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1. Introduction

The game of Fibonacci nim consists of one pile of stones, where two players alternate
removing stones from the pile, making it a subtraction game. Here, both players have the
same moves available to them, so this is a short impartial game.
Suppose we have a pile of n stones. Then for the starting move, the first player can remove

anywhere up to n−1 stones from the pile. For all subsequent moves, each player can remove
anywhere up to twice as many stones as were removed by the previous player. Note that
the players cannot pass on any given turn and must remove at least one stone from the pile.
The player who removes the last stone wins the game. Let us look at an example.

Example 1.1. Consider the Fibonacci nim game with a pile of 12 stones, where we start
first. Note that we can remove anywhere between 1 and 11 stones from the pile and, on the
subsequent turn, our opponent can remove up to twice as much as we remove. Therefore, if
we remove more than 3 stones, our opponent can take the rest and win.

Suppose we remove 1 stone, leaving 11 stones in the pile. This implies that our opponent
can remove up to 2 stones. Suppose they remove 2 stones, leaving 9 stones in the pile. Now,
we can remove up to 4 stones, but removing more than 2 stones will allow our opponent to
win, so suppose we remove 1 stone again, leaving 8 stones in the pile.

In this case, our opponent can remove up to 2 stones. Suppose they remove 1 stone,
leaving 7 stones in the pile. Then we can remove up to 2 stones. This time, we can remove
2 stones, leaving 5 stones in the pile. Here, our opponent can remove up to 4 stones from
the pile, but removing 2 or more stones will allow us to win immediately. Therefore our
opponent will remove 1 stone, leaving 4 stones in the pile.

Now, we can remove up to 2 stones, but removing 2 stones will result in our opponent
winning, so we will remove 1 stone again, leaving 3 stones in the pile. In this situation, our
opponent can remove either 1 or 2 stones, but in both cases, we will win.

Did we both play optimally or could our opponent play differently and win? What is the
winning strategy? We will first define some notation. An N position is one in which the
player who starts first wins the game. A P position is one in which the player who starts
first loses the game. This would imply that when it is our turn to play, we would want to
be in an N position, and we would want to make a move to a P position.
In this paper, we will study Fibonacci nim positions to determine which ones are N or

P positions, and we will find a winning strategy. Surprisingly, it turns out that this requires
understanding how every number can be expressed as the sum of distinct Fibonacci numbers,
no two of which are consecutive. Given a game with one pile of size n, we will analyze the
Zeckendorf representation of n [1] using the Fibonacci numbers that sum to n satisfying the
properties above, and we will follow Whinihan [2] and Larsson and Rubinstein-Salzedo [3].
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2. Zeckendorf representations

As we described earlier, Fibonacci numbers are key to understanding which positions are
N or P positions. We note that we will index the Fibonacci numbers conventionally so that
f0 = 0, f1 = 1, f2 = 1, f3 = 2, f4 = 3, f5 = 5 and so on. Let us define the Zeckendorf
representation of a number.

Definition 2.1. A positive integer n is said to have a Zeckendorf representation if it can be
expressed as the sum of distinct Fibonacci numbers, no two of which are consecutive.

For any n with n = a1 + a2 + . . .+ ak, where all the ais are Fibonacci numbers satisfying
the property above, we can write the ith part of the Zeckendorf representation as zi(n) = ai.
As an example, we can write 12 as 1 + 3 + 8, 13 as itself (already a Fibonacci number), and
9 as 1 + 8. This implies we get z1(12) = 1, z2(12) = 3, z3(12) = 8, z1(13) = 13, z1(9) = 1,
and z2(9) = 8.

We can now state the following important theorem, which is key to understanding the N
and P positions in Fibonacci nim.

Theorem 2.2. (Zeckendorf, 1972) [1] Every positive integer has a unique Zeckendorf repre-
sentation.

3. A winning strategy

To study this game, we must consider all possible positions that can be reached at any
point during the game. We can label each game position as (n, r) where n is the total
number of stones in the position and r is the maximum number of stones the player can
remove. We will prove that there is a specific criterion based on Zeckendorf representations
that determines if a position is an N or P position. We now define safe and unsafe positions,
as described in [2].

Definition 3.1. Let (n, r) be any position in a game G, and let n = a1+a2+ . . .+ak where
all the ais are distinct non-consecutive Fibonacci numbers. We say that (n, r) is an unsafe
position if r ≥ z1(n), and safe position if r < z1(n).

We will show that an unsafe position is an N position and a safe position is a P position
by showing that unsafe and safe positions have all the properties of N and P positions
respectively.

Theorem 3.2. Let (n, rm) be an unsafe position on the mth turn in a game G with n =
a1 + a2 + . . . + ak, where all the ais are distinct non-consecutive Fibonacci numbers. Then
there exists a move to a safe position.

Proof. Since (n, rm) is an unsafe position, we know that the maximum number of stones that
can be removed on the mth move satisfies rm ≥ z1(n). We also know that z2(n) = a2. We
would like to show that the maximum number of stones rm+1 that can be removed on the
(m + 1)th turn is less than z1(n− x) where x is the number of stones removed on the mth
turn. By definition, we know that z1(n) and z2(n) are not consecutive Fibonacci numbers,
so let b be a Fibonacci number such that z1(n) < b < z2(n). Then

2z1(n) < b+ z1(n) ≤ z2(n),
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since b and z2(n) are not necessarily consecutive. If z1(n) stones are removed on the mth
turn, then for the (m+ 1)th turn, rm+1 = 2z1(n) < z2(n). Since

z1(n− x) = z1(n− z1(n)) = z1(a2 + a3 + . . .+ ak) = z2(n),

then rm+1 < z1(n− x), so this is a safe position. □

We now prove the other direction that all moves from a safe position are to an unsafe
position.

Theorem 3.3. Let (n, rm) be a safe position on the mth turn in a game G with n = a1 +
a2 + . . . + ak, where all the ais are distinct non-consecutive Fibonacci numbers. Then all
moves are to an unsafe position.

Proof. Since (n, rm) is a safe position, we know that the maximum number of stones that can
be removed on the mth move satisfies rm < z1(n). Let x be the number of stones removed
on the mth turn. Then by Zeckendorf’s Theorem, we can write z1(n) − x as the sum of
non-consecutive distinct Fibonacci numbers fs1 + fs2 + . . .+ fsj where fi represents the ith
Fibonacci number (f0 = 0, f1 = 1, f2 = 1, f3 = 2, f4 = 3, and so on) and s1, . . . , sj is a
increasing sequence of natural numbers (fs1 is the smallest). We note that (n − x) can be
written as

fs1 + . . .+ fsj + z2(n) + . . .+ zk(n),

which is a sum of distinct non-consecutive Fibonacci numbers. We want to show that the
maximum number of stones that can be removed on the (m + 1)th move satisfies rm+1 ≥
z1(n− x) = fs1 .

The largest possible value for the sum fs1 + fs2 + . . .+ fsj that can be obtained is where
fsj is the largest Fibonacci number less than z1(n), and s1, . . . , sj are spaced two apart
(s2 − s1 = . . . = sj − sj−1 = 2). When this is true, then the sum can be evaluated as
follows. When we add fs1 + fs2 + . . .+ fsj to the Fibonacci number immediately preceding
fs1 , which we will call b1, we see that b1 + fs1 is equal to the Fibonacci number immediately
preceding fs2 , which we will call b2. When we add b2 to fs2 , we get the Fibonacci number
immediately preceding fs3 , which we will call b3. Continuing in the same manner, we can
equate b1 + fs1 + fs2 + . . .+ fsj to bsj + fsj to get z1(n). Since the terms in the sum can take
on smaller values, we find that

b1 + fs1 + fs2 + . . .+ fsj ≤ z1(n),

which implies

z1(n)− (fs1 + . . .+ fsj) = x ≥ b1,

and hence

rm+1 = 2x = 2(z1(n)− (fs1 + . . .+ fsj)) ≥ 2b1.

If we let b0 be the Fibonacci number immediately preceding b1, then we see that

2b1 ≥ b1 + b0 ≥ fs1 .

Therefore rm+1 ≥ fs1 , so we have moved to an unsafe position. □

We can then use the Partition Theorem, which we will state below, to show that any
unsafe position is an N position and any safe position is a P position.
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Theorem 3.4 (Partition Theorem). Let S be a set consisting of short impartial games and
all of their subpositions. Suppose S can be partitioned into the sets P and N so that P∩N = ∅
and P ∪N = S, and that any game in N has a move to a P position and for any game in
P , all moves are to an N position. Then N is the set of N positions and P is the set of P
positions.

Proof of Theorem 3.4. If N contains games that are in P , then for these games, there are
no moves to a P position which contradicts our definition of N . If N contains games that
are in N , then every game in N has a move to a P position. Similarly, if P contains games
that are in P , then for each of these games, every move is to an N position. If P contains
games that are in N , then these games contain moves that are not to an N position. Since
P does not contain any N position games, they must all be contained in N . Similarly, since
N does not contain any P position games, they must all be contained in P . Therefore P is
the set of P positions and N is the set of N positions. □

Theorem 3.5. Any unsafe position is an N position, and any safe position is a P position.

Proof of Theorem 3.5. We will use the Partition Theorem. Let S be the set of subpositions
of the game G, and S be partitioned into the sets N and P such that N is the set of unsafe
positions and P is the set of safe positions. We can clearly see that N and P are disjoint
sets. Since there always exists a move from an unsafe position to a safe position by Theorem
3.2, and every move in a safe position is to an unsafe position by Theorem 3.3, the sets N
and P consist of N and P positions respectively. □

As we have showed in the proof above, unsafe positions are N positions and safe positions
are P positions. This implies that a winning move would take us from an unsafe position to
a safe position. We found one such move in our proof of Theorem 3.2. That is, on the mth
move in a pile of n stones, by removing z1(n) stones, the smallest Fibonacci number in the
sum n = a1 + . . .+ ak, we are left with a safe position, so this is a winning move.
Now that we have found a winning strategy, we can analyze our original example (1.1) in

which we started with a pile of 12 stones. To use our winning strategy, we will look at the
Zeckendorf representation of 12 which is 12 = 1 + 3 + 8. Since z1(12) = 1 is less than 12,
which is the maximum number of stones that can be removed on the first turn, this is an
N position, so the player who starts first will win. The winning move for us is to remove 1
stone, leaving a pile of 11 stones. The Zeckendorf representation of 11 is 11 = 3 + 8.

Since our opponent can remove up to 2 stones, and z1(11) = 3 is greater than 2, this is a P
position. Regardless of what our opponent plays, as long as we play optimally, we will win.
If our opponent removes 2 stones, then there are 9 stones remaining and we can take up to
4 stones. The Zeckendorf representation of 9 is 9 = 1+ 8, and since z1(9) = 1 is less than 4,
this is an N position and we should remove 1 stone, leaving 8 in the pile. If we continue this
winning strategy, we will find that the moves given in Example 1.1 are the optimal moves
to play.

While the winning strategy that we described in Theorem 3.2 works, there are many other
winning strategies for Fibonacci nim. A complete categorization of all the winning moves
in Fibonacci nim can be found in Allen and Ponomarenko [4].
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4. Generalizations of Fibonacci nim

An immediate generalization of Fibonacci nim is to include more piles in the game.
When doing so, we will find that there are two ways to play this version of the game. The
first is where we have a local move dynamic, and the rule of removing up to twice as many
stones as the previous player applies independently to each individual pile on stones.

Example 4.1. If there is a pile A of 12 stones and a pile B of 7 stones in a game with a local
move dynamic, then if we play first and remove 2 stones from pile A, then our opponent can
either remove up to 4 stones from pile A or up to 6 stones in pile B, since our opponent is
the first to play in pile B.

The second way to play this game is where we have a global move dynamic, where the rule
of removing up to twice as many stones as the previous player applies all moves regardless
of which pile you are playing in.

Example 4.2. Consider the same piles A and B as in Example 4.1. Then if we start first
and remove 2 stones as before, then our opponent must remove up to 4 stones from either
pile A or B.

The local move dynamic version of Fibonacci nim is analyzed in [3] using Sprague-
Grundy theory. The version of the game for a global move dynamic is analyzed in [5] where
the N and P positions of the two-pile game are found using the Fibonacci word, a string of
binary digits. It still remains not completely understood as to what the N and P positions
are in any multi-pile Fibonacci nim game with more than two piles and a global move
dynamic.
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