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Abstract. In this paper, we discuss the theory behind games with entailing moves, defining
new positions and introducing different tactics. We will later apply this knowledge to the
ruleset Top Entails.

1. Introduction

In most combinatorial games, certain axioms that are defined: players alternate after each
move, whoever cannot move loses, there are no draws, and games can be disjunctively added
together. However, what happens if go against the axioms of alternating play and disjunctive
sums?

We shall include entailing moves in our classical games. Entailing moves force a move
out of a player, which, in turn, limits the number of responses for a player. Examples of
entailing moves are the following: a player must play again or a player must play in the same
component as the previous player did.

Note that the values of individual components in a game with entailing moves will not
be relevant, since we cannot disjunctively add games. We will discuss how to extend our
definitions in classical games in the next few sections.

2. Affine Normal Play

Let us define the values of games with entailing moves using infinities. Games will be
recursively constructed in a different way than classical games. Denote affine normal play
forms as NP∞. Games are recursively created from the game {∞ | ∞} = 0.

As with classical normal play, the outcome classes are L, R, N , and P . From Left’s
perspective, the best outcome class is L, while the worst is R. N and P are indistinguishable.

There are, however, some key differences that we shall define with the following axioms:

Axiom 1. The infinities satisfy:

1) ∞ ∈ L.
2) ∞ ∈ R.
3) For all X ∈ NP∞ \ {∞}, ∞+X = ∞.
4) For all X ∈ NP∞ \ {∞}, ∞+X = ∞.
5) ∞+∞ is not defined.

We can define the comparison between games similarly to games in classical normal play.

Definition 2.1. Let G,H ∈ NP∞. G ≥ H if for every game X ∈ NP∞\{∞,∞}, o(G+X) ≥
o(H +X). Furthermore, G = H if G ≥ H and H ≥ G.
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We must exclude the infinities to prevent cases such as o(∞ + ∞), which is undefined
according to Axiom 5.

From the previous axioms and Definition 2.1, we can formulate an important result.

Theorem 2.2. Let G ∈ NP∞ \ {∞,∞}. Then, ∞ ≥ G and G ≥ ∞.

Proof. To show that ∞ ≥ G, we must show that o(∞ + X) ≥ o(G + X) for any X ∈
NP∞ \{∞,∞}. From Axioms 1 and 3, we know that o(∞+X) = o(∞) ∈ L. Thus, ∞ ≥ G.

To show that G ≥ ∞, we must show that o(G+X) ≥ o(∞+X) for any X ∈ NP∞\{∞,∞}.
From Axioms 2 and 4, we know that o(∞+X) = o(∞) ∈ R. Since every affine normal form
is greater than or equal to an R position, G ≥ ∞. ■

Definition 2.3. (Quiet Game) Let G ∈ NP∞. If G ̸∈ {∞,∞}, ∞ ̸∈ GL, and ∞ ̸∈ GR, then
G is quiet.

See how no player can move to a winning subposition in a quiet game, since none of the
options and the game itself are infinities.

We will now introduce one of the most important theorems in affine normal play.

Theorem 2.4. (Fundamental Theorem of Affine Normal Play) If G ∈ NP∞, then G ≥ 0 iff
G ∈ L ∪ P.

Proof. We must show that it is sufficient for G ∈ L ∪ P for G ≥ 0. This is true, based on
the fact that 0 ∈ P and L position is always greater than an P position from the order of
outcomes.

Now we must show that it is necessary for G ∈ L∪P for G ≥ 0. Assume that G ∈ L∪P .
By Theorem 3, if G = ∞, then G ≥ 0. Finally, we must show that the condition holds when
G ̸= ∞ and G ∈ L ∪ P .

Let X ∈ NP∞ \ {∞,∞}. Let Left start first in X. If the winning move is to XL, then
Left can mimic that same move in G+X. Since the assumption G ∈ L∪P holds, Left wins
going first in G + X. Assume Left wins when going second in X. When going second in
G+X, Left can just play in the same component as Right with winning moves, again from
the assumption that G ∈ L ∪ P . Thus, Left wins going second in G+X.
Since o(G+X) ≥ o(X), G ≥ 0. ■

We will also define the conjugate of a game in NP∞, which is similar to the negation of a
game in NP (the set of classical normal play forms) but with a few modifications.

Definition 2.5. (Conjugate) The conjugate of G ∈ NP∞ is

conj(G) =


∞ if G = ∞
∞ if G = ∞
Otherwise,

{
GR

∣∣ GL
}

3. Affine Impartial Theory

Now that we have a basic understanding of how affine normal play works, we can delve
into a specific set of affine normal play games, namely affine impartial games. We will extend
the Sprague-Grundy theory and mex rule from classical impartial theory. We will also look
into new positions that arise from affine impartial games, namely sunny and loony positions.
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Definition 3.1. (Symmetric Game) Consider a game G ∈ NP∞. Then, G is symmetric if
G ̸∈ {∞,∞} and GR = conj(GL).

Note that G cannot be equal to either of the infinities, since these infinities do not have
birthdays are on day 0 or later.

We can now define an affine imparial game, which is the main focus of this section.
Definition 3.2. (Affine Impartial) A game G ∈ NP∞ is affine impartial if it is symmetric
and all its quiet options are symmetric as well. We define this subset of affine impartial
games as IM∞ ⊆ NP∞.

G must be symmetric, since Left and Right must have the same options to play. All the
quiet subpositions must also be symmetric, since the game has not ended yet. If a non-quiet
game is played, then the outcome of the game is already determined.
Remark 3.3. Let NIM ⊆ IM∞ This subset contains all the positions in IM∞ that are equal
to nimbers.

We shall also define the equality between games that are part of the affine impartial subset.
We will do this in terms of modulo IM∞.
Definition 3.4. Let G,H ∈ IM∞. G =IM∞ H if, for every form X ∈ IM∞, o(G + X) =
o(H +X).

Notice how this is definition is almost analogous to the other definitions of equality be-
tween 2 games.

We can now look into sunny and loony positions, which result from allowing the use of
entailing moves in impartial games. This is shown in [1]
Definition 3.5. Let a sunny position � be ∗0 from the set of all nimbers. Let a loony
position � be an empty set with no nimbers.

It is easy to understand that sunny positions are winning positions for the player who
moves to this position, while loony positions automatically are losing positions for the player
to move to this position. Thus, � ∈ P and � ∈ N .

Due to the properties of loony positions, we can define a few axioms:
Axiom 2. (Properties of Loony Positions)

1) �+ ∗n =� for n ∈ Z+.
2) �+� =�.
3) � = {∞ | ∞}.
4) G(�) = ∞.

Notice how � absorbs any nimber and itself. It has similar properties to �, as both are
idempotents.

Before we look into the extension of the Sprague-Grundy Theory, we must define 2 types
of nimbers.
Definition 3.6. (Immediate Nimbers) Let G ∈ IM∞. The set of G-immediate nimbers is
SG = GL ∩ NIM = GR ∩ NIM.
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Before we can define the other type of nimber, we must define what Left and Right checks
are.

Definition 3.7. (Check Games) Let G ∈ NP∞. If ∞ ∈ GL, then G is a Left-check. If
∞ ∈ GR, then G is a Right-check. If G is either a Left-check or Right-check, then G is a
check. Let G

→
L be a Left option of G that is Left-check, while G

←
R is a Right option of G that

is a Right-check.

Definition 3.8. (Protected Nimbers) Consider a game G ∈ IM∞. The set of G-protected
nimbers PG is:
1) PG = NIM if ∞ ∈ GL.
2) PG = {∗n : GL + ∗n ∈ L, G

→
L ∈ GL}, otherwise.

In simpler words, the set of G-protected nimbers is the set of nimbers in affine impartial
play if G is a Left-check. If G is not a Left-check, then the set of G-protected nimbers is the
nimbers such that GL plus the nimber is an L position and a Left-check is part of the Left
options of G.

We can now look into the main theorem of this paper, namely the extension of the Spargue-
Grundy Theory, or the Affine Impartial Minimum Excluded Rule.

Theorem 3.9. (Affine Impartial Minimum Excluded Rule) Let G ∈ IM∞. We have the
following possibilities:
1) If SG ∪ PG = NIM, then G =� and mex(G(SG ∪ PG)) = ∞.
2) If SG ∪ PG ̸= NIM, then G = ∗(mex(G(SG ∪ PG))).

Proof. Check the proof from page 14 in [2]. ■

4. Application - Top Entails

We will now apply all the theory we have discussed previously to a ruleset with entailing
moves called Top Entails. This is played with piles of tokens. It follows the rule of
alternating play. On a move, a player can remove the top token from any pile or split a pile
into 2 nonempty piles. If the player chooses the former move, the next player must make a
move in the same heap. Let us start with a few examples to get used to the ruleset.

Let us say we start off with no heaps of tokens. If Left starts, she has no move, so the Left
option is ∞, since Right wins. The case when Right starts first is symmetric to the previous
case, so the Right option is ∞. Thus, our game is {∞ | ∞} = 0. It also turns out that this
game is �, as this is ∗0.

We will now consider the case with a heap of 1 token. This is the best possible position
for a player who starts first. The player who goes first can take the 1 token, forcing the next
player to play in the same component and win. Thus, this game will be {∞ | ∞} =�.

Things get a little complex with a heap with 2 tokens. The heap can be split up into 2
piles of 1 token each or one token can be taken from the top of the current heap. In the
former case, the next player can play in either of the 2 heaps with 1 token each. Either move
produces a similar outcome of playing in a heap of 1 token, so this move goes to a � game.
In the latter case, the value will also be�, since the game reduces down to {∞ | ∞}. Thus,
one pile of 2 tokens can be represented as {� |�}, which is a � position.

There are more positions that can be calculated using a similar method as above. This
can be found in [2] and/or [1].
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5. Other Applications

Top Entails is one of the easier rulesets to become acquainted with. However, there are
other rulesets with similar rules that can be analyzed Ṁost of them are found in [1].

(1) Nimstring: This game involves a finite set of lattice points. On a player’s turn,
they must connect 2 horizontally or vertically adjacent points that do not already
have a connection. If a 1 x 1 square is completed, the same player who made the
square must play again. If they cannot, they lose. This goes against the classical rule
of alternating play, since the a player can play immediately after making the square.

(2) Goldbach’s Nim: This is a little more complicated than the other 2 we mentioned.
The setup is the same as Nim. If a player takes a prime number of items from any
pile or leaves a prime number of items in any pile, then the next player must play in
that same pile. This game utilizes Goldbach’s Conjecture, which states that any even
number can be written as the sum of two primes.

(3) Dots and Boxes: This has similar rules to Nimstring. It is played on a finite
grid. On a player’s turn, they must connect two adjacent points that do not already
have a line between them. The player who completes the 4th side of a 1 x 1 box gets
a point and another turn. After no moves are available, the game ends. The player
with the most points wins. Not only does this game go against the classical rule of
alternating play, but it also goes against how a classical game is won, since classical
combinatorial games are won based on which player makes the last move.
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