
Euler Circle Paper Combinatorial Games

Victor Donchenko

August 2021

Background on Computation Complexity Theory

In order to establish a model for complexity of computation we must first es-
tablish a model for computation in general. Mathematicians often work with
computational problems in the form of “decision problems”, where the answer
is “yes” or “no” for a given finite input string of characters, because this con-
struction is simple and can be used to recreate other notions of computation
problems. An example is whether a given string consists of a single string re-
peated twice. Finite-information structures such as numbers and graphs can be
encoded as strings, allowing problems to be constructed utilizing those notions.
Thus another decision problem could be whether an integer-weighted graph has
a minimum spanning tree of weight at most k for some given integer k. Games
can also be encoded in a variety of ways depending on the application and the
class of games.

These problems are often represented as the set of strings for which the
answer is “yes”, which is called a “language”. A computation process which
produces the answer for a given string is said to “decide” the language. The
first example of a type of computation process is the finite state automaton. This
computation process has a finite number of “states”, including a start state and
an accept state. There is a transition function which given the current state
and the next character, produces the next state. The automaton begins in the
start state and consumes characters one by one. Iff at the last character it is in
the accept state then the answer is “yes”.

This process type is simple and interesting but really it can decide only a
very limited set of languages. It can decide whether a string of as and bs has
three as in a row, but it cannot decide whether a string is a string repeated
twice, for example. A more sophisticated process type is the Turing machine.
Like the finite state automaton, it has a finite number of states and a transition
function to move between them, but it also has a “tape” of characters which
assist in the state transitions. At the beginning of the computation, the tape
contains the input string and the Turing machine’s head is placed at the first
character of the tape. The Turing machine is also placed in the start state. At
every step the Turing machine advances to another state, which is a function
of the current state and the character under the head of the machine. This

1

transition also includes writing a new (or the same) character to the previous
position of the head and moving the head either left or right. These actions
are described by the transition function. If the Turing machine moves into an
“accept” or “reject” state the answer is “yes” or “no” respectively.

Now to consider the complexity of a Turing machine process and by exten-
sion its language. The Turing machine is a natural candidate for this analysis
since it gives rise to immediate and intuitive concepts of complexity and is con-
ceptually rather similar to computers used in practice. There are several notions
of the complexity of a Turing machine process, but the most common are “time”
and “space”, which refer to how many steps the Turing machine takes and how
large the tape gets during the operation, both considered as a function of the
size of the input string. A Turing machine is said to be in “polynomial-time”
if the number of steps it takes is bounded above by a polynomial in the size
of the input string, and similarly for “polynomial-space”. Differences between
the Turing machine model and practical computers in memory access disap-
pear when considering polynomial-time and polynomial-space differences to be
inconsequential.

The problem classes referred to by P and PSPACE are the sets of problems
decided by Turing machines in polynomial time and polynomial space, respec-
tively. NP is the class of problems which can be verified in polynomial time
– that is, those with a Turing machine which can decide in polynomial time
whether a given solution (often called a “certificate”) is valid to a given query
for the problem. (The name NP comes from an equivalent formulation of it as
the set of problems decided in polynomial time by a variation on the process
model known as nondeterministic Turing machines.)

A problem in NP for which a polynomial-time Turing machine would give a
polynomial-time solution for everything in NP is said to be NP-complete. The
first problem to be proven to be NP-complete was SAT, which asks for a given ex-
pression of boolean variables involving basic boolean operations, whether there
is a consistent assignment of values to the variables such that the expression
evaluates to true. Future problems were shown to be able to be reduced to from
a previously proven NP-complete problem.

Redwood furniture being NP-complete to evalu-
ate

Recall that redwood furniture denotes a Hackenbush position where all blue
edges touch the ground and these are all the blue edges and every blue edge is
adjacent to exactyl one red edge. Additionally the position graph is a connected
graph. The number for any redwood furniture position is 1

2n for some nonneg-
ative integer n. Finding this n is NP -complete. This is proven by reducing
the Steiner tree problem to this problem. The Steiner tree problem asks for
an undirected graph G with nonnegative weights and a subset S of its vertices,
what is the smallest weight subtree of G which contains S?

2

Theorem. For any redwood furniture position G, we have G = {0 | GR} .

Proof. Any left move is reversible here. Let GL be a left move removing a blue
edge. Then suppose right responds by removing the red edge adjacent to that
edge. Let this be GLR. Consider G−GLR. Note that −GLR has fewer grounded
feet than G. We wish to show that this is ≥ 0, so suppose right moves first. Left
can mirror any move in either component in the other component. After this
occurs G will have feet (which would be blue) left over and −GLR would have
been toppled, which is an L position, so left wins. Therefore GLR is a reversing
move, which is furthermore to a redwood furniture position. Thus this and
future left moves can be bypassed repeatedly to obtain {0 | GR}. Therefore
G = {0 | GR}.

Theorem. The number for any redwood furniture position G where the red
edges considered by themselves is a tree and for which every red edge touches a
blue edge (which we shall call a redwood tree) is 1

2 .

Proof. We use induction on a, the number of blue edges.
Base case: a = 1
In this case the position is the tower BR, which is known to have 1

2 as its
number.

Inductive step: a > 1
We assume the claim for smaller a.
If right moves, then the position breaks into two redwood furniture positions

with the properties in the claim, with fewer numbers of blue edges. Thus by
the inductive hypothesis we have that each is 1

2 , and so GR is their sum which
is 1. We have that G = {0 | GR} by an above theorem so G = {0 | 1} = 1

2 .

Theorem. Every redwood furniture position has number 1
2n for some nonneg-

ative integer n.

Proof. Let G be a redwood furniture position. We have G = {0 | GR}. We
have that GR is some dyadic rational a

2k
. Let the largest power of 2 less than a

be 2b. Then 2b

2k
= 1

2k−b is between 0 and GR. There is no other dyadic rational
between 0 and a

2k
with smaller denominator like say 2c, because for any c less

than k − b we have 1
2c is at least 2b+1

2k
which is greater than a

2k
by construction

of b. Therefore G = 1
2k−b .

Note that in general right prefers to keep the blue edges connected since
otherwise further on there would be two disconnected redwood tree positions
which have a combined number of 1 together.

Theorem. Every redwood furniture position G which is not a redwood tree is
equal to 1

2G
R.

Proof. Since right prefers to keep the blue edges connected, GR is still a redwood
furniture position, so it is equal to 1

2n for some nonnegative integer n. Therefore
G = {0 | 1

2n }. Thus G = 1
2n+1 = 1

2G
R.

3

Consider the Steiner problem with a graph G and a set of its vertices G.
Take the graph G, make it out of red edges where an edge of weight n is re-
placed with n edges in a row, and put each vertex in S on a blue foot. Right
wants to maximize the number of edges they remove until the position becomes
a redwood tree. If k is the maximum number of edges that right can remove
before the position becomes such, then the number of the redwood furniture
position is 1

2k+1 , since for any redwood furniture position K that is not a red-

wood tree we have K = {0 | KR} = 1
2K

R. Right wants to keep the vertices
corresponding to elements of S connected as per what was previously written.
Therefore after right has removed k edges the remaining position is a subtree
of the initial position which contains all the vertices corresponding to S and
which has the smallest size which is k less than the size of the original position.
Since the size corresponds to the total weight of a corresponding subtree of G,
this corresponding subtree is the smallest total weight subtree of G spanning
S. Calculating k gives the total weight of this subtree, so this is a reduction
from the Steiner tree problem to redwood furniture in polynomial time. Thus
redwood furniture is NP -complete.

4

