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Abstract. Cops and robbers is a graph-pursuit game between
two players: one controlling a robber and the other controlling
one or more cops. We examine the cop number c(G) of vari-
ous graphs and explore existing bounds on it. In addition, we
provide a few results of our own and discuss a variation to the
game.

1 Introduction

The game of cops and robbers in played on a graph G = (V,E), between two
players: the cops (addressed as she) and the robber (addressed as he). At the
beginning, the cops place themselves at vertices v ∈ V , and the robber places
himself on one as well. These positions are known to both players. Then,
starting with the cops, the cops and robber make successive moves, alternating
with each other. Each move by the cops consists of moving a cop from one
vertex to another along an edge in the graph, or staying still. Similarly, each
move by the robber moves him from one vertex to another adjacent one or lets
him stay still.

The game ends when a cop ”catches” the robber, or when she occupies the
same vertex as him. The goal of the cops is to make moves to catch the robber,
and the goal of the robber is to evade capture indefinitely.

2 Terminology

In cops and robbers, we have the following outcome classes:

Definition 2.1. A graph G is a k-cop-win if there exists a set C = (v1, v2, . . . vk)
of vertices in G such that placing k cops at the vertices in C guarantees that no
matter where the robber lands, he will eventually be caught.

Definition 2.2. A graph G is a k-robber-win if it is not a k-cop-win. In other
words, for any placement of k cops, there is an infinite sequence of steps that
the robber can follow to evade capture.
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1-cop-wins and 1-robber-wins are simply referred to as cop-wins and robber-
wins. Note that if G is a k-cop-win, it is a (k + 1)-cop-win because we can just
add an extra cop to some vertex and have it not move at all. Conversely, if
G is a k-robber-win, it is a (k − 1)-robber-win because it becomes increasingly
difficult to capture the robber with fewer cops. Therefore, we can construct the
following definition:

Definition 2.3. The cop number c(G) of a graph G is the minimum number of
cops needed to guarantee that the robber will eventually be caught, no matter
where he lands. For any integer k, G is a k-robber-win if k < c(G) and G is a
k-cop-win if k ≥ c(G).

The cop number is one of the largest areas of research in cops and robbers.

3 Cop Numbers of Simple Graphs

Definition 3.1. A graph G = (V,E) is connected if for any u, v ∈ V , there is
a series of edges that can be followed to go from u to v.

Definition 3.2. A graph G = (V,E) is disconnected if it is not connected.
The connected components C1, C2, . . . , Ck of G are the connected subsets of G
satisfying VC1 ∪ VC2 ∪ · · · ∪ VCk

= V and no v ∈ V is in more than one Ci.

Using these definitions, we have

Proposition 3.3. If G is a disconnected graph and C1, C2, . . . , Ck are its con-
nected components, c(G) = c(C1) + c(C2) + · · ·+ c(Ck).

Since neither the cops nor the robber can travel from one connected compo-
nent to another, we need c(Ci) cops in each component to guarantee that the
robber is caught.

Proposition 3.3 tells us that we are only interested finding the cop numbers
of connected graphs, since disconnected graphs can be calculated in terms of
their connected components. Having established this result, we can start to find
the cop numbers of certain classes of graphs.

Definition 3.4. A finite path is a graphG = (V,E) where if V = (v1, v2, . . . , vn),
we have E = {(vi, vi+1) | 1 ≤ i < n}. In other words, it is a finite set of vertices
connected in a straight line.

v1 v2 v3 v4 v5

Figure 3.1: A finite path with 5 vertices.

We claim that all finite paths have c(G) = 1. This is because no matter
where the cop chooses to start, there will be finitely many vertices to the left
and right of her. The cop can just keep making moves towards the robber, and
she will eventually catch him because he has nowhere to run.
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Definition 3.5. A cycle is a path with an extra edge between the two endpoints.
To construct a cycle of length 5 from Figure 1.1, we can draw an edge from v5
to v1.

v1

v2

v3v4

v5

Figure 3.2: A cycle of length 5.

If G is a cycle of length greater than 3, then c(G) = 2. With one cop, the
robber has a winning strategy. He chooses the vertex opposite the cop, or one of
the two vertices opposite her if the number of vertices is odd. Because the cycle
has length greater than 3, the cop needs at least two moves to reach the robber’s
current position. When the cop moves, the robber moves in the same direction
along the cycle, away from the cop. If the cop ever chooses to not move, the
robber does likewise. The robber can follow this strategy for infinitely many
turns, so c(G) > 1.

However, two cops are enough: after the robber chooses their vertex, the
cop to the robber’s right moves clockwise and the cop to the robber’s left moves
counterclockwise. The robber is trapped and will eventually be caught. There-
fore, c(G) = 2.

It turns out we can generalize the statement about paths to a larger class of
graphs: trees.

Definition 3.6. A tree is a graph G = (V,E) such for every u, v ∈ V , there is
exactly one path from u to v. Every pair of vertices is connected, but no subset
of vertices and the edges between them forms a cycle.

Proposition 3.7. If G = (V,E) is a tree, c(G) = 1.

Proof. Suppose that a single cop is placed at vc and the robber at vr, where
vc, vr ∈ V . Consider the set of vertices R ⊂ V such that the path from any
vertex in R to vr does not include vc. In other words, the robber can safely
reach any v ∈ R without getting caught, assuming that the cop does not move.
Note that any move that the robber makes cannot change R.

We will show that the cop always has a move from vc to some v′c which
reducesR to someR′ ⊂ R, therefore guaranteeing that the robber will eventually
be caught. To do this, consider the path from vc to vr, and define v′c as the
vertex next along the path from vc. The robber still cannot reach any vertex in
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Figure 3.3: A sample tree.

V \R because he will have to go through vc, and therefore v′c. We have shown
that R′ ⊆ R.

Next, v′c ∈ R but v′c 6∈ R′, so we have R′ ⊆ R \ v′c. Thus, R′ ⊂ R, so the cop
always has a move to reduce R.

4 Bounds on the cop number

It is more difficult to calculate the cop numbers of larger classes of graphs, so
bounds have been provided instead, including generalizations about all graphs.

Some are instantly clear: for example, the cop number of any graph is less
than the number of its vertices. This is because if a cop is placed at every
vertex, then the robber cannot possibly escape. Furthermore, if there is always
a cop neighboring the robber when the robber is first placed, then the robber
cannot escape. We can clarify this with a definition:

Definition 4.1. For any graph G = (V,E), γ(G) is the smallest possible set of
vertices such that for all v ∈ V there is some u ∈ N(v) (u = v is possible) such
that u ∈ γ(G).

Proposition 4.2. c(G) ≤ γ(G).

In other words, γ(G) is the smallest set of vertices that will always be neigh-
boring every open vertex. This means that no matter where the robber places
himself on his first turn, a cop can capture him on the next. The cop number
must of course be less than or equal to γ(G), but we want to find more specific
ways to bound the cop number.

One thing we can do is attempt to construct a bound on the cop number of
a graph in terms of the sum of the cop numbers of is subgraphs. This allows us
to perform something analagous to a connected sum of two graphs. We have

Theorem 4.3. For any graph G = (VG, EG) and partition C = (VS , VT ) of VG,
define

S = VS , {(u, v) ∈ E | u, v ∈ VS},
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T = VT , {(u, v) ∈ E | u, v ∈ VT },

EC = {(u, v) ∈ E | u ∈ VS , v ∈ VT }.

Then, we have
c(G) ≤ c(S) + c(T ) + |EC |.

Proof. Suppose we are playing as the cops, and we have a strategy to win in S
(with c(S) cops) and one to win in T (with c(T ) cops). Then, we can construct
a strategy to win in G with c(S) + c(T ) + |EC | cops. To start, place c(S) cops
in S according to the strategy for S, and do the same for T . Then, for every
(u, v) ∈ EC , place one of the remaining |EC | cops at u.

We’ll assume without loss of generality that the robber chooses a vertex in S
to start. (If he doesn’t, we can simply swap S and T .) While the robber doesn’t
move to T , we can follow the strategy for S, guaranteeing a win if he stays in S.
If the robber attempts to move from S to T along an edge (u, v) ∈ EC , the game
will end because there is a cop at u that has not moved from the beginning of
the game. The robber either tries to move from u to v, which is impossible since
the game will end once before he even moves to v, or from v to u, which will also
end the game once he is at u. Thus, if the robber lands in S, he cannot move
to T , but he will also lose by staying in S since there are c(S) cops there.

One of the best bounds on a large class of graphs was shown by Aigner and
Fromme. To state it, we first need a definition, as well as a useful lemma:

Definition 4.4. A graph G is planar if it can be drawn on the 2D plane without
intersecting edges.

Lemma 4.5. Let G = (VG, EG) be any graph, u,v ∈ VG, u 6= v and P =
{u, v1, ..., vt = v} a shortest path between u and v. Then a single cop C on P
can, after a finite number of moves, prevent the robber R from entering P . That
is, R will be immediately caught if he moves onto P .

Proof. We call the shortest path between u and v P = {u = 0, 1, 2, ..., t = v},
and say that d(u, v) is length of the shortest path between vertices u and v. We
also say that after the cop moves, she is on vertex c ∈ V (P ) and the robber is
on r ∈ V (G) (or any vertex in the game). Furthermore, we’ll assume that for
any vertex z on V (P ) (on the protected path):

d(r, z) ≥ d(c, z) for all z ∈ V (P ).

In other words, we’re assuming that the cop is closer than the robber to any
vertex z on V (P ). We then claim that the cop can always preserve this condition
of being closer to z.

If the robber stays put, then so does the cop. If the robber moves from a
position r to s, then

d(s, z) ≥ d(r, z)− 1 ≥ d(c, z)− 1 for all z ∈ V (P ).
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This means that the distance from the robber’s new position s to our goal z
cannot be more than 1 edge closer than r was. Since d(r, z) ≥ d(c, z), then we
know the cop is only one edge away from preserving the condition, and she can
do so on her turn.

The robber would only be threatening if he was closer than the cop to two
vertices on either side of her. This would mean the robber could pass over the
cop at any point and the path would not be guarded. However, this is impossible
because P is the shortest path between u and v. Therefore, there would be no
alternate route the robber could pass by that is closer to two vertices on either
side of the cop at once.

Finally, we want to show that if the cop is further from z than the robber,
then after a finite number of moves this condition can be reached (rendering
the path impossible to cross). This is not difficult: the cop can simply move
closer to z every turn. This way, at some point the cop will be equally far from
the robber and can just continue following the robber’s moves to block off the
path.

We’ve now shown that in a finite number of moves, a cop can ”guard” a
certain path between two vertices such that the robber will be prevented from
entering it. This will be useful in the proof to come, because it helps bound the
area the robber can move to on a certain graph.

We now present the result of Aigner and Fromme: (See [AF84])

Theorem 4.6. If G is a planar graph, c(G) ≤ 3.

Proof. We now want to prove that for any finite planar graph, c(G) ≤ 3. To do
so, we’re going to prove that for any planar graph with 3 cops, we can always
reduce the territory of the robber incrementally. Each stage of the game i has
for the robber R a subgraph Ri, which is the robber territory or all vertices
which the robber may still safely enter. We therefore want to show that after
a finite number of moves Ri is reduced to Ri+1 $ Ri. Thus, Ri+1 is strictly
smaller than Ri.

Let’s suppose that after the robber’s move we can have two possible situa-
tions:

1. We have a cop C on vertex u where u is the only vertex connecting Ri

to the rest of the graph. This means that Ri is the component of G − u
containing the robber’s vertex r.

[AF84]
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2. There are two vertices u and v with two paths P1 and P2 connecting them.
These paths are disjoint, and partition G into an exterior and an interior.
The robber occupies a vertex r in the exterior region E. We also assume
that P1 and P2 are the first and second shortest u, v paths in P1 ∪P2 ∪E.
One Cop C1, placed on a vertex c1 ∈ V (P1), controls P1 by the lemma, and
a cop C2 on c2 ∈ V (P2) controls P2 the same way. The robber territory
Ri = E. Case b can only truly exist in a planar graph where the inner and
outer portion are only accessible by passing through P1 or P2. Otherwise
they are not adequately guarded by the cops and the proof breaks down.

[AF84]

Let’s begin with case a. If u only has one neighbor v in Ri (one adjacent vertex),
then u can move to v. Thus, the robber territory is reduced and we return to
case a with Ri+1 $ Ri. Suppose, then, that u has at least two neighbors a and
b in Ri, and let P be the shortest path between a and b. As long as the cop C
on vertex u stays there containing the robber in Ri, then another free cop can
always move over and control P after a finite number of moves. This is true by
the lemma. We are now at case b: we have a path P1 = a, u, b controlled by
the first cop and a path P2 = P controlled by a second cop. Again, the robber
territory is reduced: since Ri+1 ⊆ Ri − V (P ) (meaning that Ri+1 is a subset of
and may equal Ri − V (P )), then it must be true that Ri+1 $ Ri.

We must now examine case b. First, let’s suppose there is no path in the
exterior portion Ri connecting u to v other than P1 and P2. This means that
Ri is simply a bunch of disjoint components attached to the vertices of P1 and
P2. The robber’s vertex r must be in one of these disjoint components, attached
to either P1 or P2 by a vertex a. If cops C1 and C2 continue guarding P1 and
P2, then the third cop C3 can guard a. We now return to case a where vertex
u = a and in this way Ri+1 $ Ri.
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[AF84]

We should now examine the case where P1 and P2 are not the only paths
connecting u and v. Call P3 another u, v path in Ri ∪ P1 ∪ P2. P3 could jut
out from P1 or P2, be entirely disjoint from them, or connect to any one of the
vertices on P1 and P2.

No matter where P3 is, C1 and C2 can keep guarding paths P1 and P2 by
the lemma while the third cop C3 can move over to P3. Also by the lemma,
the third cop can thus control P3. The robber at this point could be outside
P3 or between P3 and P1 or P2: either way, the robber’s territory is reduced
and Ri+1 $ Ri. It is also important here that the graph is planar, otherwise
the inner portion could be accessible to the robber without crossing through P3.
This means the robber territory would not necessarily be reduced.

Overall, this proof shows that in all possible cases, three cops can manipulate
their positions so that they reduce the robber territory in a finite number of
turns. If the robber territory can always be reduced with three cops, then
eventually the robber will have nowhere to go by induction and the cops win.
Therefore, c(G) ≤ 3 for any planar graph.

5 Variations to the game

There are several interesting variations to the game of cops and robbers. One
of these is Drunken Robber, where the robber chooses a random edge to move
along.

As one may immediately speculate, this robber is much easier to catch. In
fact, this robber can always be caught. This is why in drunken cops and robbers,
the cop number is not interesting and we instead consider the minimum time
needed to catch the robber. We have

Definition 5.1. ct(G, k) is the capture time for a graph G in regular cops and
robbers, where there are k cops.

Definition 5.2. dct(G, k) is the expected capture time in a game G of drunken
cops and robbers where there are k cops.

Theorem 5.3. dct(G, k) <∞ for any connected graph G and k ≥ 1
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The proof for this theorem involves a good amount of probability theory.
At its core, it proves that even if a single cop stayed on one vertex, the robber
would eventually reach that vertex because it is moving randomly. Although
this is a sub-optimal strategy for the cops, it shows that the robber will always
be caught.

For example, a cycle graph only needs one cop with a drunken robber. Since
the robber is moving randomly, he will not always move in one direction like a
logical robber would: at some point he will stay still or move backwards, thus
lowering the space between him and the cop. Since the cop is moving forward
once per turn, she is guaranteed to catch him in a much shorter amount of time.
With two cops, this is also evident: it takes a much shorter amount of time to
catch the robber. The ratio of the capture time for a logical versus a drunken
robber is defined as the cost of drunkenness, or the robber’s loss of time when
drunk.

Definition 5.4. We define the cost of drunkenness for a graph G as ct(G,k)
dct(G,k) .

Usually, the cost of drunkenness is this value with c(G) cops. This means
for a cycle with four or more vertices the cost of drunkenness is for a graph with
two cops. With two cops, ct(G) is about one fourth of the amount of vertices.
However, for a drunken robber this value is moderately reduced, as this robber
will not necessarily stay put the entire time.

Example. We can calculate ct(G, c(G)), dct(G, c(G)), and the cost of drunk-
enness for a path with 5 vertices.

v1 v2 v3 v4 v5

The cop will always start by placing herself in the center. If the robber is sober,
he will go to an edge vertex and remain there. This makes the capture time 3:
one turn for the cop to move, then the robber stays still, then the cop moves
onto his vertex.

If the robber is drunk, he could place himself on any of the five vertices.
If he places himself in the middle, the capture time is 0. If he places himself
adjacent to the cop, the capture time is 1. If he goes to an edge, then after the
cop moves toward him there’s equal chance he will stay still or move toward the
cop. This means the capture time will either be 2 or 3: if we find the average
of these two, we get a capture time of 2.5 for both edge vertices. All in all, we
find that

dct(G, 1) =
2.5 + 1 + 0 + 1 + 2.5

5
=

7

5
= 1.4.

If we calculate the cost of drunkenness from this, we get

ct(G)

dct(G)
=

3

1.4
=

15

7
≈ 2.143.
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6 Meyniel’s conjecture

Another question in cops and robbers is whether we can provide a bound on the
cop number of all connected graphs with n vertices, in terms of n. A very trivial
one would just be c(G) ≤ n, but we attempt to find something more useful that
makes calculating the cop number easier. To formally explain what we mean
by this bound, we give the following definition:

Definition 6.1. We write f(x) = O(g(x)) if there exists a positive real number
k such that for all sufficiently large x,

f(x) ≤ k · g(x).

One of the most important open problems that arises from this definition is
known as Meyniel’s Conjecture.

Conjecture 6.2. If G is a graph with n vertices, then c(G) = O(
√
n).

In other words, it claims that for sufficiently large n, a graph with n vertices
has cop number at most k

√
n, where k is some constant. If Meyniel’s conjecture

is true, it would be the tightest bound possible on the cop number because there
are classes of graphs whose cop number approaches k

√
n as n gets large. While

Meyniel’s conjecture has not yet been proven, weaker bounds have been. In the
paper first stating the conjecture, an initial bound was provided: (See [Fra87])

Theorem 6.3. If G is a graph with n vertices then c(G) = O
(
n log logn

logn

)
Before proving Theorem 6.3, we need to first give some definitions and then

state another theorem.

Definition 6.4. In a graph G = (V,E), the degree of a vertex u is the number
of vertices v ∈ V such that (u, v) ∈ E.

Definition 6.5. The diameter of a graph G = (V,E) is

max
u,v∈V

(d(u, v)),

where d(u, v) is the shortest distance between u and v.

Theorem 6.6. (Moore Bound) Let G be a graph with n vertices, maximum
degree ∆(G) > 2 and diameter D. Then, we have

n ≤ 1 + ∆

(
(∆(G)− 1)D − 1

∆(G)− 2

)
.

Proof. (of Theorem 6.3) Lemma 4.5 states that a path can be guarded by 1
cop. We also know that a vertex v and the set of its adjacent vertices can be
guarded by 1 cop because of Proposition 4.2. From the Moore bound, we can
determine that n = O(∆D), and eventually that both ∆ and D cannot be less

than O
( log(n)
log(log(n))

)
.
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Since any path in G has at most D vertices and any vertex has at most

degree ∆, there exists a subgraph X of G with at least O( log(n)
log log(n) ) vertices.

Now, consider the graph G′, which is G with X deleted. If G′ is disconnected,
consider the connected component with the robber and move all the cops there.
We now have

c(G) ≤ c(G′) + 1.

By induction, it follows that

c(G) = O
(n log log n

log n

)
.

Currently, the best proven bound for all graphs with n vertices is as follows:

Theorem 6.7. If G is a graph with n vertices then

c(G) = O

(
n

2(1−o(1))(
√

log2 n)

)
.

This was proven in [SS11] by Scott and Sudakov. The open problem of
Meyniel’s conjecture is only the latest and most famous facet of cops and rob-
bers. There are variations such as active cops and robbers and limited cops
and robbers, bounds on many different classes of graphs, and newly discovered
unsolved problems. These involve other areas of mathematics and show that
cops and robbers has many interesting explorations.
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