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1. Introduction

In this exposition, we describe some of the basics of the theory of impartial games
and analyze poset games. The theory in sections 2 and 3 follows [1] and [2].

2. Impartial Games

Definition 2.1 (Impartial Games). An impartial game is one where each player has
the exact same set of moves.

One key fact about impartial games is that each game is either in N or in P . This is
somewhat intuitive – by definition, each player has the same moves available to them,
so is it impossible for either Left or Right to always win a game. The only thing that
matters is which player moves first.

In order to actually determine the outcome classes of an impartial game, we sometimes
rely on the partition theorem.

Theorem 2.2 (Partition Theorem).

(1) Let G be a short impartial game. Then G ∈ N if and only if there is some move
from G, to G′, say, with G′ ∈ P. Conversely, G ∈ P if and only if, for every
move to some G′, we have G′ ∈ N .

(2) Let S be a set of short impartial games such that if G ∈ S , then all subpositions
of G are also in S . Suppose there exist subsets P and N of S that partition
S , i.e., P ∪N = S and P ∩N = ∅, and such that, for every G ∈ N , there
is a move to some game in P, and for every G ∈ P, every move is to a game
in N . Then P and N are the P and N positions, respectively, in S .

Proof. We begin with the proof of the first statement in the first part. If G ∈ N and
it is currently your move, then you must have a way to force a win by definition of
N . If there was no move G′ from G such that G′ ∈ P , then every G′ must be in N .
Then, the other player would be able to force a win no matter what move you made –
a contradiction. Thus, there must exist at least one G′ ∈ P .

On the other hand, assuming that there exists a move G′ from G such that G′ ∈ P ,
then you can simply move to G′ from G and cause your opponent to play in P and
eventually lose.
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The proof of the other statement is quite similar. First, assume that it is your move
and G ∈ P . Then, no matter what move you make, it must be the case that your
opponent wins by definition of P . In other words, every move G′ from G must be a win
for your opponent; every G′ ∈ N .

Conversely, If every G′ ∈ N , then no matter what move you make, your opponent
has a way to force a win. So, G ∈ P .

To prove the second part, we show that N = N . Since the only outcome classes for
impartial games are N and P , and N and P partition S , this implies that P = P
as well.

The second part is quite similar and thus omitted. ■

For clarity, we also provide a few examples.

Example 2.3 (2-pile Nim). Consider the game of Nim played with 2 piles. We can
represent such games as (a, b), for a, b ∈ N0 – let all such representations comprise S .
Then, it is easy to see that the sets P = {(a, b) | a = b} and N = {(a, b) | a ̸= b}
partition S and satisfy the conditions outlined in the second part of 2.2. So, P = P
and N = N .

Example 2.4 (Fibonacci Nim). Consider the game of Fibonacci Nim, which is played
similarly to single pile Nim with the additional conditions that the first player can
remove any number of stones from the pile (but cannot remove the whole pile), and on
each subsequent turn, the player to move can remove at most twice as many stones as
the previous player. Each Fibonacci Nim position can be represented as (n, r), where
the pile has n stones left and the current player can remove up to r stones.

Let S be the set of all Fibonacci Nim positions, P be the set of all positions where
r is less than the smallest Fibonacci number in the Zeckendorf representation of n (see
Zeckendorf ’s Theorem), and N = S \ P. Clearly, N and P partition S , and
surprisingly, they also correspond to P and N by 2.2.

3. Nim Sums and Sprague-Grundy Theory

The nim sum, also known as xor, provides a great deal of insight into analyzing Nim
positions. For any two numbers a and b, we define a⊕ b as the result of writing a and b
in binary, lining the numbers up as in addition, and then applying the rules 0⊕ 0 = 0,
0⊕1 = 1, and 1⊕1 = 0 to each column of binary digits. Note that ⊕ is a commutative
and associative operation, so these rules are easily extended to compute the nim sum
of multiple numbers.

To make use of this operation, recall the following theorem from [2, Chapter 4].

Theorem 3.1. The position with piles of size a1, a2, . . . , ak is a P position if and only
if a1 ⊕ a2 ⊕ · · · ⊕ ak = 0.

The proof of this theorem is provided in its entirety in [2], so we will omit it here.
Note that 2.2 is used in the proof.

https://en.wikipedia.org/wiki/Zeckendorf%27s_theorem
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Additionally, the nim sum allows us to reduce any multi-pile Nim game into a single
pile game.

Theorem 3.2. A Nim game G with piles of size a1, a2, . . . , ak is equivalent to a game
H with a single pile of size a1 ⊕ a2 ⊕ . . .⊕ ak.

Proof. From the definition of equivalent games, we have that G and H are equivalent
if and only if G−H ∈ P . Since H is impartial, its set of left and right options are the
same. So, −H = H and it suffices to show that G+H ∈ P .

The nim sum of G +H is equivalent to the nim sum of G nim summed with H due
to associativity. In other words, this is equivalent to

(a1 ⊕ a2 ⊕ . . .⊕ ak)⊕ (a1 ⊕ a2 ⊕ . . .⊕ ak),

which equals 0 since the nim sum of 2 equal values is 0. Thus, by 3.1, G+H ∈ P . ■

This theorem motivates us to define the nimbers as representation of single pile nim
games, since every Nim game can in fact be expressed as a single pile.

Definition 3.3 (Nimbers). The nimbers are recursively defined by

∗n = {∗0, ∗1, . . . , ∗(n− 1)},

for all nonnegative integers n.

Nimbers allow us to easily represent options of games in a way that allows us to
apply our previous theorems. Additionally, we also have the following rule to evaluate
positions whose options are nimbers.

Theorem 3.4 (Mex Rule). For a set of nonnegative integers S, define mex(S) to be
the smallest nonnegative integer not in S. Then, we have

{∗a1, ∗a2, . . . , ∗ak} = ∗m,

where m = mex(a1, a2, . . . , ak).

In fact, 3.4 allows us to compute a value n for any impartial game G such that G is
equivalent to to the Nim game with a single pile of n stones.

Theorem 3.5 (Sprague-Grundy). Let G be any short normal-play impartial game.
Then G = ∗n for some nonnegative integer n.

We omit the proofs for the previous 2 theorems since they are entirely stated in the
textbook.

Note that 3.5 allows us to extend the idea of a nim sum to other impartial games
than Nim. Combined with 3.1, this implies that any impartial game is P if it has nim
sum 0, and is N otherwise.
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4. Poset Games

Definition 4.1 (Posets). A partially ordered set, or poset, is a set P along with a partial
order ⪯ which is reflexive (a ⪯ a for all a ∈ P ), antisymmetric (a ⪯ b and b ⪯ a implies
a = b for a, b ∈ P ), and transitive (a ⪯ b and b ⪯ c implies that a ⪯ c for a, b, c ∈ P ).
The term “partial” comes from the fact that two elements a, b ∈ P are not necessarily
comparable under ⪯.

For the rest of this section, we will refer to arbitrary posets as (P,⪯).

Definition 4.2 (Poset Games). A poset game begins with a poset (P,⪯). Players take
turns picking an element a ∈ P , and then removing a and any elements in P greater
than a from the set. We denote the poset resulting from this move by Pa. In this
section, we consider the normal play variant of poset games.

Note that due to 3.5 and 3.4, we can represent the Grundy value of a poset game P
as

G(P ) = mex({G(Pa) | a ∈ P}).
Poset games are particularly interesting because they extend more well known impartial
games such as the following 3 examples.

Example 4.3. Nim is a very straightforward example of a poset game. For a poset
P of k-pile games, we define ⪯ such that for two games A = (a1, a2, . . . , ak) and B =
(b1, b2, . . . , bk), A ⪯ B if and only if ai ≤ bi for all 1 ≤ i ≤ k.

Example 4.4. Green Hackenbush is another example of a poset game. For green Hack-
enbush games A and B, we say that A ⪯ B if and only if it is possible to obtain A from
a series of moves in B.

Example 4.5. A slightly modified version of a game known as Chomp is also a poset
game. Chomp begins with a rectangular grid which is missing its bottom left square.
The player to move selects any square in the grid and removes it along with any squares
above it and to its right. In the normal play variant of this game, the last player that
can make a move wins.

We can define a very natural partial order ⪯ on the squares of a Chomp board.
Formally, if we assign a coordinate system to an m×n Chomp grid such that the bottom
left corner is (0, 0) and the top right corner is (m,n), then we say that (a, b) ⪯ (c, d)
(where 0 ≤ a, c ≤ m and 0 ≤ b, d ≤ m) if a ≤ c and b ≤ d.

In some specific cases, analyzing the outcome class of poset games is quite simple.
Consider the following lemmas which apply for P with an infimm or a supremum.

Lemma 4.6 (Posets With an Infimum). In a poset game (P,⪯), if P has an infimum,
then P ∈ N .

Proof. Let the infimum of P be a. The first player to play simply moves to Pa. This
removes every element in the poset, so the other player loses. ■
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Lemma 4.7 (Posets With a Supremum). In a poset game (P,⪯), if P has a supremum,
then P ∈ N .

Proof. Let the supremum of P be b. If G(Pb) = 0, then G(P ) > 0 by our above
expression for the Grundy value of P . So, it must be the case that P ∈ N . Otherwise,
if G(Pb) > 0, then Pb ∈ N so there must exist some a ∈ Pb such that G((Pb)a) = 0 by
2.2. However, b is a supremum of P so a ≤ b meaning that Pa is a valid move from P .
Thus, P must have a Grundy value greater than 0 in this case as well. ■

The strategy stealing argument presented in the proof of the previous lemma can also
be used to show that the first player to move in Chomp can guarantee a win, as long
as the starting position is nonempty.

5. Time Complexity of Poset Games

In general, however, finding the winning strategy or even determining the winner of a
poset game is computationally difficult. To see just how difficult this is, we first define
some standard notions of computational complexity, beginning with Turing machines.
The following definitions and theory come from [2, Chapter 18].

Definition 5.1 (Turing Machines). At a high level, a Turing machine M is a machine
that uses a set of states Q and an alphabet Γ to solve problems. The problem to be
solved is written on a tape using Γ (this is known as the input string), followed by
infinitely many blank cells of the tape. This tape is then given to M .

The machine begins solving the problem on the first cell of the tape, say, x0, at a
designated start state q0. The transition function δ tells M how to progress from the
current state/alphabet pair. In particular, if δ(q, x) = (q′, x′, L), then M replaces the
value of the cell it is currently on, x, with x′. The machine then moves one cell left
(hence the L – if M is to move right, this would be R) and transitions to a new state,
q′.

In the process of repeatedly applying δ, M might transition to one of 2 special states
– qa or qr. If the machine enters the former state, then the input is said to be accepted.
If it enters the latter state, it is rejected.

At every point in the problem solving process, note that the tape can be represented
by a finite string of non-blank characters from Γ. We denote by L(M) the set of such
strings which, when provided as input strings to a Turing machineM , cause it to accept.
This set is known as the language of M , or the language accepted by M .

We are now ready to define time complexity and big O notation.

Definition 5.2 (Time Complexity). The running time time complexity of a Turing
machine M is the function f : N → N such that f(n) is the maximum number of steps
that M uses on any input of length n. We say that M runs in time f(n).

Definition 5.3 (Big O). Let f and g be functions from N to R. We say that f(n) =
O(g(n)) if there exist positive numbers C and N such that for all n ≥ N , we have
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f(n) ≤ Cg(n). If this is the case, we say that g(n) is an asymptotic upper bound for
f(n).

Example 5.4. Note that for polynomials f of degree d, we have f(n) = O(nd).

Using big O notation, we are able to group various time complexities into the same
class.

Definition 5.5 (Time Complexity Classes). Let t : N → N be a function. The time
complexity class Time(t(n)) is the set

{L : L is a language accepted by a O(t(n)) time Turing machine}.

We are finally able to define common complexity classes.

Definition 5.6 (Polynomial Time). We define the time complexity class P, also known
as the polynomial time class, as

∞⋃
k=1

Time(nk).

At an intuitive level, the polynomial time class consists of all languages for which it
is fairly easy (hence, polynomial time) to decide whether or not a given string is in the
language or not. For example, consider a language which represents P Nim positions.
This language is in P as 3.1 provides a polynomial time method to determine whether
or not a given Nim game is in P .

Given our previous definitions, it is also easy enough to define another important
time class, NP.

Definition 5.7 (Nondeterministic Polynomial Time). Let L be a language. A verifier
for L is a Turing machine V such that

L = {w | V accepts (w, c) for some string c}.
The general idea here is that c acts as a proof certificate for w. The Turing machine V
reads the pair (w, c) as input, and then checks if this pair is in some other language.

We call V a polynomial time verifier if V runs in polynomial time in the length of w.
The language L is said to be polynomially verifiable if it has a polynomial time verifier.
The nondeterministic polynomial time class, NP, is the set of all languages that have
polynomial time verifiers. From this definition, it is clear that P ⊆ NP. However, it
is still a famous open problem to show whether or not the two complexity classes are
equal.

We have thus far seen complexity classes based on the number of steps that a Turing
machine takes to either accept or reject. Another natural way of defining complexity is
based on the number of cells of the tape required for the machine to resolve. In fact,
replacing “time” in 5.1, 5.2, 5.5, and 5.6 with “space” yields the space complexity class
PSPACE. It is not too hard to show that P ⊆ NP ⊆ PSPACE.
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With the prerequisite definitions out of the way, we are free to discuss interesting
results regarding the computation of winning strategies in poset games.

In particular, [3] shows that this task is in PSPACE. The authors go about this
by providing a reduction in polynomial time (and hence, polynomial space) between
a general poset game, and a special game known as Geography. Though we have not
formally defined reductions, they can intuitively be thought of as a polynomial time
function that translates one language to another.

This reduction is important since Geography is a well studied game. In particular,
Geography is in PSPACE, so general poset games must be in this space complexity
class as well.

Geography consists of a directed graph G and a node s of G. A marker is placed on s
to begin the game, and each turn, the marker is moved via an edge to an adjacent node
of G. Once an edge is used, it may not be used again. As usual, the first player unable
to make any moves loses. The reduction from general poset games to Geography is a
bit too long for this paper, but it is not too hard to follow the argument provided in
[3].

Additionally, this paper mentions that except for a few common examples including
Nim, algorithms for finding a winning strategy for a poset game which run in polynomial
time are unknown.

Extending this result, [4] shows that for an arbitrary finite poset game, deciding the
winner of the game is in a complexity class known as PSPACE-complete. This new
class is defined as follows.

Definition 5.8 (PSPACE-complete). A language B is said to be PSPACE-complete if
B ∈ PSPACE and every language A ∈ PSPACE is reducible in polynomial time to B.

It is surprising that a definition primarily concerning space complexity relies on a
reduction in polynomial time, but this is due to the fact that time reductions are
generally much easier to perform than space reductions.

A final interesting remark about poset games is their periodicity of Grundy values.
Though it is a weaker result than the periodicity theorem for octal games, the theorem
presented in [5] is still quite interesting. In particular, it shows that if there are an
infinite number of positions of a certain type in a poset game, then the Grundy values
of the game must be eventually periodic. The specific details of the theorem and proof
require many preliminaries and are quite complex, though the paper is still an enjoyable
read for anyone looking to learn more about the subject.
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