. In other words, the player
who starts loses.

Theorem 3.5. Any NIM game can be represented as a binary string.
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Proof. We can do this by observing that if we have 2 piles of the same size, then
deleting them does not change the outcome of the game. Therefore we can as-
sume there is at most 1 pile of every size. So, we can represent a NIM game as
. . . a5a4a3a2a1, where each ak is 0 if there are no piles of size k and 1 if there is 1
pile of size k. □

Theorem 3.6. The codewords of the Hamming code are the same as the binary
representation of the NIM positions with outcome class P.

Proof. We let p be the set of codewords, and let n be the set of messages. When
we consider all the n positions (as binary strings interpreted as NIM games), it is
at most 2 positions away from some codeword. By making a single move in the
corresponding NIM game, we can move from n to p. Now, if we have a codeword,
we can only change it by 2 positions or less. Therefore, from a p position, we can
only move to a n position. The p and n positions behave exactly the same as the
P and N positions of NIM. By a later theorem, it can be shown that they are the
same. □

4. Turning Turtles

We generalize the results in the previous section by using the game Turning
Turtles. In fact, NIM is a specific case of Turning Turtles.

Definition 4.1. Turning Turtles is a game in which there are n turtles placed in a
row. These turtles can either be upright, or upside-down. On their turn, a player
must flip between 1 and k turtles, and the leftmost turtle flipped must be flipped
from upside-down to upright.

Turning Turtles can easily be expressed as a binary string. We can just have a 1
where there is a turtle that is upside down, and use a 0 when there is a turtle that
is upright.

Theorem 4.2. The P positions of Turning Turtles with k = 2e form a linear
e-error correcting code.

Proof. Since we cannot move from a P position to another P, the distance between
any two P positions must be at least 2e+1, otherwise one could flip some number
of turtles in order to move between P positions. Therefore, by Theorem 1.5, we
know that the code corrects up to e errors. Now, we must show that the code is
linear. If a position is a codeword, it must be a P position. Therefore it must
have value 0. So, when we NIM sum any number of codewords, we get another
codeword, meaning the code is linear. □

Definition 4.3. The Golay Code of length 23 is a perfect code which can detect 6
errors and correct 3.

Corollary 4.4. The P positions of Turning Turtles form the Golay Code of length
23.

Proof. This is simply a special case of the previous theorem, where k = 3. □
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5. Conclusion

There is far more to this subject than what is presented here. There are many
more connections between coding theory and combinatorial game theory. An ex-
ample is lexicographic codes, which a further generalization of some of the codes
seen in this paper. Some other codes which the reader may find interesting are
Reed-Solomon codes and Group codes.
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[BdRS09] José Joaqúın Bernal, Ángel del Ŕıo, and Juan Jacobo Simón. An intrinsical description
of group codes. Designs, Codes and Cryptography, 51(3):289–300, 2009.

[CS86] John Conway and N Sloane. Lexicographic codes: error-correcting codes from game

theory. IEEE Transactions on Information Theory, 32(3):337–348, 1986.
[RS] Simon Rubinstein-Salzedo. Combinatorial Game Theory.

[SS59] Harold S Shapiro and Daniel L Slotnick. On the mathematical theory of error-correcting

codes. IBM Journal of Research and development, 3(1):25–34, 1959.

[RS] [BdRS09] [SS59] [CS86]


	1. Introduction
	2. Preliminaries
	3. NIM and Hamming codes
	4. Turning Turtles
	5. Conclusion
	References

