
BIDDING GAMES
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Abstract. In this paper, we cover another class of games known as bidding games in which
the players have to bid for the right to make the next move.

1. Introduction

There are two game theories. The first is referred to as matrix game theory. In matrix
games, two players make simultaneous moves and a payment is made from one player to
the other depending on the chosen moves. Optimal strategies often involve randomness and
concealment of information.
The other game theory is combinatorial game theory. In combinatorial games, two players
move alternately. We may assume that each move consists of sliding a token from one vertex
to another along an arc in a directed graph. A player who cannot move loses. There is no
hidden information and there exist deterministic optimal strategies.

1.1. Game proposed by David Richman. In the 1980’s, David Richman suggested a
class of games that share some aspects of both types of game theory. The setup of the game
is as follows:
The game is played by two players, Mr.Blue and Ms.Red, each of whom has some money.
There is an underlying combinatorial game in which a token rests on a vertex of some finite
directed graph. There are two special vertices denoted by b and r. Blue’s goal is to bring
the token to b and Red’s goal is to bring the token to r. The two players repeatedly bid for
the right to make the next move. Each player writes a non-negative real number(lesser than
the number of dollars he or she has) on a card. The player with the higher bid on that turn
gets to move the token from the vertex it currently occupies along the arc of the directed
graph to a successor vertex. The winner of the bid also has to pay the amount of the bid
to the opponent in order to make the move. If the two bids are equal, the tie is broken by
flipping a coin. The game terminates when one player moves the token to their respective
target vertices. Since money loses all value at the end of the game, the sole objective of
the player is to make the token reach the appropriate vertex. The game is a draw if neither
vertex is ever reached.

2. The Richman Cost Function

For the entirety of this paper, D denotes a directed graph (V,E) with a distinguished blue
vertex b and a distinguished red vertex r. All other vertices are considered to be colored
black. We assume that there is a path to either r or b from every vertex. We also assume
that every vertex has a finite number of successors. Since the monetary transactions stay
between the two players throughout the game, the total money supply remains fixed. For
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convenience, let’s assume the total money supply to be equal to a dollar. The money is
infinitely divisible.

2.1. The Concept of Costs. For v ∈ V , let S(v) denote the set of successors of v in D,
that is, S(v) = {w ∈ V : (v, w) ∈ E}. Given any function f : V → [0, 1], we define

f+(v) = maxw∈S(v)f(w) and f−(v) = minu∈S(v)f(u).

The key to playing this Richman game on D is to attribute costs to the vertices of D such
that the cost of every vertex (except r and b) is the average of the lowest and highest cost
of its successors.

Definition 1. A function R : V → [0, 1] is called a Richman Cost Function if

R(b) = 0, R(r) = 1

and for every other v ∈ V (black colored vertices), we have

R(v) =
1

2
(R+(v) + R−(v))

2.2. Theorems:

Theorem 2. There exists a Richman Cost Function R(v) for any directed graph D.

Proof. We introduce a function R(v,t). Let R(b,t) = 0 and R(r,t) = 1 for all t ∈ N. For
v /∈ {b, r}, we define R(v, 0) = 1 and

R(v, t) =
1

2
(R+(v, t− 1) + R−(v, t− 1)

for t > 0. It is easy to see that R(v, 1) 6 R(v, 0) for all v, and a simple induction shows that
R(v,t+1) 6 R(v,t) for all v and all t > 0. Therefore R(v,t) is weakly decreasing and bounded
below by zero as t→∞, hence convergent. It is also evident that function v 7→ limt→∞R(v,t)
satisfies the definition of a Richman function. �

Theorem 3. Suppose Blue and Red play the Richman Game on the digraph D with the token
initially located at vertex v. If Blue’s share of the total money exceeds R(v)= limt→∞R(v, t),
Blue has a winning strategy. Indeed, if his share of the money exceeds R(v,t), his victory
requires at most t moves.

Proof. Without loss of generality, money can be scaled so that the total supply is one dollar.
Whenever Blue has over R(v) dollars, he must have over R(v,t) dollars for some t. We prove
the claim by induction on t. At t = 0, Blue has over R(v,0) dollars only if v = b, in which
case he has already won.

Now assume the claim is true for t− 1, and let Blue have more than R(v,t) dollars. There
exist neighbours u and w of v such that R(u, t−1) = R−(v, t−1) and R(w, t−1) = R+(v, t−1),
so that R(v, t) = 1

2
(R(w, t − 1) + R(u, t − 1)). Blue can bid 1

2
(R(w, t − 1) − R(u, t − 1))

dollars. If Blue wins the bid at v, then he moves to u and forces a win in at most t − 1
moves(by the induction hypothesis), since he has more than 1

2
(R(w, t − 1) + R(u, t − 1))-

1
2
(R(w, t−1)−R(u, t−1))=R(u, t−1) dollars left. If Blue loses the bid, then Red will move

to some z, but Blue now has over 1
2
(R(w, t− 1) +R(u, t− 1))+1

2
(R(w, t− 1)−R(u, t− 1))=

R(w, t− 1) > R(z, t− 1) dollars, and again wins by the induction hypothesis. �

Before moving on to the next theorem, we require the following definition and technical
lemma.
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Definition 4. An edge is said to be an edge of steepest descent if R(u) = R−(v). Let v̄
be the transitive closure of v under the steepest-descent relation. That is, w ∈ v̄ if there
exists a path v = v0, v1, v2, ...., vk = w such that (vi, vi+1) is an edge of steepest descent for
i = 0, 1, ...., k − 1.

Lemma 5. Let R be any Richman cost function of the digraph D. If R(z) < 1, then z̄
contains b.

Proof. Suppose R(z) < 1. Choose v ∈ z̄ such that R(v) = minu∈z̄R(u). Such a v must
exist because D (and hence z̄) is finite. If v = b, we are done. Otherwise, assume v 6= b,
and let u be any successor of v. The defintion of v implies R−(v) = R(v), which forces
R+(v) = R(v). Since R(u) lies between R−(v) and R+(v), R(u) = R(v) = R−(v). Hence
(v, u) is an edge of steep descent, so u ∈ z̄. Moreover, u satisfies the same defining property
that v did (it minimised R(.) in the set z̄), so the same proof shows that for any successor
w of u, R(w) = R(u) and w ∈ z̄. Repeating this, we see that for any point w that may be
reached from v, R(w) = R(v) and w ∈ z̄. On the other hand, R(r) is not equal to R(v)
(since R(v) 6 R(z) < 1 = R(r)), so r cannot be reached from v. Therefore b can be reached
from v, so we must have b ∈ z̄. �

Theorem 6. If the directed graph D is finite, then there is only one Richman cost function
on D.

Proof. Suppose that R1 and R2 are Richman cost functions of D. Choose v such that R1−R2

is maximised at v ; such a v exists since D is finite. Let M = R1(v) − R2(v). Choose
u1, w1, u2, w2 (all successors of v) such that R−i (v) = R(ui) and R+

i (v) = R(wi). Since
R1(u1) 6 R1(u2), we have

(1) R1(u1)−R2(u2) 6 R1(u2)−R2(u2) 6M.

(The latter inequality follows from the definition of M.) Similarly, R2(w2) > R2(w1), so

(2) R1(w1)−R2(w2) 6 R1(w1)−R2(w1) 6M.

Adding (1) and (2), we have

(3) (R1(u1) + R1(w1))− (R2(u2) + R2(w2)) 6 2M.

The left side is 2R1(v)− 2R2(v) = 2M , so equality must hold in (2). In particular, R1(u2)−
R2(u2) = M ; i.e., u2 satisfies the hypothesis on v. Since u2 was any vertex with R2(u2) =
R−2 (v), induction shows that R1(u)−R2(u) = M for all u ∈ v̄, where descent is measured with
respect to R2. Since R1(b) − R2(b) = 0 and b ∈ v̄, we have R1(v) − R2(v) 6 0 everywhere.
That is, R1 6 R2. The same argument for R2 − R1 shows the opposite inequality, so
R1 = R2. �

2.3. Characteristic of the Optimal Strategy in Richman Games. Lets consider the
directed graph in the figure below whose Richman Cost Function is as indicated.
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If the token is located at the vertex v, then Blue can win with a fraction of the money
supply greater than 11

96
. Note that his optimal move is to the vertex u, which is simultaneously

farther from this goal vb and closer to his opponent’s goal vr. His alternative is to move to
the vertex w, which is closer to his goal and farther from his opponent’s. This illustrates
that the optimal strategy in Richman games does not respect the usual distance function on
graphs.

3. Incomplete Knowledge

It is possible to implement a winning strategy without knowing how much money the
opponent has. Let’s define safety ratio from the perspective of Blue.

Definition 7. Blue’s safety ratio at v is the fraction of the total money that he has in his
possession, divided by R(v) (the fraction that he needs in order to win).

Note: Blue will not know the value of his safety ratio, since we are assuming that he has
no idea how much money Red has.

Theorem 8. Suppose Blue has a safety ratio strictly greater than 1. Then Blue has a strategy
that wins with probability 1 and does not require the knowledge of Red’s money supply.

Proof. Here is Blue’s strategy: When the token is at vertex v, and he has B dollars, he
should act as if his safety ratio is 1; that is, he should play as if Red has Rcrit dollars with

B
B+Rcrit

= R(v) and the total amount of money is B + Rcrit = B
R(v)

dollars. He should

accordingly bid

X =
R(v)−R−(v)

R(v)
B
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dollars. Suppose blue wins(by outbidding or by tiebreak) and moves to u along an edge of
steepest descent. Then Blue’s safety ratio changes

from
( B
B+R

)

R(v)
to

(B−X
B+R

)

R(u)
,

where R is the actual amount of money that Red has. However, these two safety ratios are
actually equal, since

B −X

B
= 1− X

B
= 1− R(v)−R(u)

R(v)
=

R(u)

R(v)
.

Now suppose instead that Red wins the bid (by outbidding or by tiebreak) and moves to z.
Then Blue’s safety ratio changes

from
( B
B+R

)

R(v)
to

(B+Y
B+R

)

R(z)
,

with Y > X. Note that the new safety ratio is greater than or equal to

(B+X
B+R

)

R(w)
,

where R(w) = R+(v). But this lower bound on the new safety ratio is equal to the old safety
ratio, since

B + X

B
= 1 +

X

B
= 1 +

R(w)−R(v)

R(v)
=

R(w)

R(v)
.

In either case, the safety ratio is nondecreasing, and in particular must stay greater than
1. On the other hand, if Blue were to eventually lose the game, his safety ratio at that
moment would have to be at most 1, since his fraction of the total money supply cannot be
greater than R(r) = 1. Consequently, our assumption that Blue’s safety ratio started out
being greater than 1 implies that Blue can never lose. In an acyclic graph, infinite play is
impossible, so the game must terminate at b with a victory for Blue. �

4. Poorman Variant

The Poorman Game has a setup very similar to that of the Richman Game. However, the
two games differ in the fact that in a Poorman game, the higher bidder pays the amount
of the bid to the bank instead of the lower bidder, so that the money would never be seen
again. The winning strategy in the Poorman Game is governed by a different sort of cost
function called the Poorman Cost Function.

Definition 9. Given 0 6 x 6 y 6 1, we define the Poorman’s average of x and y to be

avgP (x, y) =
y

1− x + y
.

Note: avgP (x, y) 6 y since 1− x + y > 1. Also, x− avgP (x, y) = (y − x)(1− x) > 0, so
avgP (x, y) > x.

Definition 10. Given a directed graph D with distinguished vertices b and r, a Poorman
Cost Function is a function P : V (D)→ [0, 1] such that

P (b) = 0, P (r) = 1,
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and
P (v) = avgP (P−(v), P+(v))

for v black.

4.1. Theorems:

Theorem 11. There exists a Poorman Cost Function P (v) for the directed graph D.

Proof. Consider the auxiliary functions p(v, t) and P (v, t). Let

p(b, t) = 0, P (b, t) = 0

p(r, t) = 1, P (r, t) = 1

for all t ∈ N. For v black, let

P (v, t) = avgP (P−(v, t− 1), P+(v, t− 1)),

and
p(v, t) = avgP (p−(v, t− 1), p+(v, t− 1)).

A simple induction shows that P (v, t+1) 6 P (v, t) for all v and all t > 0. Therefore, P (v, t)
is weakly decreasing and bounded below by zero as t→∞, hence convergent. It is also
evident that the function P (v) = limt→∞ P (v, t) satisfies the definition of a Poorman Cost
Function.
Similarly, p(v, t) converges to a Poorman Cost Function p(v). �

Theorem 12. Suppose Blue and Red play the Poorman Game on the directed graph D with
the token initially located at vertex v. If Blue’s share of the total money supply exceeds
P (v) = limt→∞ P (v, t), then he has a winning strategy. Moreover, his victory requires at
most t moves if his share of the money supply exceeds P(v,t).

Proof. It suffices to prove the result concerning P (v, t). Suppose it is true for t− 1, and let
Blue have x dollars and Red have y dollars where x

x+y
> P (v). Blue bids ∆ dollars where

∆ =
(P (v, t)− P−(v, t− 1))x

P (v, t)(1− P−(v, t− 1))
=

(P+(v, t− 1)− P (v, t))x

P (v, t)P+(v, t− 1)
.

If a bid by Blue prevails, then his share of the money supply decreases but remains at least

x−∆

x + y −∆
=

x− (P (v,t)−P−(v,t−1))x
P (v,t)(1−P−(v,t−1))

x + y − (P (v,t)−P−(v,t−1))x
P (v,t)(1−P−(v,t−1))

>
x− (P (v,t)−P−(v,t−1))x

P (v,t)(1−P−(v,t−1))

x
P (v,t)

− (P (v,t)−P−(v,t−1))x
P (v,t)(1−P−(v,t−1))

= P+(v, t− 1).

By the induction hypothesis, Blue can win in either case. �
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