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1 Preliminaries

Definition 1.1. A Discrete Richman Game is a combinatorial game in which

• Each player starts with some number of tokens.

• One player starts with the tie-breaking advantage.

• On each turn, the players simultaneously reveal bids.

– If the bids are unequal, then the player with the larger bid pays the other player and moves.

– If there is a tie, the player with the tie-breaking advantage can either use it and transfer it to the
other player, or choose not to use it.

We denote a Discrete Richman Game by either G(a∗, b) or G(a, b∗), where a and b are the starting amounts
of money, and ∗ is the tie-breaking advantage.

When working with bidding games in general, we usually represent a game by a directed graph, where vertices
are subpositions and there is a directed edge u→ v if some player can move from u to b. We designate two
vertices vl and vr representing positions where Left and Right win immediately (if there are several, we can
just treat them as one).

Definition 1.2. A Classical Richman Game is the same as a Discrete Richman Game, except 1) ties are
broken randomly, and 2) players can withdraw any real amount of money.

In practice, Classical Richman Games are impossible to play. However, they avoid the somewhat unnatural
concept of a tie-breaking advantage. Moreover, we can describe winning positions with just one number.

Definition 1.3. Let G be a Classical Richman game. The Richman Value R(G) is smallest real number
such that Left wins if her starting proportion of money is greater than R(G), and loses if her starting
proportion is less than R(G).

Due to the following property, it turns out the concept of a Richman Value is not that important.

Theorem 1.4

R(G) = 1− P (G), where P (G) is the probability that Left wins when turns are decided randomly.[1]
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Proof. Induct on the birthday of G; the base case is clear.

If turns are decided randomly, players will obviously move to the position that gives them the highest
probability of winning. This implies that

P (G) =
1

2

(
max

xL∈GL
(P (xL)) + max

xR∈GR
(P (xR))

)
.

Thus, by the inductive hypothesis, it suffices to show that

R(G) =
1

2

(
max

xL∈GL
(R(xL)) + max

xR∈GR
(R(xR))

)
=

1

2
(RA(G) +RB(G)).

Suppose the total amount of money is 1, and Left starts out with 1
2 (RA(G) + RB(G)) + ε for some ε > 0.

Then, Left should bid 1
2 (RA(G)−RA(G)).

• If Left wins the bid, she moves to a position with Richman value RB(G), where she has RB(G) + ε.

• If Left loses the bid, Right moves to a position with Richman value RA(G), where Left has at least
RA(G) + ε.

In either case, Left wins by the inductive hypothesis. Similarly, if Left starts out with less than 1
2 (RA(G) +

RB(G)), then Right wins. Hence, 1
2 (RA(G) +RB(G)) is the Richman Value of G, so we are done.

2 Computational Complexity

For Classical Richman Games, periodicity is trivially true; we can scale down the number of tokens without
changing the outcome. Not surprisingly, a similar result holds for their discrete counterparts.

Theorem 2.1

For all Discrete Richman Games G, there exist constants c, d such that G(a, b∗) = G(a+ c, b+ d∗) for
all a, b.[1]

Proof. Let n be a sufficiently divisible positive integer. We claim that c = n ·R(G), d = n · (1−R(G)) works.
It suffices to show that if Left wins G(a, b∗), then she also wins G(a+ c, b+ d∗).

Suppose Left’s optimal first move in G(a, b∗) is bidding x. Then, Left should start by bidding x + n ·
RA(G)−RB(G)

2 .

• If Left wins the bid, she moves to GL(a− x+ n ·RB(G), b+ x+ n(1−RB(G))).

• If Right wins the bid, he moves to GR(a+ x+ n ·RA(G), b− x+ n(1−RA(G))) (or a position more
favorable to Left).

By the inductive hypothesis, both scenarios are at least as good for Left as G(a− x, b+ x), so Left wins.

Corollary 2.2

For all Discrete Richman Games G, we can determine the outcome of the game for every possible pair
of starting token amounts in constant time, albeit with a grotesquely large constant factor.

We can halve this constant factor with the following observation.
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Theorem 2.3

In a Discrete Richman Game, the tie-breaking advantage has positive value but is worth less than a
single token.[1]

Proof. Suppose Left wins G(a, b∗). To prove that the tie-breaking advantage has positive value, it suffices to
show that Left wins G(a∗, b).

For convenience, suppose A = G(a, b∗) and B = G(a∗, b) are being played simultaneously, and we are
playing for Left. Since Right does not have a winning strategy in G(a, b∗), we may assume that we control
Right’s moves in A.

By copying Right’s moves in B over to his moves in A, we can ensure that A and B progress iden-
tically until the first point at which the bids are tied. We can now use our tie-breaking advantage
in A, and force Right NOT to use his tie-breaking advantage in B. Now both games are at the ex-
act same position, and we can copy our winning strategy in A to win B. Thus, Left wins G(a∗, b).

Next, suppose Left wins G(c∗, d). To prove that the tie-breaking advantage is worth less than a single token,
it suffices to show that Left wins G(c+ 1, d− 1∗). As before, assume A = G(c∗, d) and B = G(c+ 1, d− 1∗)
are being played simultaneously, we are playing for Left, and we can control Right’s moves in A.

Assume WLOG that the first moves in A and B are different. Suppose Left’s optimal first move in A
is to bid x and use the tie-breaking advantage if necessary. Then, Left should bid x+ 1 in B.

• If Left wins the bid, she moves B to GL(c− x, d+ x∗). By making Right bid x in A, the same position
is obtained from A. Now Left can copy her strategy in A to win B.

• If Right uses the tie-breaking advantage to win the bid, then Left can make Right bid x+ 1 in A. Now
Right pays x+ 1 to move in both games, contradicting our assumption.

• If Right bids x+ y for y ≥ 2, he wins the bid and moves B to GR(c+ x+ y + 1, d− x− y − 1∗). By
making Right bid x+ 1 in A, the position GR(c+ x+ 1∗, d− x− 1) is obtained from A. Now we are
faced with the same problem we began with, so Left can repeatedly apply the above strategy to win.

Hence, Left has a winning strategy in G(c+ 1, d− 1∗).

It turns out that computing outcomes of Classical Richman Games is much harder. However, we can obtain
results for some special cases.

Theorem 2.4

If the graph associated with a game G is finite and acyclic, the Richman Values of all vertices can be
calculated in linear time in the number of vertices and edges.[2]

Proof. Assign probabilities to vertices in reverse topological order (it is well-known that topological sort can
be done in linear time). For any vertex v, we can calculate P (v) by scanning through the probabilities of its
neighbors (which have already been assigned). Now we are done by Theorem 0.5.

When the graph has cycles, we have to be much more careful, as the equations we know for Richman values
refer to themselves. In the following case, we can just directly solve the ensuing system of equations.
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Theorem 2.5

If there are at most two moves from any subposition of a Classical Richman Game G, then the Richman
Values of all subpositions can be calculated in polynomial time.[2]

Another result for graphs with cycles is below; the proof is a very nice local argument.

Theorem 2.6

If the graph associated with a Classical Richman Game G is finite and undirected, then the Richman
values of all vertices can be calculated in polynomial time.[2]

Proof. We define X = {V,E}, the set of vertices and edges that we have processed so far. Initialize
R(vl) = 0, R(vr) = 1, and X = {{vl, vr}, {}}. We will maintain the invariant that if an edge is in E, the
vertices it connects are in V.

At each step of the algorithm, consider the set of paths v0v1v2 . . . vn such that v0, vn ∈ V and v1, . . . , vn−1 6∈ V,
where we assume WLOG that R(v0) < R(vn). Of these paths, choose the one such that s = R(vn)−R(v0)

n , which

we call the slope of the path, is maximal. Now assignR(vi) = i·R(vn)+(n−i)·R(v0)
n for all i, and add the path toX.

Call a vertex good if its Richman cost is the average of the minimum and maximum Richman values
of its neighbors in X.

• R(vi) = R(vi−1)+R(vi+1)
2 for i = 1, . . . , n− 1, so v1, . . . , vn−1 are good.

• The neighbors of all vertices other than v0, . . . , vn haven’t changed, so they remain good.

Finally, we need to show that v0, vn are good. To show that v0 is good, it suffices to show that s is at least
as large in magnitude as the slopes of edges adjacent to v0. This is equivalent to showing that the slopes of
the chosen paths are nonincreasing.

Suppose, for the sake of contradiction, there is some path u0u1 . . . uk with u0, uk ∈ V and u1, . . . , uk−1 6∈ V
with slope s′ > s.

• If u0 = vi and uk = vj , then the path v0 . . . viu1 . . . uk−1vj . . . vn has slope 1
i+k+n−j (is+ks′+(n−j)s) >

s, contradicting our maximality assumption.

• If u0 = vi and uk 6∈ {v0, . . . , vn}, then the path v0 . . . viu1 . . . uk has slope 1
i+k (is+ks′) > s, contradicting

our maximality assumption.

• If u0, uk 6∈ {v0, . . . , vn}, then u0 . . . uk itself was a candidate in the first step of our process, and thus
contradicts our maximality assumption.

Having reached a contradiction in all cases, we conclude that v0 and vn are good. This shows that our
Richman Value labeling is valid for our new set X.

Repeating our algorithm as many times as possible, we will eventually reach a point at which no paths, as
described, exist. Consider a vertex v 6∈ V.

• If v is connected to x, y ∈ V, then x→ v → y is a suitable path to continue our algorithm, contradiction.

• If v is not connected to any vertex in V, then it must be in a different component, contradiction.

Thus, v is connected to exactly one vertex v′ in V. Now we can just let R(v) = R(v′). Repeating for all
vertices not in V, we are done.
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3 Hex

Next, we turn our attention from computing outcomes quickly to determining good moves quickly. We will
focus on the game Hex, where two players take turns coloring hexagons in an 11×11 rhombus, and the player
who creates a path between their respective pair of opposite sides wins. For example, an end position where
Left has won is shown below. For now, we will ignore bidding, and just assume turns are determined arbitrarily.

We have the following proposition; it is quite intuitive, so we have omitted the proof.

Proposition 3.1

At any subposition of the game, Left’s set of optimal moves is the same as Right’s set of optimal moves.[3]

When the board is completely filled, call a hexagon pivotal if changing its color would change the outcome of
the game.

Theorem 3.2

At any given point in the game, the optimal move (for both Left and Right) is to play in a hexagon
with the highest chance of being pivotal, over all possible colorings of the remaining hexagons.[4]

Proof. WLOG assume Left starts, and suppose she colors a hexagon H out of the set S of all hexagons. Since
turns are chosen randomly and both players have the same strategy, the remaining turns will color S \ {H}
randomly. Therefore, H should have the largest possible chance of being pivotal over all random colorings of
S \ {H}.

For the random-turn game, this is the best we can do. We can check a large number of random colorings
of the remaining board, and determine which hexagons are most often pivotal. You can play against this
strategy at Hexamania.

Fortunately, we can apply a similar strategy for the discrete bidding game. We will need the following
theorem.

Theorem 3.3

The probability that a hexagon is not pivotal is twice the probability that it will have the losing color.[3]
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Proof. Suppose a hexagon H is in the losing color. If we switch the color of H, then H is in the winning
color and not pivotal. Hence, the probabilities of these two events are equal.

However, if H is losing, then it cannot be pivotal. Thus,

P (not pivotal) = P (winning and not pivotal) + P (losing and not pivotal) = 2P (losing),

as desired.

This shows that the optimal move is to play in the hexagon with the least chance of being in the losing color.
But how should we bid?

Theorem 3.4

The optimal bid is the floor of 1
2P (pivotal) times the total number of tokens.[3]

Proof. The probability that Left wins if she makes the first move is 1− P (losing) and the probability that
Right wins if he makes the first move is P (losing). Therefore, by our work in Theorem 1.4, the best bid is
1
2 (1− 2P (losing)) = 1

2P (pivotal) of the total amount of resources.

Now, to compute optimal moves and bids, we can just check a large number of colorings of the remaining
hexagons on the board (say ≈ 500000), chosen uniformly at random, on each turn. One algorithm that does
this is able to beats human opponents consistently; to see the code, you can contact the authors of [3].

4 Future Work

There are several interesting variants on discrete and classical Richman games, which behave very differently.
In general, very little is known about these variants. Some examples include

• Poorman bidding, in which players pay the bank instead of the other player

• Taxman bidding, a generalization of Poorman and Richman bidding, in which players play a certain
portion to the bank and the rest to the other player

• All-pay bidding, in which all players pay the bank the amount of their bid

• Scoring, in which players bid to increase their score and the highest score wins

• Infinite-duration games with the same rules

In addition, analyzing well-known games like Nim and Chess under auction player would be interesting and
original.
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