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1 Introduction

The angel and devil problem is a combinatorial game where 2 players, an angel
and a devil, take turns maneuvering around an infinite chessboard. On the
devil’s turn, he can remove any square from the chessboard, and on the angel’s
turn, she can move to a range of squares limited in some way. The devil wins if
he can put the angel in a position where she has no moves, and the angel wins
if she can avoid such a position indefinitely. In this paper we discuss winning
strategies for the players when we limit the maneuverability of the angel in
various ways.

2 Problem Statement

An angel starts on some square of an infinite chessboard. Every turn, the angel
can move to any square up to k squares in any direction (including diagonally)
from where she currently is. We will call such an angel, an angel with power k,
or a k-angel for short. After each of the angel’s turns, the devil gets to remove
one square from the board, so that the angel may no longer move there. The
devil wins if the angel eventually gets trapped, and otherwise the angel wins.
Who has a winning strategy for every value of k? What happens if we limit the
angel’s maneuverability in different ways?

3 Useful and Interesting Observations

Observation 3.1 The devil wins if he can build a wall around the angel with
thickness k. Even if the angel can move around in the area enclosed by the wall,
the angel cannot cross the wall, and the devil will eventually fill up the area
enclosed by the wall until the angel has no moves.

Observation 3.2 The angel is not harmed when k is increased. This is be-
cause a winning strategy for the angel for k = x will also work for k = x + 1.
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Observation 3.3 A position is no better for the angel than the same posi-
tion with an extra square removed. This is because the angel has no more and
no better options than in the original position.

Observation 3.4 A k-angel can move to (2k + 1)2 − 1 squares on her turn
(assuming none are blocked).

Definition 3.5: Let the Altered Angel and Devil Problem have the extra con-
dition that the angel cannot go to a square she could have gone to on a previous
turn. I.e. when the angel leaves a square, that square, and all of the (2k + 1)2

squares she could have moved to on that turn, are removed from the board
(except for the square the angel lands on).

Theorem 3.6 For any value of k, the player with the winning strategy for
the Angel and Devil Problem will also have a winning strategy for the Altered
Angel and Devil Problem.

Proof. It is clearly impossible for the angel to win the altered problem if the
devil wins the normal problem, since removing squares cannot help the angel.
We will now prove that it is impossible for the devil to win the altered problem
if the angel wins the normal problem. Let us assume on the contrary that the
devil won the altered problem while the angel won the normal problem. This
would imply that the angel’s winning strategy for the normal problem would
involve returning to at least one of the (2k+1)2 squares. When the angel moves
to a square she could have gone to on a previous turn, the devil will ignore
everything that has happened since the angel was at the center of the (2k + 1)2

square, and pretend that the angel moved directly from the center of the square,
to where the angel currently is. The devil would have blocked out extra squares
by the time the angel reaches its current square, thus the devil will be strictly
better off in this case than when the angel directly moves to the square she
is currently on. Thus returning to such a square is sub-optimal, which is a
contradiction. QED

Figure 1: The area that a 1000-angel blocks every turn is much larger than the
area the devil blocks. [1]
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4 Case Where k = 1

Setup 4.1 First we will solve the problem for k = 1, which is the easiest case
for this problem. The devil has the winning strategy. Let us note that the
angel moves like a chess king. We, as the devil’s advocate, must construct a
wall with a thickness of 1 around the angel. The angel has the first move. After
her move let us call the square that she is on, the origin i.e. (0, 0). WLOG,
let this square be white (the rest of the plane will be tiled like a normal chess-
board). Let the square x units right, and y units up from the origin be (x, y).
We will construct a wall on the perimeter of the square connected by the points
(−27,−27), (27,−27), (−27, 27), and (27, 27). (We choose a 55 × 55 grid to
make the proof easier, a 32× 33 grid works as well.)

We will start by removing the following 20 squares: −(27,−27), (27,−27),
(−27, 27), (27, 27), (−26,−27), (26,−27), (−26, 27), (26, 27), (−27,−26), (27,−26),
(−27, 26), (27, 26), (−25,−27), (27,−25), (−27, 25), −27,−25, (25, 27), (25,−27),
(−25, 27), (27, 25). (The 5 squares, on the perimeter of the 55 × 551 square,
closest to each corner are removed.) After we remove (27, 25), and the angel
moves, the angel must be within the square enclosed by the points (−20,−20),
(20,−20), (−20, 20), and (20, 20). We will now use Algorithm 4.2 to deter-
mine which square to remove.

Algorithm 4.2 If the angel is in the 49 × 49 square, we will remove2 the
closest3 white square to the angel that is on the perimeter. If there are multiple
such squares, we will remove the square that is furthest from another removed
square. If there are still multiple such squares, we will remove a random one of
these squares. We will continue this process until we run out of white squares in
which case we will switch to black squares, or until the angel leaves the 49× 49
square. If the angel ever wanders back into the 49 × 49 square, we will revert
back to the algorithm described in this paragraph.

If the angel is not in the 49 × 49 square, we will remove the square (not
necessarily white) closest to the angel. If there are multiple such squares, we
will remove the square that is furthest from another removed square. If there
are still multiple such squares, we will remove a random one of these squares.
We will continue this until the wall is completed (and we win) or until the angel
wanders back into the 49 × 49 square in which case we will revert back to the
algorithm described in the previous paragraph. We will continue until we finish
building the wall.

Theorem 4.3: Algorithm 4.2 is effective in trapping the angel.

1If an n × n square is mentioned without a specified center, assume the center to be the
origin.

2Until a wall is fully constructed around the angel, we will not remove any squares that
are not on the perimeter of the 55 × 55 square. This will always be a constraint on which
squares we will remove.

3The distance between two squares is equal to |x1 − x2| + |y1 − y2| where (x1, y1) and
(x2, y2) are the coordinates of the squares.
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Proof. The angel will escape the 55 × 55 square iff she can ”fork”4 two or
more squares on the perimeter of the square. (This is why we remove the corner
squares. If the angel is near the corner, five squares can be attacked at once.)
Recall that after we remove (27, 25), and the angel moves, the angel must be
within the 41 × 41 square. This means that we will remove at least five white
squares before the angel leaves the 49 × 49 square. This means that after the
angel leaves the 49 × 49 square, all white squares on the perimeter, two units
to each side of the angel, will be removed. On her next move, the only way the
angel will be able to fork two squares on the perimeter is by forking two black
squares. By removing the closest square (which will be black) we will prevent
the angel from forking two such squares. No matter where the angel moves
we will always be one step ahead (literally and figuratively - see the figure to
understand one case of Algorithm 4.2). QED

Figure 2: A visual depiction of Algorithm 4.2. Deep Red marks (0, 0),
light blue indicates moves of the Angel (along with move number),
light red marks the first 20 moves of the Devil, and peach marks
the subsequent moves of the Devil from 21 to 216. The Blue border
indicates 40 ∗ 40 square, and the Green border indicates the 49 ∗ 49
square. The Angel moves first. After 216 moves, the wall is complete.

4In chess a fork is when a piece attacks two or more pieces at the same time.

4



5 Fools

The following games are all necessary proofs that show the complexity of the
Angel’s winning strategy. On the surface the Angel might seem much stronger
than the devil, but common strategies can fall prey to macroscopic traps, as we
will now see.

Definition 5.1 There are various types of fools. A generic fool is an angel
with her abilities limited in some way.

Definition 5.2 A k-fool is a k-angel that increases her y-coordinate every turn.

Theorem 5.3 The devil will beat a k-fool.

Figure 3: Capturing the k-fool [1]

Proof. Whenever the k-fool is at some point P : P = (xP , yP ), her future
positions will be limited to the cone defined by all squares, (x, y), satisfying

(y − yP ) ≥ d|x− xP |e
k

.

The devil will start by choosing an horizontal line that is a very large power of
2 above P . We will define the points where the cone intersects this line to be A
and B. Let the height of the triangle formed be H. The devil will then remove
1 out of every 4k squares on the line AB so that the devil finishes by the time
the fool is H

2 away from AB. The angel will now be at point Q, and be limited
to a cone of half the size. The new cone will intersect line AB at points C and
D. The devil will again remove 1 out of every 4k squares on line CD, so that
the devil finishes by the time the fool is H

4 away from line CD. We will repeat
this process 4k2 times until a wall of thickness k is constructed above the fool.

Definition 5.4 A lax k-fool is a k-angel that never decreases her y-coordinate.

5



Figure 4: Catching the Lax k - fool [1]

Theorem 5.5 The devil will beat a lax k-fool.

Proof. The devil will use his odd moves to convert the lax k-fool into a normal
fool of a greater power. The devil chooses two points, L and R, 4k2 units to
the left and right of P , the starting position of the lax k-fool. As long as the
lax k-fool stays on the first row, the devil will use his odd moves to alternately
remove squares starting at R and L, moving left from R, and right from L. Thus
we remove a square to the right and left of the lax k-fool every 4 turns. Thus in
4k turns we will have constructed a wall of thickness k to the left and right of
the lax k-fool. If the lax k-fool continues staying on line LR then the lax k-fool
will be forced to move upwards after 16k2 turns. Thus, after 16k2 moves the
lax k-fool must move upwards. Since the lax k-fool must move upwards once
every 16k2 moves, it is in essence a 16k3-fool. The devil will use his even moves
to trap the 16k3-fool. QED

Definition 5.6: A relaxed k-fool (of laxity z) is an k-angel that does not de-
crease its y-coordinate by more than z, where z is some fixed arbitrary positive
integer. Thus, if the relaxed k-fool’s starting position is (x, y), and some time
later its position is (X,Y ), then Y > y − z.

Theorem 5.7: The devil can catch a relaxed k-fool.

Proof: The devil adapts his strategy of dealing with the lax k-fool to beat
the relaxed k-fool. Let P be the starting position of the relaxed k-fool. Thus,
we take a suitable distance D as before from P to the left (L) and right (R) of
the relaxed k-fool. We choose D at such a distance that the devil has enough
moves to create 2 rectangles of width k and length z in the negative y-direction.
Thus, by the time these canyons are created, if the relaxed k-fool kept moving
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Figure 5: Catching the Relaxed Fool [1]

downwards, she is bound by the limit z we imposed in definition 5.6. Now,
she has no choice but to increase her y-coordinate and cannot stay in the plane
below P as she is bound by the 2 canyons the devil created, and will eventually
be caught. After some moves, she will finally rise above P , and now the devil
can now use the strategy for the lax k-fool to trap the relaxed k-fool. QED

Definition 5.8: Let the Out-and-Out k-fool be an k-angel who promises to
strictly increase her distance from the origin (her starting position) on all moves.

Figure 6: Kaleidoscope for capturing an Out-and-Out Fool [1]

Theorem 5.9: The devil can catch an Out-and-Out k-fool.

Proof: Before embarking upon this proof, let us discuss the board that this
problem is played on. Is it necessary that we play on a chess board of side ∞?
No. We can also play the game on a Euclidean plane where the Angel can ”fly”
to all points in a radius k while the Devil can eat any point from a unit disk in
the plane. For example, if a k-angel is confined to a particular conical section,
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and promises to strictly increase her distance r from the Vertex O, we see that
the cone transforms into a triangle, the r coordinate becomes the y coordinate,
and the Devil’s winning strategy for the k-fool applies.

Figure 7: Transformation of Euclidean Plain regions to graph regions [1]

This is quite a powerful observation, as it helps us further generalize the
solution to the Angel and Devil problem. Since the Out-and-Out k-Fool is ca-
pable of moving in all directions, we represent the situation as a graph with a
circle with center (0, 0) and radius a distance k as discussed in previous proofs.
Thus, the devil has a winning strategy by dividing this circular plane into 2n
sectors. If we imagine the circumference of the circle to be mirrors placed in a
kaleidoscope, there 2n images, one in each sector. Thus, when the Out-and-Out
k-Fool moves in any sector, we transform it into a triangle (as described above)
and thus we can use the proof for the k-fool to win. There is some distortion
caused due to transforming the conic section into a triangle, however we roughly
find that an Out-and-Out Fool is of the form of a 2nk-fool. QED

Definition 5.10: Let a Relaxed Out-and-Out k-fool be a k-angel that promises
not to reduce her distance from the Origin by more than z, where z is some
fixed arbitrary positive integer.

Theorem 5.11 The devil can beat a Relaxed Out-and-Out k-fool.

Proof: We can reduce a Relaxed Out-and-Out k-fool to a relaxed k-fool the
same way we reduced the Out-and-Out k-fool to a plain k-fool above. Using
the idea of transformation, we get the same inequality as before, albeit with
slight distortions in strategy due to the transformation. Thus, if the Angel’s
starting position is (x, y) and its final position is (X,Y ), then Y > y − z. This
is a powerful proof and we will use this idea in proving an extremely important
strategy for the devil: the Blass-Conway Diverting Strategy.

Thus, even complex strategies like the Relaxed Fools are easily beatable by the
devil. This goes to show that any winning strategy for the Angel at k ≥ 2 must
be significantly more complex, and the Angel must follow a counter-intuitive
strategy to win.
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6 Blass-Conway Diverting Strategy

The Blass-Conway Diverting Strategy is a theorem that provides a very powerful
strategy for the devil. However, it is not a conclusive proof for the case k ≥ 2.
It simply shows the strategies that are ’foolish’ in nature must be avoided by
the Angel if she is to win.

Theorem 6.1: There exists a diversion strategy for the Devil such that for
each point P and each distance D in a plane, there will be a time t2 : t2 > t1
such that the k-angel is D units nearer to P than she was at time t1, for all P
and D.

Proof: We have different combinations of P and D of the form: (P0, D0),
(P1, D1), (P2, D2), (P3, D3), and so on. We can interpret such a game as a
Relaxed Out-and-Out k-fool that promises not to go farther than Dn from Pn

for all n ∈ N. The devil can thus use his odd moves to trap the Angel when
n = 0 as explained in Theorem 5.11. By applying the same theorem again,
the Devil can use his moves, that are 2 times an odd number, on n = 1 to win.
Thus, the devil can meet the nth requirement by playing the strategy for the
Relaxed Out-and-Out k-fool on his (2n ·O)th moves, where O is an odd number.

This theorem thus generalizes all the approaches for the devil in the fool scenar-
ios. Thus, The Blass Conway Diversion Strategy is the roadmap for the Devil
to win the Angel Problem, if indeed he is winning.

7 Closing Remarks:

Through this paper, we have introduced the Angel Problem and described cer-
tain observations needed to find a general solution. We then utilised these
observations to prove that the devil wins the k = 1 case, if he uses Algorithm
4.2 as his strategy. In a pursuit to solve the general case of k ≥ 2 we covered
the different fools to show that various intuitive strategies for the Angel fail
quite easily. We then used the proof of a Relaxed Out-and-Out fool to derive
the Blass Conway Diverting Strategy - a general winning strategy for the devil.
However, we saw that this theorem is not a conclusive proof for the general case
k ≥ 2 and only serves as a proof to show how the Devil can potentially win a
game.

At this point the reader might be thinking that the devil is the clear victor
of the game, however, the true power of the angel is vastly underestimated
when we compute the outcome of the fools. Despite the multitude of theorems
and examples in favour of the devil winning the Angel Problem, John Conway
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was still convinced that there is a winning strategy for the Angel when k ≥ 2,
and even offered a cash prize for whoever managed to solve the problem. An-
dras Mathe and Oddvar Kloster both separately offered proofs, showing that
the angel wins k ≥ 2.[2] Kloster described the winning strategy for the 2-angel
to be to travel north as quickly as possible and detour around removed squares,
if the added distance will not be more than twice that of the number of eaten
squares avoided.
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