
Combinatorial Constructions in Error-Correcting Codes

Howard Qian

December 16, 2024

1. Introduction
Through the transmission or storage of data, bits in data can easily become corrupted due to
transmission channel noise, distortion, interference, and even the smallest of errors can distort
the information. Although these errors are able to be detected by EDCs (Error Detection
Codes), they are unable to be fixed, thus rendering the transmitted data unreliable and
encouraging miscommunication and system malfunctions. To address this, error-correcting
codes were developed, with the ability not only to locate transmission errors but also to
correct them, enabling dependable communication even over imperfect channels.

In this project, I will first examine several several simple linear codes in [§ 1], with impor-
tant definitions explained in [§ 2]. Next, I will explore the intuition behind them, and their
clever connections to combinatorial game theory, including impartial games such as NIM in
[§ 3] and finally, Turning Turtles in [§ 4].

1.1. Motivations
Suppose than Alice and Bob are trying to send a message to each other, using a series of
0’s and 1’s. However, one bit, or digit, in the message may be corrupted, or flipped. More
specifically, say that Alice wants to send a message to Bob, telling him that she is doing well;
so, she sends the message 10100101. However, along the way, the third bit gets corrupted,
turning from a 1 to a 0. Her message then becomes 10000101. Now, when Bob receives this
message, the meaning of the message has changed, with the altering of this one bit, and he
is left confused and baffled.

In order to solve this detrimental problem, we will explore progression of error-correcting
codes.

We will first take a look at the most basic type of error-correcting code. In this code,
every bit in a message is sent three times. For instance, if the original message is 10110, then
the message sent will be 111000111111000. Thus, if a bit is flipped, we are able to compare
every three bits of the message and just take the majority bit. For example, if we wished to
send the message 10, then we would actually send 111000. Say the message is corrupted in

1

a way where the third bit gets flipped; the message becomes 110000. Comparing every three
digits, we know that the third bit must be the corrupted bit, as 1 is the majority in those
three digits.

However, although this solution works, it is super inefficient, as we must send 3n bits
instead of the original n bits.

Another error-correcting code works by appending, or adding, a parity-check digit to the
end of the message. In this code, we must send the original message twice, then add on the
parity-check digit. This parity-check digit is either 1, if the intended message has an odd
number of 1’s, or 0 if the intended message has an even number of 1’s. Let’s use the example
of Alice and Bob again. Say that Alice intends to send the message 1011 to Bob. The actual
message sent would then be 101110111. The parity-check digit, in this case, is 1 because
there is an odd number of 1s in the original message 1011. When Bob receives this message,
he reads the message to be 100110111. With this code, Bob now knows that there must be
an error in one of the third digits, so the message is either 1011 or 1001. This is where the
parity-check digit comes into play - since the last digit is a 1, Bob knows that the intended
message has an odd number of 1’s, and so he deduces that the correct message is 1011. The
issue that this method requires sending 2n + 1 bits if the original message was n bits, which
is still inefficient.

2. Terminology
Definition 2.1 (Codes and Codewords). A codeword is the transmitted message and the set of
all codewords is called a code.

Definition 2.2. The number of digits in a message is known as the length of the message, and
is labeled with the symbol n. Each message is represented in a certain base, which dictates
the number of unique digits used to represent a message, and the base is labeled with the
symbol B.

For every message with length n digits, assuming that only one digit is flipped (corrupted),
there are n + 1 possible received messages. Since the length of each message is n, and each
digit can be either 0 or 1, there are a total of 2n messages that can be sent. Thus, there can
only be at most 2n

n+1 codewords.
Definition 2.3 (Perfect Code). If, for a code of length n correcting at most k errors, there is
exactly one code word for every string such that they differ in at most k places, then the
code is said to be a perfect code.

For our case where k = 1, n + 1 must evenly divide 2n to achieve a perfect code. This
leads us to see that n + 1 must be a factor of 2n, or that n + 1 must be a power of 2.
Definition 2.4 (Hamming distance). The Hamming distance between two codewords a and b
where a, b ∈ C is the number of positions, or digits, at which a and b differ. The Ham-
ming distance then, for code C, is the minimum Hamming distance between two distinct
codewords.

2

As an example, let codeword a = 101100 and let codeword b = 100001. Then, the
Hamming distance between the two codewords is 3.

Since a corrupted message can only correspond to one specific codeword, Hamming dis-
tances of 1 and 2 between codewords are not possible. For instance, let’s say codewords
a = 0000000 and b = 0000011. If we were given the message 0000001, is this 0000001 with
an error in the seventh position, or sixth position? Thus, the minimum Hamming distance
is at least 3.

3. Hamming Codes, Nim, and Game Theory
We now introduce a new group of codes called the Hamming codes, whose codewords have
a Hamming distance of at least 3 and can correct up to 1 flipped bit. A Hamming code of
length 2n − 1 is called a perfect Hamming code.

In order to generate a perfect code (see Definition 2.3) of 16 codewords of length 7 =
(23 − 1), we use a greedy algorithm. This greedy algorithm takes the lexicographically first
string, then writes down strings of length 7 which each differ from the previous ones in at
least three positions. Here are the results:

0000000 0000111 0011001 0011110

0101010 0101101 0110011 0110100

1001011 1001100 1010010 1010101

1100001 1100110 1111000 1111111

This array of strings relates to Nim, or more specifically, binary Nim.

Definition 3.1. Nim is an impartial game, which are games where both players have the
same moves available to them. On the other hand, games like CHESS are considered
partizan games, which are games where different players have different moves. The game
of Nim involves two players, where both players take turns moving. There are several piles
of stones, and a move consists of removing some of the stones from a single pile. The player
who removes the last stone is the winner.

Interestingly, Nim games are able to be represented using a string of 0’s and 1’s. In
binary numbers A = . . . a3a2a1, where n ∈ {1, 2, 3 . . . } and an ∈ {0, 1}, the digits with
an = 1 represents piles of stones with size an. As an example, the binary number 1000101
represents the Nim game with piles of size 1, 3, and 7. We then remove any leading zeros.

In Nim, players are allowed to make two different types of moves: they either remove
all of the stones from a pile, or they remove some of the stones. Let’s focus on each case
individually:

3

• When a player removes all the stones from a pile, we just flip the bit in the position
corresponding to the pile’s size from a 1 to a 0.

• When a player removes some (not all) of the stones from a pile, we flip the bit in
the position corresponding to the pile’s size. Then, we flip the bit in the position
corresponding to the pile’s new size. For instance, let’s say we have the game 1001010,
and we want to remove 3 stones from the pile with 7 stones. We would then have the
game 0000010, or 10.

Notice that we produced a second pile of size 4, but then we immediately removed both
of them, leaving 0 piles of size 4. More generally, we are always allowed to remove two piles
of the same size. The idea is that whenever one player plays a move in one of the piles, the
other player mirrors the first player’s move in the other pile, and continues to do so, until the
first player takes the last stone from the pile, in which case the other player then removes
the last stone from the other pile. Thus, having two piles of the same size does not change
the outcome of the game whatsoever.

By viewing the binary strings in the frame of Nim, we are able to arrive at this astonishing
conclusion:

Theorem 3.2. The codewords in a Hamming code are the P positions in the binary Nim
game.

In order to prove this, we will rely on the partition theorem, which is necessary to
determine the P positions of impartial games, and is central to the theory of impartial
games. The partition theorem is defined and proved in [Rub].

Proof: Let P be the set of codewords, which have a Hamming distance of at least 3, and
we let N be the set of binary strings that are not the codewords. We need to show that,
for every G ∈ N , there is a move to a game in P; and for every G ∈ P, every move is to
a binary string in N .

• Every element in the set N differs by either 1 or 2 digits from an element in P, by
the definition of a perfect code and codewords. Thus, it is possible for an element in
N to be changed to an element in P per the rules of binary Nim.

• All the elements in P are codewords, meaning that each element differs from another
element by at least 3 digits. The rules of binary Nim dictate that only at most 2 digits
can be changed in a move, and thus it is impossible for an element in P to go to
another element in P, meaning that the only possible move from P is to N .

The P positions and N positions in the partition theorem are just the P and N positions
of the Nim game, respectively.

4

3.1. Nim Sum and Grundy Values
In order to evaluate a game of Nim in general, the num sum operation must first be under-
stood. Denoted by the symbol ⊕, it is known by the xor operation in computer programming.
In order to compute the nim sum of two nonnegative integers a and b, we must first write a
and b in binary, then add them without carrying. For instance, 5 ⊕ 9 is equal to 12:

5 0 1 0 1

9 ⊕ 1 0 0 1

12 1 1 0 0

We can also apply the nim sum operation to more than two numbers:

4 1 0 0

3 0 1 1

1 ⊕ 0 0 1

6 1 1 0

Remark 3.3. Notice that the resulting digit is 0 if the number of 1’s in a column is even, and
the resulting digit is 1 if the number of 1’s in a column is odd.
Remark 3.4. Also, notice that the nim sum of numbers a1, a2, · · · ak, a1 ⊕ a2 ⊕ · · · ⊕ ak, is
always less than or equal to the sum of the numbers, a1 + a2 + · · · + ak, or symbolically,
a1 ⊕ a2 ⊕ · · · ⊕ ak ≤ a1 + a2 + · · · + ak.

One of the properties of nim sum is that a ⊕ a = 0, which we have already seen in the
previous example of nullifying two piles with the same number of stones. Since the nim sum
of the two equal numbers is 0, this means that two piles of the same number of stones would
not affect the overall value of the binary nim position.
Theorem 3.5. [Bou02] The Nim position with piles of size a1, · · · , an is a P position if and
only if a1 ⊕ a2 ⊕ · · · ⊕ an = 0.
Example 3.6. 1001011 is a P position since 1 ⊕ 2 ⊕ 4 ⊕ 7 = 0:

1 0 0 1

2 0 1 0

4 1 0 0

7 ⊕ 1 1 1

0 0 0 0

5

Indeed, for each of the 16 codewords listed above, the nim sum of the pile sizes is equal
to 0.

Theorem 3.7. Let C be the Hamming code of P positions in Nim, constructed in § 3 . Adding
two code words c, d ∈ C without carrying results in another element of C.

Proof: Let the codeword c be the Nim game with piles of size a1, a2, · · · , an, and codeword d
be the Nim game with piles of size b1, b2, · · · , bk. The addition of codewords c and d is equal
to c⊕d = (a1 ⊕a2 ⊕· · ·⊕an)⊕(b1 ⊕b2 ⊕· · ·⊕bk). Because c, d ∈ C, a1 ⊕a2 ⊕· · ·⊕an = 0 and
b1 ⊕b2 ⊕· · ·⊕bk = 0, by Theorem 3.5 . Thus, c⊕d = (a1 ⊕a2 ⊕· · ·⊕an)⊕(b1 ⊕b2 ⊕· · ·⊕bk) =
0 ⊕ 0 = 0, which indicates a P position, again by Theorem 3.5 .

The code mentioned previously, with a Hamming distance of 3, can correct up to 1 error.
We will look at a more general idea about codes.

Theorem 3.8. If C is a code with Hamming distance d, then it is possible to correct
⌊

d−1
2

⌋
errors.

Proof: We will first look at the case where d is a positive, odd integer, then the case where
d is a positive, even integer.

• Say that the code C is able to correct
⌊

d−1
2

⌋
errors. Since d is odd,

⌊
d−1

2

⌋
= d−1

2 . Then,
any message differs from some codeword A by d−1

2 digits. Also, it must then differ
from some other codeword B by at least d−1

2 + 1 digits. Thus, the minimum distance
between two codewords, or the Hamming distance, is d−1

2 + 1 + d−1
2 = d.

• Again, say that the code C is able to correct
⌊

d−1
2

⌋
errors. Since d is even,

⌊
d−1

2

⌋
= d

2 −1.
Then, any message differs from some codeword A by d

2 −1 digits, and thus, it must differ
from some other codeword B by at least d

2 + 1 digits. Notice that the message cannot
differ from codeword B by d

2 digits because then it would differ from another codeword
also by d

2 digits, meaning that both codewords could match to the same message,
preventing error correction. Finally, the minimum distance between two codewords is
then d

2 − 1 + d
2 + 1 = d.

Additionally, considering just the case where d is odd, notice that if C is a code with
Hamming distance d, then any message must differ from some codeword A by at most d−1

2
positions and from another codeword B by at least d−1

2 +1 positions. In this case, a message
is able to be matched to A without confusion for codeword B, proving that the code can
correct up to d−1

2 errors.

The idea that, for even values of d, a code with Hamming distance d is unable to correct a
message if that message differs from some codeword in d

2 positions leads to another theorem:

Theorem 3.9. If C is a code with Hamming distance d, where d is a positive, even integer,
then the code can simultaneously correct d−2

2 errors and detect d
2 errors.

To see a geometric-based proof for Theorem 3.8 , see [MS77].

6

4. Turning Turtles
Definition 4.1. The game of Turning Turtles is an impartial game. There are n turtles in a
row, some of which are on their backs (upside down) and the others are rightside up. A
player, on their turn, chooses a positive integer k and must flip at least 1 turtle and at
most k turtles, guaranteeing that the leftmost turtle flipped goes from being upside down to
rightside up.

Theorem 4.2. Nim is the game of Turning Turtles with k = 2.

Proof: For Turning Turtles with k = 2, a player can either flip over 1 or 2 turtles. Consider
that an upside down turtle is equivalent to a 0 digit in Nim, while a rightside up turtle is a
1 digit. Flipping over 1 turtle, with that turtle being originally upside down, is equivalent
to flipping a single digit from a 1 to a 0, similar to the first of the two legal moves in binary
Nim. Flipping over 2 turtles is equivalent to removing some of the stones from a larger pile,
consequently changing the digit corresponding to the pile from a 1 to a 0 and changing the
digit in the position corresponding to the remaining pile size (see § 3).

Additionally, the P positions of the Turning Turtles game with k = 6 and n = 23 forms
the famous binary Golay code, a perfect code that corrects 3 errors in strings of length 23.

References
[Bou02] C. L. Bouton. Nim, a game with a complete mathematical theory. Ann. of Math

(2), 3(1-4): 35–39, 1901/02.
[MS77] F. MacWilliams and N. Sloane. The Theory of Error-Correcting Codes. Vol. 16.

North-Holland Publishing Company, 1977, pp. 10–11.
[Rub] S. Rubinstein-Salzedo. Combinatorial Game Theory. Chapters 3 and 4.

7

	Introduction
	Motivations

	Terminology
	Hamming Codes, Nim, and Game Theory
	Nim Sum and Grundy Values

	Turning Turtles

