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Abstract

We discuss the n-player versions of the games Nim and Nimk equipped
with the podium rule. Much of this paper comes from [1]. Some material
from Chapter 3 of [2] is reviewed as it becomes relevant in proving new
results.

1 Introduction

We traditionally only study combinatorial games with two players because the
theory is more elegant. This is because, in games with more players, there
often arise situations in which a group of players can form a coalition to prevent
other players from winning. However, the formation of these groups as well as
their choice of who to prevent winning is arbitrary, which does not lend itself
well to an analysis. For instance, problem 1.16 in [2] shows us that in a three
player version of the subtraction game Matches, there is a situation in which
the first player may choose which of the other two win. But who is to say what
their choice should be? To fix these issues, we shall modify our definitions of
combinatorial games (in particular, what a winning condition is in these games)
to accommodate more than two players.

2 Two Player Nim

A normal-play Nim game is a set of piles of stones (the piles are not necessarily
the same height). Two players alternate moves, and on their turn they can
remove any non-zero number of stones from a single pile. The player who finds
themselves with no moves available to them on their turn to play loses. We
shall write a Nim game with n piles of height a1, a2, . . . , an as

[a1, a2, . . . , an].

Nim is an example of an impartial game - one in which all players have the same
set of moves available to them in any position. For impartial games, we call a
game a P position if the player to start loses, or an N position if the player to
start wins. The following result, called the Partition Theorem in [2], is essential
to the proof of Theorem 2.2. We will later generalize it to prove similar results
about n-player Nim.
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Theorem 2.1 Let S be a set of finite impartial games closed under sub-positions,
and let P and N partition it. Suppose that for every game in N there exists
a move to a game in P, and for every game in P all moves are to games in
N . Then we have N = N and P = P.

Proof. We will show this by induction on the height of the game tree of games
in S . Firstly, it must be the case that all terminal positions are contained in
P, since they cannot be in N because there are no moves from them (in par-
ticular, there does not exist a move to a game in P). These terminal positions
are also in P. Now, any game with a terminal position as an option must be
in N , and they are also in N . Inductively, we will place games whose options
are all in N into P, observing that these games are also in P. Similarly, we
will place games who have at least one option that is a game in P into the set
N , observing that these games are also in N . Since P and N partition S by
definition, this process will cover all games. Thus, P = P and N = N .

In 1902, Bouton published Theorem 2.2 telling us the P positions of Nim, ef-
fectively solving the game. Before presenting it, we must first introduce the
nim-sum operation. To compute the nim-sum of two binary numbers a and b,
written as a⊕ b, we concatenate their digit-wise sums modulo 2. Thus

1001⊕ 1101 = 0100.

For numbers written in a different base, we first write them in binary and then
compute their nim-sum normally. The operation is commutative and associa-
tive, so we may ’add’ more than two integers freely.

Theorem 2.2 The Nim game [a1, a2, . . . , an] is a P position if and only if

a1 ⊕ a2 ⊕ · · · ⊕ an = 0. (1)

Proof. Let S be the set of Nim games, and suppose P is the subset of S where
(1) is true for each of its elements and N is the set of all other games in S . If
G = [a1, a2, . . . , an] ∈ P let us suppose, without a loss of generality, that the
first player moves in a1 to a′1. Since a′1 6= a1 we must have

a′1 ⊕ a2 ⊕ · · · ⊕ an 6= a1 ⊕ a2 · · · ⊕ an = 0,

so that all moves from games in P are to games in N . Conversely, if G ∈ N
then we have

a = a1 ⊕ a2 ⊕ · · · ⊕ an 6= 0.

Let us consider the leftmost digit of a which is non-zero; say, in position j. Since
a 6= 0, there are an odd number of piles with a 1 in the j-th digit of their binary
representations. In particular, there is one such pile which, without a loss of
generality, we will assume to a1. We claim that the move that replaces a1 with
a⊕a1 makes the game a P position. Firstly, since in at least the j-th digit, the
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number a⊕ a1 has a 0 where a1 has a 1, this move is possible (we are reducing
the number of stones in the pile). Performing this move, the game becomes

a⊕ a1 ⊕ a2 ⊕ a3 ⊕ · · · ⊕ an = a⊕ a = 0,

which is in P. Then, by Theorem 2.1, we have N = N and P = P as required.

A more general version of Nim is the game Nimk, in which a player can re-
move stones from up to k piles on their move. Thus, Nim is the same as Nim1.
Theorem 2.2 can be extended to describe Nimk, but for this we require a gener-
alization of the nim-sum, called the q-nim-sum. To compute the q-nim-sum of
two binary numbers a and b, written as (a⊕ b)q, we concatenate their digit-wise
sums modulo q. Thus

(1001⊕ 1101⊕ 0101)3 = 2200.

Similarly, for numbers written in different bases, we first write them in binary
and then compute their q-nim-sum normally.

Theorem 2.3 The Nimk game [a1, a2, . . . , an] is a P position if and only if

(a1 ⊕ a2 ⊕ · · · ⊕ an)k+1 = 0.

We omit the proof as it arises as a special case of Theorem 3.4 in the next
section.

3 N-Player Nim

We begin with an example to illustrate the necessity of a change in our defini-
tion of winning and losing in the context of an n-player game. Suppose that
Alice, Bob and Charlie play (in that order) the Nim game [1, 2]. Then Alice
may move to one of [1, 0], [0, 2] or [1, 1]. If she moves to one of the first two then
Bob is guaranteed a win, but if she moves to [1, 1] then Charlie is guaranteed
a win. Thus, Alice cannot win but may choose which one of Bob or Charlie
does. However, we cannot say what her choice should be. To rectify this, we
will change our notion of winning using what is called the podium rule.

First, some conventions. In an n-player version of Nim, we begin by naming the
players P1, P2, . . . , Pn−1 and Pn. They rotate turns, so that P1 plays first, then
P2, and so on until P1 plays again after Pn (if they have a move). The game
will end when one of the players cannot make a move on their turn to play. At
this point, we assign each of them a rank in the following way.

Suppose that the game ends on Pi’s turn to play so that they are the first player
with no moves available to them. Then, we rank the players in increasing order
as Pi, Pi+1, . . . , Pn, P1, . . . , Pi−1.
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The key assumption we shall now make is that each player will adopt a strat-
egy that maximizes their individual rank. This is what removes the possibility
of coalitions. For instance, in the example at the beginning of this section, it
can be shown that the ranking upon playing either of the first two moves is
P3, P1, P2 and the ranking upon playing the third move is P1, P2, P3. Since P1

(that is, Alice) will now always play to maximize their individual rank, she will
choose to make the move to [1, 0] (or [0, 2] - it does not matter).

Note that the last player to make a move obtains the highest rank, so we shall
say that the game G is an i − 1 position if Pi ends the game (we discard the
notion of a P and N position). We call this the outcome of G, denoted by o(G).
We can summarize the optimal strategy stated above by saying that if a player
has the set of moves {G1, G2, . . . , Gm} available to them, they should move to
Gk if

o(Gk) = min {o(G1), o(G2), . . . , o(Gm)} .
For the proof of the main result of two player Nim, we used the Partition
Theorem. To prove similar results now, we require a generalization of it in the
context of n-player Nim.

Theorem 3.1 There are two parts:

(a) An n player Nim game G is a k > 0 position if and only if we can reach
a 0 position in less than k moves, and k is the smallest such integer for
which this is true.

(b) Otherwise, G is a 0 position; that is, G is a 0 position if and only if we
cannot reach another 0 position in less than n moves.

Proof. We prove only the forward directions; the converses are true almost by
definition.

(a) Suppose that G was a k position yet we could not reach a 0 position in
less than k moves. But then Pk+1 cannot end the game, since they cannot
play in a 0 position. Note that the requirement that k be minimal is clear.

(b) Suppose that G is a 0 position yet we could reach another 0 position in
less than n moves; say, in j moves where 0 < j < n. But then Pj+1 ends
the game, so that G is a j position.

We now aim to prove a straightforward test to determine whether an n player
Nim game is a 0 position. If a game G is not a 0 position, then Theorem 3.1
tells us that we can test sub-positions of G to see whether they are 0 positions,
and that such a sub-position is less than n moves away. Together, these provide
a reasonable method for determining the outcome of a given Nim game.

Theorem 3.2 Suppose G = [a1, a2, . . . , ak] is an n-player Nim game. Then G
is a 0 position if and only if

(a1 ⊕ a2 ⊕ · · · ⊕ ak)n = 0.
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Proof. Set (G) = (a1 ⊕ a2 ⊕ · · · ⊕ ak)n. Let L(G) be the leftmost non-zero digit
of (G) in base n; if (G) is 0 then set L(G) = 0 as well.

We begin by showing the reverse direction; that is, if (G) = 0 then G is a 0
position. By Theorem 3.1, this is the same as showing that we cannot reach a
0 position in less than n moves. Consider a sub-position G′ of G. If L(G) 6= 0
then L(G′) ≥ L(G) − 1. Further, if L(G) = 0 then L(G′) = n − 1. Thus, by
induction, our claim is true.

Conversely, we now show that if G is a 0 position, then (G) = 0. Equivalently,
we shall show that if (G) 6= 0 then G is not a 0 position. By Theorem 3.1, this
is the same as showing that we can reach a 0 position in less than n moves. The
proof is involved, so it will be presented as its own lemma below (this is Lemma
1 in [1]).

Lemma 3.3 Let n be a positive integer and let a1, a2, . . . , am be non-negative
integers. Write each ai in binary as ai1ai2 . . . ait (here t will depend on i, of
course). Then let s be the smallest integer so that

m∑
i=1

ais

is not divisible by n. Now assume that the binary number aisai(s+1) . . . ait =
11 . . . 1 for all i ≤ k, where k is a suitable non-negative integer smaller than
m. Then we will prove the existence of non-negative integers b1, b2, . . . , bm such
that:

1. bi ≤ ai for all i ∈ {1, 2, . . . ,m}

2. If bi may be written in binary as bi1bi2 . . . bit then the sum

m∑
i=1

biq

is divisible by n for all q ∈ {1, 2, . . . , t}.

3. There is a permutation π on the set {1, . . . ,m} which fixes {1, . . . , k} so
that bπ(i) = aπ(i) for all i ≥ n.

Proof. We prove the lemma by induction on the quantity t − s. Let r be the
remainder when

m∑
i=1

ais

is divided by n. Up to a reordering of the integers ak+1, . . . , am, we can assume
that ais = 1 for all i ≤ r. Now, for i ≤ r, define ai to be the number whose
binary representation is ai1ai2 . . . ai(s−1)011 . . . 1, where there are t− s copies of
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1 at the end. For i > r, set ai = ai. Thus, we can say ai ≤ ai for all i. We shall
also write ci1ci2 . . . cit for the binary representation of ci. Now, if we have

m∑
i=1

ciq

to be divisible by n for each q ∈ {1, 2, . . . , t} then we can set bi = ai to complete
the proof. Otherwise, set s to be the smallest integer such that

m∑
i=1

ais

is not divisible by n. We must have s > s. Further, aisai(s+1) . . . ait = 11 . . . 1

for all i ≤ k. Up to a reordering of ck+1 . . . cm there exists k such that k > k
and ci1ci2 . . . cit = 11 . . . 1 if and only if i ≤ k. Finally, using the inequalities
ci ≤ ci and k > k along with the induction hypothesis on t− s we complete the
induction.

The claim follows directly from this lemma.

As an example, consider the four player Nim game [14, 13, 11, 8, 7, 4, 3]. It is
easily checked that

(14⊕ 13⊕ 11⊕ 8⊕ 7⊕ 4⊕ 3)4 = 0,

so that the game is a 0 position. Thus, the final ranking will be P1, P2, P3, P4.

We conclude with a similar theorem about the game Nimk.

Theorem 3.4 Suppose G = [a1, a2, . . . , am] is an n-player Nimk game. Then
G is a 0 position if and only if

(a1 ⊕ a2 ⊕ · · · ⊕ am)nk−k+1 = 0.

Proof. We will use the same notation we did in the proof of Theorem 3.2. Con-
sider a sub-position G′ of G. If L(G) 6= 0 then L(G′) ≥ L(G) − k. Further, if
L(G) = 0 then L(G′) ≥ (n− 2)k+ 1. The proof will now be identical to that of
Theorem 3.2; using the inequalities to prove one direction, and Lemma 3.3 to
prove the other.

Note that when n = 2, the statements of Theorem 3.2 and Theorem 3.4 match
their counterparts in Section 2 as we would expect.
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