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Abstract

In this paper, we will talk about surreal numbers. There’s a lot to explore about them. We’ll cover the
basics of inequalities and arithmetic. We’ll look at how ordinal numbers relate to surreal numbers, from
recursion on ordinals to ordinal number arithmetic. Finally, we’ll explore surreal number exponentiation
and normal forms.

1 Introdouction

Surreal numbers are a relatively new discovery. They are said to contain “all numbers great and small”: They
contain the real numbers, infinite ordinals like ω, infinitesimals like 1

ω , and much more. The ordinal numbers
have infinities that can grow arbitrarily big; for any set S of ordinals, no matter how huge the elements are,
you can construct an ordinal bigger than everything in S. (Thus the collection of all ordinals forms a class, not
a set.) The surreal numbers contain the ordinal numbers, but they extend them so that you can add, subtract,
multiply, and divide in them, unlike in the ordinals.

The surreal numbers, denoted No, form an ordered field whose elements make up a proper class. A spe-
cial property about the surreal numbers is that every ordered field whose elements form a set is contained in
the surreal numbers! More precisely, every one of them is isomorphic to some ordered subfield of No. Thus the
surreal numbers unify all these different number systems into one.

Another interesting thing is that they satisfy something close to algebraic closure, but not quite that. It’s
called real closure. The definition of real closure is a bit complicated and we won’t get into that here, but
proving it’s true amounts to these two things: All nonnegative numbers in the field must have square roots,
and all odd-degree polynomials over the field must have roots. This implies that, similar to extending R by the
polynomial x2 + 1 to get C, taking No[x]/(x2 + 1) gives an algebraically closed field just like C. This field is
called the surcomplex numbers.

The surreal numbers can be constructed from the following rules (see [2]):

• Every surreal number is created from a pair ⟨SL | SR⟩ of two sets of previously-created surreal numbers,
such that no element of SL is ≥ any element of SR. The elements of SL are called left options and the
elements of SR are called right options.

• For surreal numbers x and y, we say that x ≥ y (or y ≤ x) if there’s no right option xR of x such that
xR ≤ y, and there’s no left option yL of y such that x ≤ yL.

• We say that x = y if x ≤ y and y ≤ x.

We’ll soon see how to make this a bit more precise.

Now, here’s a question you probably have: If each surreal number is made from two sets of previously-created
surreal numbers, then how do you even start? You’ll always need previous surreal numbers to make new ones,
so there’s no possible way to create the ‘first’ one!

Well actually, you can create a surreal number with both sets empty: ⟨{} | {}⟩ (or ⟨ | ⟩). The empty set
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only contains surreal numbers, a vacuously true statement, so this is made up of only previous surreal numbers.
And it’s vacuously true that no element of the empty set is ≥ any element of the empty set, because it has no
elements! Thus this is indeed a surreal number, the very first one. In fact, this is the number 0. Then there’s
⟨{0} | {}⟩ = 1 (or ⟨0 | ⟩) and ⟨ | 0⟩ = −1. Again, the ≥ condition is vacuous. Through this process, you can
keep making more and more numbers!

Now, how do we check when a surreal number is ≥ another based on other inequalities? Again, this comes down
to a vacuous condition. We know that 0 ≥ 0: We need there to be no right option 0R of 0 such that 0R ≤ 0,
and there to be no left option 0L such that 0 ≤ 0L. But these are both true since 0 has no left or right options!
How about 1 ≥ 0? We need there to be no right option 1R of 1 such that 1R ≤ 0, and there to be no left option
0L of 0 such that 1 ≤ 0L. But there are no right options of 1 and no left options of 0, so this is vacuously true too!

What about checking whether 0 ≥ 1? We have to check that there’s no right option 0R of 0 such that 0R ≥ 1,
and that there’s no left option 1L of 1 such that 0 ≥ 1L. Well, the first thing’s vacuously true, but as for the
second thing, 1 does have a left option: 0. And 0 ≥ 0 as we’ve seen, so 0 ≥ 1 has been proven false.

2 Birthdays

The rules we’ve mentioned for creating surreal numbers are a bit imprecise. We define inequalities from other
inequalities. We define what’s a number and what isn’t using inequalities, but inequlities are defined using num-
bers. It all seems very circular. However, there is a way of making this more rigorous using (a type of) recursion.

Consider ⟨|⟩ = 0. It’s created from nothing; it doesn’t use any numbers in its two sets. Because of this,
we say that 0 is born on day 0. Next, since ⟨0 |⟩ = 1 and ⟨| 0⟩ = −1 only use numbers that are born on day 0, we
say that they’re born on day 1, the day after 0. Anything that only uses −1, 0, and 1 is born on day 2, and so on.

But this presents a problem. It turns out that on each day n, only rational numbers of the form a
2k

get
created. The finite days form the dyadic rationals:

Definition 2.1 A dyadic rational is a rational number of the form a
2k

for integers a, k.

However, notice how I said those are formed on the finite days. Well, you can have days after that! The
day that comes right after all the finite days is called day ω. On this day, we can construct the rest of the real
numbers similar to the Dedekind cut construction: Each real number has the dyadic rationals below it in the
left set, and the dyadic rationals above it in the right set. So the dyadic rational numbers are born throughout
the finite days, and then on day ω suddenly all the rest of the real numbers are created! Day ω is referred to
as the big bang.

There are a few extra day-ω surreal numbers:
⟨N |⟩ = ω;

⟨| −N⟩ = −ω;〈
0 |

{
1

2n
: n ∈ N

}〉
=

1

ω
,

and in general d± 1
ω for all dyadic rationals d are included. Note that the surreal number ω is different from day ω.

But there’s no need to stop at day ω! The day after ω is called day ω + 1. Born on it are things like
ω + 1, ω − 1,

〈
0 | 1

ω

〉
= 1

2ω , and more. The next day is day ω + 2, and then ω + 3, ω + 4, etc.

There’s even days after all these! The next one’s day ω + ω = ω2. Then come ω2 + 1, ω2 + 2,..., and af-
ter all those, ω3. After all these expressions ωn+m is ω2 = ω ·ω. There’s even ω3, ω4, ωω, ωωω

, and even stuff
after all the ω power-towers!

So what are these numbers? They’re called the ordinal numbers. The idea is that for any set of ordinal
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numbers, you can always create ordinal numbers greater than everything in the set. You say that an ordinal
number α is greater than an ordinal number β if it ‘comes after it’. The way you use induction on ordinal
numbers is to show that if something’s true for all x < α, it’s true for α. (Note that there’s no base case
because, like we’ve seen before, it comes down to a vacuous condition.) We won’t get into the precise definition
of ordinal numbers, but this is the basic idea.

So instead of using only the nautral numbers for days, we use the ordinal numbers. The surreal numbers
born on some day α are the numbers (not born earlier) whose left and right options are born on days x < α.
For instance, day ω + 2 contains all numbers (not born earlier) whose options are born on finite days, day ω,
and day ω + 1. This is how we do recursion on ordinal numbers.

Next, ≤ and = in the surreal numbers also use ordinal recursion in their definitions. Assuming numbers
and inequalities are already defined for the days before day α, we know what constructions on day α give
numbers and what don’t, based on inequlities from previous days. Then, we can use our surreal number rules
to define ≤ and = between numbers born on days ≤ α.

The recursion for that is a bit complicated: To define each new condition xR ≤ y and x ≤ yL, you have
to dig deeper into, say, xR ≤ y, giving xRR ≤ y and xR ≤ yL to define. But then xRR ≤ y goes deeper again,
and it keeps going all the way down. You have to do further recursion in the middle of each recursion step!
However, despite the complexity, this construction is well-defined and a lot more rigorous.

3 Surreal Number Arithmetic

Now that we’ve defined the surreal numbers and inequalities, we can define addition, negation, and multiplica-
tion of surreal numbers. Note that we will say things like “x = ⟨xL | xR⟩” to mean that xL spans over the left
options of x and xR spans over right options. When we say something like “⟨y + xL | y + xR⟩,” we mean all
values y + xL for xL in the left set of x (and similarly for y + xR). Here are the definitions:

Let x = ⟨xL | xR⟩ and y = ⟨yL | yR⟩:

Definition 3.1
x+ y = ⟨xL + y, x+ yL | xR + y, x+ yR⟩.

Definition 3.2
−x = ⟨−xR | −xL⟩.

Note the reversal of order of xL and xR.

Definition 3.3

x · y = ⟨xLy + xyL − xLyL, xRy + xyR − xRyR | xLy + xyR − xLyR, xRy + xyL − xRyL⟩.

Note that these are all defined recursively, with addition and negation used in the definition of multiplica-
tion. (The definition also uses additive associativity.)

Now, it must be proven that these are well-defined: What if different forms, ⟨xL | xR⟩, for x and y give
different results? And what if the result involves left and right options sL, sR such that sL ≥ sR, making it not
a number? Fortunately, it can be checked that these things don’t happen, meaning that + and · are well-defined.
It also needs to be checked that if a = a′, b = b′, and a ≥ b, then a′ ≥ b′, so that ≥ is well-defined too.

Also, it’s been proven that the surreal numbers under addition, multiplication, and ≤ form an ordered field.
And as the notation suggests, 0 is the additive identity, 1 the multiplicative, and −x is the additive inverse of
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x. Let’s prove some of these! To start:

Theorem 3.4 x+ 0 = x, −0 = 0, and x · 0 = 0.

Proof. We prove these by induction using the definitions:

x+ 0 = ⟨xL + 0, x+ 0L | xR + 0, x+ 0R⟩ = ⟨xL + 0 | xR + 0⟩,

since there are no 0L or 0R. Using the induction hypothesis, this simplifies to ⟨xL | xR⟩ = x, as desired.

The next one is easy:
−0 = ⟨−0R | −0L⟩ = ⟨|⟩ = 0.

Now, it might look like x · 0 = 0 will be the hardest one because the definition of multiplication is so com-
plicated. However, notice that all the options of x · y involve some yL’s and yR’s. So, plugging in y = 0, we
see that none of those expressions are possible since 0 has no left or right options. Thus x·0 simplifies to ⟨|⟩ = 0.□

We use all these to prove the next thing:

Theorem 3.5 x · 1 = x (recall that 1 = ⟨0 |⟩ ).

Let’s use induction and compute each of the terms. One of them is xL1 + x1L − xL1L. Since the only 1L

is 0, this simplifies to
xL1 + x0− xL0 = xL1 + 0− 0 = xL1 + 0 + 0 = xL1.

And of course, by the induction hypothesis, xL1 = xL.

Next is xR1 + x1R − xR1R. Wait a minute! There are no 1R’s, so there can’t be any instances of this!
Thus the left options simplify to the xL’s. Similar computations show that xL1 + x1R − xL1R don’t exist and
xR1 + x1L − xR1L = xR. Therefore the right options simplify to the xR’s. Thus we get that

x · 1 = ⟨xL | xR⟩ = x,

as desired.□

Note that, although there are multiplicative inverses in the surreal numbers, their construction is very compli-
cated and won’t be talked about here.

4 More on Ordinal Numbers

Let’s talk some more about ordinal numbers. Basically, they’re a well-ordered class that extends the well-
ordered set of nautral numbers:

Definition 4.1 A well-ordered set is a totally-ordered set (S,≤) such that any nonempty subset U ⊆ S
contains a smallest element: An element u such that u ≤ x for all x ∈ U . (And well-ordered classes are similar.)

We won’t get into the definition of a totally-ordered set, because that would be off topic; basically it’s a set
equipped with a relation ≤ that satisfies the usual properties of inequalities. For example, the nautral numbers,
integers, rationals, and reals are all totally-ordered sets. However, R isn’t a well -ordered set because it has no
smallest element; for every real number, you can subtract 1 to get a smaller (more negative) real number. The
set [0,∞) of nonnegative real numbers still isn’t a well-ordered set; even though it has a smallest element, 0,
the subset (0,∞) doesn’t. But the nautral numbers, N, is a well-ordered set because every subset does have a
smallest element. The ordinals are a well-ordered set extending N.

The ordinal numbers can be constructed as sets of previous ordinal numbers. To start, 0 = {} because there’s
nothing before it. Then 1 = {0}, 2 = {0, 1}, 3 = {0, 1, 2}, etc. After that, ω = N, ω + 1 = N ∪ {ω},
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ω + 2 = N ∪ {ω, ω + 1}, and so on forever. This is the typical construction used for the ordinal numbers.

Something interesting is that we can embed the ordinal numbers into the surreal numbers in the following
way: Each ordinal number α is

⟨{x < α} |⟩,
where {x < α} means the set of embedded versions of the x < α. So 0 = ⟨|⟩, 1 = ⟨0 |⟩, 2 = ⟨0, 1 |⟩, etc. Then
ω = ⟨N |⟩ as we’ve seen, ω+1 = ⟨N∪{ω} |⟩, and so on for all the ordinals. Notice how they each have an empty
set of right options.

So this embeds the ordinals and their inequalities into the surreal numbers. Although, this doesn’t embed
ordinal addition and multiplication; surreal addition and multiplication of ordinal numbers is different from
their ordinal sum and product. Why is that?

Well, here’s the definition of ordinal addition:

Definition 4.2 If you have two ordinal numbers α and β, you define their ordinal sum α + β using recur-
sion on β:

α+ β = α ∪ {α+ x : x < β},
treating α as a set and assuming x is an ordinal.

As you might hope, the ordinal sum applied to nautral numbers is their regular sum.

Example 4.3 We have α + 0 = α for all α, because α + x for x < 0 don’t exist. If we add ω + 1 to-
gether, we get N ∪ {ω + 0}, or N ∪ {ω}. Thus this indeed gives the ordinal after ω, which is what we’ve been
calling ω + 1. What if we compute 1 + ω? Well, this gives

{0} ∪ {1 + n : n ∈ N},

where n could be 0. But the elements in these sets are just all the nautral numbers! So we get 1 + ω = N = ω.

Wait a minute! 1 + ω and ω + 1 give different answers! How can this be? Well, we’re used to addition
being commutative: a+ b = b+ a for all a, b. However, our example shows that ordinal addition isn’t commu-
tative. But it is still associative.

There’s also ordinal multiplication:

Definition 4.4 You define α · β again using recursion in β: It’s the smallest ordinal greater than or equal
to α · x+ α for all x < β.

Example 4.5 Let’s compute α · 0. Well, since ordinals α · x + α for x < 0 don’t exist, it’s vacuously true
that every ordinal is greater than or equal to all of them. Thus the smallest such ordinal is 0, and α · 0 = 0, as
one would expect. How about α · 1? Well, it’s the smallest ordinal greater than or equal to α · 0 + α = 0 + α.
We haven’t shown that 0+α = α, but it’s an easy check using induction. So α · 1 is the smallest ordinal greater
than or equal to α, which is of course α.

Just like addition, ordinal multiplication is non-commutative. An example of this is that ω · 2 = ω + ω, a
lot larger than ω, but 2 · ω = ω. That’s why we express ω + ω as ω2 and not 2ω. However, again it’s still
associative. It also satisfies left distributivity over addition:

α · (β + γ) = (α · β) + (α · γ).

But it doesn’t satisfy right distributivity: It’s not generally true that

(β + γ) · α = (β · α) + (γ · α).

For example, (1 + 1) · ω = 2 · ω = ω, but (1 · ω) + (1 · ω) = ω + ω = ω2.
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So, ordinal arithmetic satisfies just some of the nice properties we like. Surreal number arithmetic applied
to ordinals is much nicer. For example, 1 + ω = ω + 1 in the surrreal numbers, and they’re both the ordinal
after ω. And, 2 · ω = ω · 2 = ω+ ω. It satisfies all the properties that you know and love about nautral number
arithmetic.

5 Exponentiation and Normal Forms

Now let’s take a look at normal forms. To start, we define ωx:

Definition 5.1
ωx = {0, rωxL

| rωxR

},

where r ranges over the positive real numbers, xL (resp. xR) ranges over left (resp. right) options, and the
options in ωx involve all possible combinations of these.

Example 5.2 If we calculate ω0, since there are no xL or xR, we’re just left with {0 |} = 1. Next,

ω1 = {0, rω0 |} = {0, r |} = ω,

since r can be an arbitrarily big real number. Also,

ω−1 = {0 | r} =
1

ω
,

since r can be an arbitrarily small positive number.

As you can see, the reason the left option 0 is necessary, is that if there are no xL, we need it to lower
bound ωx.

Now, what’s the intuition behind this definition? Basically, if α > β, then ωα should be infinitely bigger
than ωβ . So, it’s bigger than 1000ωβ , or 1, 000, 000ωβ , or rωβ for any positive real number r. They can’t be
commensurate:

Definition 5.3 For two positive surreal numbers x, y, we say that x is commensurate with y if there ex-
ists a positive integer n such that x < ny and y < nx. (See [1])

Basically this is saying that x isn’t infinitesimally smaller or infinitely bigger than y, instead they’re at the
same scale, so to speak. As intuition would suggest, commensurance is an equivalence relation whose equiva-
lence classes are convex (i.e. if x < z < y and x is commensurate with y, then x, y, and z are all commensurate).
Here’s a depiction of what that sort-of looks like:

0

As you can see, these commensurance classes are intervals (kind of) in the surreal number line. Because of
their nature, there must be a simplest element in each one (we won’t prove that here). We call these leaders.
The mapping ωx is obtained by letting ω0 be the simplest of the leaders, 1, and letting ω1 be the simplest leader
to the right of that, ω−1 the simplest to the left of it, and so on; the structure of the surreal numbers applied
to the leaders.
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And indeed, exponentiation satisfies the properties we want:

Theorem 5.4

• ω0 = 1

• ω−x = 1
ωx

• ωx+y = ωx · ωy

• ω1 = ω (hence why we call it ωx and not 2x or ex or something else.)

Everything is commensurate to a unique ωx. That might make it seem like everything can be expressed as rωx

for some real number r. But that’s not quite true! Let’s take a closer look.

Let x be a positive surreal number, and ωy0 the unique leader commensurate with x. Then we can divide
the real numbers into two classes, L for the real numbers t such that ωy0 · t ≤ x, and R for the t’s such that
ωy0 · t > x. We have that L and R are nonempty, since there’s a sufficiently large n such that −n ∈ L and
n ∈ R. We also have that everything in L is less than everything in R, and L and R are complements in R. So,
for reasons we won’t get into here, exactly one of L or R has an extremal point (a maximum if L, a minimum
if R). Call this point r0, and write

x = ωy0 · r0 + x1.

It follows that x1 is small compared to x, i.e. nx1 is between x and −x for all integers n. If x1 is zero, we’re
done. If x1 is not 0, then we can construct in a similar way numbers r1, y1 such that

x1 = ωy1 · r1 + x2,

for x2 small compared to x1. (It could be that x1 is negative, so we’d have to flip signs in the construction.) If
again x2 is non-zero, we can continue, producing the expansion

x = ωy0 · r0 + ωy1 · r1 + · · ·+ ωyn−1 · rn−1 + xn

for each n. This terminates if xn = 0 at any point. But usually these will not terminate for any n, so we have
to keep continuing them throughout the infinite ordinals. There’s a rigorous way this needs to be done, and we
won’t go into too much detail here, but these give unique expansions (called normal forms) for all x:

Theorem 5.5 For each x we can define a unique expression
∑

β<α ωγβ · rβ where α is some ordinal, the
numbers rβ for β < α are non-zero reals, and the numbers γβ form a decreasing sequence of numbers. These
are distinct for distinct x, and every form satisfying these conditions occurs. (See [1])

Normal forms give us a nice way of identifying the structure of a number, so to speak. For instance, say
you have a number

x = 2.5ω2 +
4

3
ω0.0000043 + 56 +

1

3
ω−100 +

1

242
ω−1000.1 + · · ·+ 2.01ω−ω

(where 2.01ω−ω is the ωth term). This normal form expansion shows that x is commensurate with ω2, and that
it’s (relatively) infinitesimally close to 2.5ω2. So that’s the main term, our first approximation for x.

Next is the term 4
3ω

0.0000043. No matter how close ω0.0000043 might seem to 1 = ω0, it’s still infinitely big-

ger! In fact, even something like ω
1
ω is infinitely bigger than ω0. Any ωα is as long as α > 0. So the term

4
3ω

0.0000043 is the main term of x− 2.5ω2, and 2.5ω2 + 4
3ω

0.0000043 is the second approximation for x. Then we
keep adding terms, which make finer and finer changes as we go. At the very end, after all the finite-number-ith
terms, is the ω-th term 2.01ω−ω. That’s the tiniest, microscopic little term of them all! But it must be added
to give the final result of x.
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This is sort of analogous to decimal notation in the real numbers. With the different powers of 10 multi-
plied by single-digit numbers, the biggest term the most significant. This is like that but much more extreme,
where the biggest term is infinitely bigger than the rest, ranging from huge, huge infinities to tiny, tiny infinites-
imals.

As you can see, there’s lots of interesting things to explore about the surrreal numbers. There are also more
things we haven’t covered, like the more general notion of games, the omnific integers, and so much more. The
more we explore, the more new things we’ll discover, and we’re just getting started!

For more about the construction of the surreal numbers, see [2]. For more about normal forms, and about
how surreal numbers tie into games, see [1].
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